高分子材料概述课程报告之液晶高分子材料

高分子材料概述课程报告之液晶高分子材料
高分子材料概述课程报告之液晶高分子材料

高分子材料概述课程报告之液晶高分子材料一.概述

进入近代社会特别是进入二十一世纪,人类对材料的需求越来越迫切,对材料的性能和经济性的要求也越来越高,在这样的背景下,液晶高分子材料显然具有巨大优势。可液晶高分子材料又是一类什么材料呢?

首先来介绍一下液晶:液晶是某些小分子有机化合物或某些高分子在熔融态或在液体状态下, 形成的有序流体, 既具有晶体的各向异性, 又具有液体的流动性, 是一种过渡状态, 这种中间态称为液晶态,又称为物质的第四态或介晶态。处于这种状态下的物质称为液晶。而液晶高分子是由液晶单元和柔性间隔以化学键结合而成。由于它们兼具液晶的取向有序性和位置有序性及高分子的长键分子特性等优异功能,使得它们成为全世界的学术研究机构与大公司实验室都极为关注的材料。而在自然界也存在天然液晶高分子材料,如纤维素衍生物、多肽及蛋白质、DNA和RNA等,与它们对应的则为合成液晶高分子。根据液晶形成的条件,可以将液晶高分子分为溶致液晶高分子和热致液晶高分子。它们分别在一定浓度的溶液中或在一定温度范围内表现出液晶性,这种溶致性或热致性决定了在制备液晶高分子材料时采用的工艺技术。

二.液晶高分子材料的性能

液晶高分子含有棒状等具有一定长径比的液晶单元,因此其分子键都为刚性或半刚性。这种刚性或半刚性的分子键易于形成空间位置

上排布的有序性和在液晶态加工过程中分子键能高度取向,因此液晶高分子材料具有一系列优异的性能。液晶高分子的熔体具有高流动性、低成型收缩率、低热膨胀系数与高的尺寸稳定性、高强度与高模量、耐高温等力学性能,并有优异的电绝缘性能、耐化学腐蚀性、耐老化性、阻燃性等一系列优异的综合性能。作为液晶白增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。正是由于其优异的性能和广阔的应用前景,使得液晶高分子材料成为当前高分子科学中颇有吸引力的一个研究领域。

三.液晶高分子材料的分类

液晶高分子材料具有如此优异的性能,那其分类又有哪些呢?目前,液晶高分子分类方法有三种。从液晶基元在分子中所处的位置可分为主链型和侧链型两类。从应用的角度可分为热致型和溶致型两类,这两种分类方法是相互交叉的,即主链型液晶高分子同样具有热致型和溶致型,而热致型液晶高分子又同样存在主链型和侧链型。从液晶高分子在空间排列的有序性不同,液晶高分又有近晶型、向列型、胆甾型三种不同的结构类型。

(1)近晶型结构

近晶型结构是所有液晶中具有最接近结晶结构的一类。这类液晶中,棒状分子依靠所含官能团提供的垂直于分子的长轴方向的强有力的相互作用,互相平行排列成层状结构,分子的长轴垂直于层片平

面。在层内,分子排列保持着大量二维固体有序性,但是这些层片又不是严格刚性的,分子可以在本层内活动,但不能来往于各层之间,结果这类柔性的二维分子薄片之间可以相互滑动,而垂直于层片方向的流动则要困难。因此,近晶型液晶一般在各个方向都是非常粘滞的。(2)向列型结构

此类液晶有相当大的流动性。因为这类液晶,棒状分子之间只是互相平行排列。但是他们的重心排列则是无序的,在外力作用下发生流动,很容易沿流动发祥取向,并且互相穿越。向列型液晶的棒状分子也仍然保持着与分子轴方向平行的排列状态,但没有近晶型液晶中那种层状结构。此种液晶仍然显示正的双折射性。此外与近晶型液晶相比,向列型液晶的粘度小,富于流动性。产生这种流动性的原因主要是由于向列型液晶各个分子容易顺着长轴方向自由移动。

(3)胆甾型结构

胆甾型液晶和近晶型液晶一样具有层状结构但层内的分子排列却与向列型液晶类似,分子长轴在层内是相互平行的。这类液晶比较突出的特点是各层的分子轴方向与邻接层的分子轴方向都略有偏移,液晶整体形成螺旋结构,螺距的长度与可见光波长数量级相同。胆甾型液晶的旋光性、选择性光散射和圆偏振光二色性等光学性质,就是由这种特殊的螺旋结构引起的。胆甾型液晶的光学性质与近晶型和向列型液晶有所不同,具有负的双折射性质。

四.液晶高分子材料的发展应用

我国液晶高分子研究始于20世纪70年代初,1987年在上海召开的

第一届全国高分子液晶学术会议标志着我国高分子液晶的研究上了一个新的台阶。此后,全国高分子液晶态学术会议每两年召开一次,共召开了8次。1994年在北京召开IUPAL国际液晶高分子会议,20世纪80年代周其凤等提出了新的甲壳型液晶高分子的概念并从化学合成和物理性质等角度给出了明确的结论,得到了国内学者的关注。而北京大学在该研究一直处于领先地位,已成功合成了上百个具有不同化学结构的甲壳型液晶高分子,并从不同的视角对其结构和性质开展了研究。

液晶高分子存在于自然界很多物质中,像是生物体中的纤维素、多肽、核酸、蛋白质、细胞及细胞膜等都存在液晶态。液晶的原理首先在1888年由奥地利植物学家F.Reinitzer(F.Reinitzer,Monatsh.Chem,9,421,1888)提出,之后,德国科学家O.Lehamann验证了液晶的各向异性,他建议将其命名为Fliessendekrystalle,在英语中也就是液晶(Liquid C rystal或简写为LC)。19世纪60年代,人们发现聚对苯甲酰胺溶解在二甲基乙酰胺LiCl中,和聚对苯二甲酰对苯二胺溶解在浓硫酸中,都可以形成向列型液晶。刚性分子链在溶液中伸展,当其浓度达到临界浓度时由于部分刚性分子聚集在一起形成有序排列的微曲结构,使溶液由各向同性向各向异性转变,由此形成了液晶。随即,美国杜邦公司先后推出了PSA及Kevelar纤维和PPTA,标志着液晶高分子研究工业化发展的开始。到70—80年代,出现了诸如Xydar,Vecta等一系列商用型热致液晶,液晶高分子材料逐渐开始推广。发展至今,液晶这

一形态已经成为一个相当大的物质家族,其商业用途多达几百种,例如日常生活中所用的液晶显示手表、计算器、笔记本电脑和高清晰的彩色电视等都已商业化,使得显示技术领域发生重大的革命性变化。

液晶高分子的一系列不同寻常的性质已经得到了广泛的实际应用,其中大家最为熟悉的就是上面提到的液晶显示技术,它是应用向列型液晶的灵敏的电响应特性和优秀的光学特性的典型例子。把透明的向列型薄膜夹在两块导电的玻璃板之间,在施加适当电压的点上变得不透明,因此当电压以某种图形的形式加到液晶薄膜上就产生了图像。这一原理等同于学生日常学习使用的计算器,在通电时液晶分子排列变得有秩序,使光线容易通过;不通电时分子排列混乱,阻止光线通过,因而显示出所要计算的数字。液晶显示器件最大的优点在于耗电低,可以实现微型化和超薄化。与小分子液晶材料相比,液晶高分子在图形显示方面的应用前景在于利用其优点开发大面积、平面、超薄型、直接沉积在控制电极表面的显示器,具有相当大的优势。

液晶高分子还可以利用其热-光效应来实现光存储。首先将存储介质制成透光的液晶态晶体,这时测试的光完全透过,证明没有信息记录;当用一束激光照射存储介质时,局部温度升高而使液晶高分子熔融成各向同性熔体,分子失去有序性;激光消失后,液晶高分子凝结成不透光的固体,信号被记录下来。此时如果再照射测试光,将仅有部分光透过,记录的信息在室温下永久保存。

此外,将刚性高分子溶液的液晶体系所具有的流变学特性应用于纤维加工过程中,已创造出一种新的纺织技术—液晶纺丝,这种新技

术使纤维的力学性能提高了两倍以上,获得了高强度、高模量、综合性能优越的纤维。由于刚性高分子溶液形成的液晶体系具有高浓度、低粘度和低切变速率下高度取向的流变学特性,因此采用液晶纺丝便顺利地解决了高浓度溶液必然伴随着高粘度的问题。同时,由于液晶分子的取向,纺丝时可以在较低的牵伸条件下获得较高的取向度,避免纤维在高倍拉伸时产生应力和受到损伤。这样所得到的高性能纤维可用于制造防弹衣、缆绳和特种复合材料等。

五.液晶高分子材料的应用

液晶高分子材料不仅在化学、物理方面得到了广泛的应用,其在生物医学方面的应用也是不容小觑的。由于在电、磁、光、热、力等条件变化时,液晶高分子膜材料具有更高的透过量和选择性。因此,利用溶致型液晶(根据液晶形成条件的不同液晶态物质又可分为“热致型液晶”和“溶致型液晶”)高分子的成型过程,如形成层状结构,再进行交联固化成膜,可以制备具有部分类似功能的膜材料。脂质体是液晶高分子在溶液中形成的一种聚集态,这种微胶囊最重要的应用就是作为定点释放和缓解药物的使用。微胶囊中包裹的药物随体液到达病变点后被酶作用破裂释放出药物,达到定点释放药物的目的。

如上所述,作为新兴的功能材料,液晶高分子材料具有很大突出的优点。随着人们对它不断地研究,液晶高分子材料会逐步代替目前使用的部分金属和非金属材料。液晶高分子材料作为一种新型高分子,人们对它的认识还不充分,但在不远的将来,液晶高分子材料的应用一定会越来越广泛,为人类的生存和发展做出新的贡献。

高分子材料概述课程报告之液晶高分子材料

高分子材料概述课程报告之液晶高分子材料一.概述 进入近代社会特别是进入二十一世纪,人类对材料的需求越来越迫切,对材料的性能和经济性的要求也越来越高,在这样的背景下,液晶高分子材料显然具有巨大优势。可液晶高分子材料又是一类什么材料呢? 首先来介绍一下液晶:液晶是某些小分子有机化合物或某些高分子在熔融态或在液体状态下, 形成的有序流体, 既具有晶体的各向异性, 又具有液体的流动性, 是一种过渡状态, 这种中间态称为液晶态,又称为物质的第四态或介晶态。处于这种状态下的物质称为液晶。而液晶高分子是由液晶单元和柔性间隔以化学键结合而成。由于它们兼具液晶的取向有序性和位置有序性及高分子的长键分子特性等优异功能,使得它们成为全世界的学术研究机构与大公司实验室都极为关注的材料。而在自然界也存在天然液晶高分子材料,如纤维素衍生物、多肽及蛋白质、DNA和RNA等,与它们对应的则为合成液晶高分子。根据液晶形成的条件,可以将液晶高分子分为溶致液晶高分子和热致液晶高分子。它们分别在一定浓度的溶液中或在一定温度范围内表现出液晶性,这种溶致性或热致性决定了在制备液晶高分子材料时采用的工艺技术。 二.液晶高分子材料的性能 液晶高分子含有棒状等具有一定长径比的液晶单元,因此其分子键都为刚性或半刚性。这种刚性或半刚性的分子键易于形成空间位置

上排布的有序性和在液晶态加工过程中分子键能高度取向,因此液晶高分子材料具有一系列优异的性能。液晶高分子的熔体具有高流动性、低成型收缩率、低热膨胀系数与高的尺寸稳定性、高强度与高模量、耐高温等力学性能,并有优异的电绝缘性能、耐化学腐蚀性、耐老化性、阻燃性等一系列优异的综合性能。作为液晶白增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。正是由于其优异的性能和广阔的应用前景,使得液晶高分子材料成为当前高分子科学中颇有吸引力的一个研究领域。 三.液晶高分子材料的分类 液晶高分子材料具有如此优异的性能,那其分类又有哪些呢?目前,液晶高分子分类方法有三种。从液晶基元在分子中所处的位置可分为主链型和侧链型两类。从应用的角度可分为热致型和溶致型两类,这两种分类方法是相互交叉的,即主链型液晶高分子同样具有热致型和溶致型,而热致型液晶高分子又同样存在主链型和侧链型。从液晶高分子在空间排列的有序性不同,液晶高分又有近晶型、向列型、胆甾型三种不同的结构类型。 (1)近晶型结构 近晶型结构是所有液晶中具有最接近结晶结构的一类。这类液晶中,棒状分子依靠所含官能团提供的垂直于分子的长轴方向的强有力的相互作用,互相平行排列成层状结构,分子的长轴垂直于层片平

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

功能高分子材料发展概述

功能高分子材料发展概述 1.速干衣 速干的由来:所谓速干实际上是由英文QUICK-DRY或DRY-EASY等类似单词直译过来的,而速干是指该面料的衣物与毛质或棉质的衣物相比时,在外界条件相同的情况下,更容易将水分挥发出去,干得更快。速干衣顾名思义就是干的比较快的衣服,它并不是把汗水吸收,而是将汗水迅速地转移到衣服的表面,通过空气流通将汗水蒸发,从而达到速干的目的,一般的速干衣的干燥速度比棉织物要快50%。 速干衣物最初的设计理念主要是 基于两个方面的考虑:A、内部因素, 由于从事野外活动的人比较容易出 汗。如果运动量大的时候,全身则会 大汗淋漓。如果此时你穿的是普通的 衣物,那么它们会紧紧贴在你的皮肤 上,特别难受。但速干衣物呢,它们 能使挥发的汗水迅速得以挥发到体 外;B、外部因素,野外行走时,早 晨的露珠或是毛毛细雨都会将你的 衣物打湿,如果裤腿紧贴在腿上,那 会带来不舒服的感觉。如果是速干衣 物,那么它们的速干性能及防泼水性 能就会使你免除这些不必要的麻烦。 速干的面料:市场上的速干衣物 品牌林林总总,所使用的面料也 是数不胜数,更是令人眼花缭 乱。其实常见的户外速干衣物所 采用的面料无非是以下几种常见 面料,COOLMAX这是一种最为常 见,使用范围相对较为广泛的一 种面料,由杜邦公司研制。该面 料的突出特点是具有很强的吸汗 排汗功能,这得归功于COOLMAX 的中空结构,但选购时必须看清 楚COOLMAX在面料中所含的比 例;THEMOLITE这种聚脂纤维的保 暖性能不错,属于中空涤纶纤维 系列,但缺点是排汗性能相对要 差一些;MONI-DRY属于吸湿速干 面料,有COLUMBIA公司研制出品。其主要特点是超强的挥发性和吸水性,比一般的棉布要强2--3倍,从而有效地保持穿着者的舒适干爽;CIBAULTRAPHIL这

高分子液晶材料

高分子液晶材料 高分子1101 田原3110705027 摘要: 液晶高分子是在一定条件下能以液晶相态存在的高分子,高分子化合物的功能特性和液晶相序的有机结合赋予了液晶高分子以鲜明的个性和特色,以高强度、高模量、低热膨胀率、耐辐射和化学药品腐蚀等优异性能开辟了特种高分子材料的新领域。在机械、电子、航空航天等领域的应用已崭露头角,目前正向生命科学、信息科学、环境科学蔓延渗透,并将波及其它科技领域。 关键词:高分子液晶材料历史与发展结构与性能 一、概述 液晶LC D(L iq ui d Crysta l Display)对于许多人而言已经不是一个新鲜的名词。从电视到随身听的线控,它已经应用到了许多领域。液晶现象是1888年奥地利植物学家 F.Reintizer在研究胆甾醇苯甲酯时首先发现的。研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键结合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。 二、液晶高分子材料的分类及其特性 目前,液晶高分子分类方法有三种。从液晶基元在分子中所处的位置可分为主链型和侧链型两类。从应用的角度可分为热致型和溶致型两类,这两种分类方法是相互交叉的,即主链型液晶高分子同样具有热致型和溶致型,而热致型液晶高分子又同样存在主链型和侧链型。从液晶高分子在空间排列的有序性不同,液晶高分又有近晶型、向列型、胆甾型三种不同的结构类型。 1、主链型液晶高分子 主链型高分子液晶是指介晶基元处于主链中的一类高分子材料。在20世纪70 年代中期以前,它们多是指天然大分子液晶材料。自从D upont 公司首次获得聚芳香酰胺的溶液型主链型高分子液晶性质的应用以来,主链型高分子液晶材料的合成、结构与性能关系和应用等都得以很大发展。按液晶形成过程,主链型高分子液晶可以分为溶液型主链高分子液晶和热熔型主链高分子液晶。a:溶液型主链高分子液晶 其研究最多的则是聚芳香酰胺类和聚芳香杂环类聚合物。酰胺为代表的一类溶液型高分子液晶而言,就必须借助于极强的溶剂,

液晶高分子材料的现状及研究进展

液晶高分子材料的现状及研究进展 摘要:本文综述了液晶高分子材料的研究现状,包括简单介绍了液晶高分子的发展历史,结构及性能,介绍了液晶高分子研究的新进展,对液晶高分子早各个领域的应用和潜在的性能进展做了简要的阐述,并针对液晶高分子存在的问题提出了相应的建议。 关键词:液晶高分子研究应用 前言 高分子科学,以30年代H.staidinger建立高分子学说为开展.此后高分子化学有了飞跃的发展.与此同时,高分子物理化学也有相应的发展。高分子化学注重对高聚物合成以及性质的研究,而高分子物理则重点研究高聚物的结构与性能,二者相辅相成,近年来研究较多的高分子液晶材料就是两者结合的典范。 液晶现象是1888年奥地利植物学家F.Reintizer[1]在研究胆甾醇苯甲酯时首先发现的。研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。 这样人们自然会联想到具有这种结构的高分子材料。1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。 从应用领域分析,液晶高分子材料在电子电气行业中需求量最大且发展迅速,1998年可达3600 吨,平均年增长23.1 %;其次是通讯业,需求量约1540 吨,增长21.1%;工业界及运输业总需求量不到1700 吨,平均年增长率约为I1%。主要用于接插件、开关、继电器、模塑印刷电路板、光缆结构件、复合材料、机械手、泵/阀门组件、功能件等,极大地推动了液晶高分子技术及其它高新技术的发展。 从高分子液晶诞生到现在只有50多年的历史,是一门很年轻的学科。虽然高分子液晶[2]是具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。但目前对它的研究仍处于较低的水平,理论研究较狭隘,液晶高分子尚存在制品的机械性能各向异性、接缝强度低、价格相对较高等缺点,这些都有待于进一步的改进,所以高分子液晶仍是高分子科学研究的一个热点。 1液晶高分子材料的特性[3] 1.1取向方向的高拉伸强度和高模量

高分子液晶材料的应用及发展趋势讲解

# 16 #陶瓷2009. No. 3 高分子液晶材料的应用及发展趋势 王瑾菲蒲永平杨公安杨文虎 ( 陕西科技大学材料科学与工程学院西安710021) 摘要液晶相是不同于固相和液相的一种中介相态。系统地阐述了液晶的发现、形成机制以及分类,简单介绍了液晶高分子的结构特点,介绍了主链型和侧链型液晶高分子研究的新进展,并对液晶在各个领域的应用研究和潜在性能进展作了简要的阐述。 关键词液晶高分子液晶研究进展 Application and the Development of Liquid Crystal Polymer Materials Wang Jinfei, Pu Yongping, Yang Gongan, Yang Wenhu( School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi. an, 710021) Abstract: Liquid crystal phase is different from the solid phase and an intermediate liquid phase. This paper described the discovery of the LCD, and the mechanism for the formation and classification, briefly introducd the liquid crystalline polymer structural, researched new progress of the main- chain and side- chain type liquid crystal polymer and indicated the application progress and potential properties of LCD in all fields. Key words: Liquid crystalline polymer; Liquid crystal; Study progress 1 液晶的发现 液晶是某些物质在熔融态或在溶液状态下形成的有序流体的总称。液晶的发现可以追溯到1888年,奥 地利植物学家 F Reinitzer发现,把胆甾醇苯酸脂( Cho-l esteryl Benzoate, C6 H5 CO2 C27 H45 , 简称 CB) 晶体加热到145. 5 e 会熔融成为混浊的液体, 145. 5 e 就是该物质的熔点。继续加热到178. 5e,混浊的液体会突然变成清亮的液体,而且这种由混浊到清亮的过程是可逆的。O Lehmann经过系统地研究指出,在一定的温度范围内,有些物质的机械性能与各向同性液体相似;但是它们的光学性质却和晶体相似,是各向异性的。因此,这些介于液体和晶体之间的相被称为液晶相[ 1]。 2 液晶高分子的分类 液晶是一类具有特殊性质的液体,既有液体的流动性又有晶体的各向异性特征。现在研究及应用的液晶主要为有机高分子材料。一般聚合物晶体中原子或

07370420功能高分子材料盛维琛

功能高分子材料 Fun cti onal Polymer Materials 课程编号:07370420 学分:2 学时:45 (其中:讲课学时:30自学学时:15 实验学时:0上机学时:0)先修课程:有机化学、无机化学、分析化学、物理化学、高分子物理、高分子化学适用专业:高分子材料与工程、金属材料工程、无机非金属材料工程、复合材料与工程、化学工程与工艺、化学等专业本科四年级学生选修课 教材:王国建.功能高分子材料?北京:化学工业出版社,2010年第一版开课学院:材料科学与工程学院 一、课程的性质与任务: 功能高分子课程是一门高分子材料专业的专业选修课。它是建立在高分子物理,高分子化学和高分子结构与性能基础上,并与物理学、医学、甚至生物学密切联系的一门学科。它是研究功能高分子材料化学规律的一门科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域,对于设计和制备高性能高分子材料起着指导作用。 功能高分子课程的基本任务: 通过课堂讲授和研究进展介绍,使学生能了解几种重要的功能高分子材料的制备方法、性能与结构的一般关系等,对功能高分子材料科学有一个概括性认识,能理解功能的产生机理,并可根据所需功能设计出一些简单的具有相应功能基团的高分子材料。 本课程主要介绍功能高分子材料的发展状况,功能高分子的种类与功能,功能高分子材料的结构与性能的关系,功能高分子材料的制备策略,并结合近年来国际,国内在功能高分子材料方面的研究成果详细介绍常用的物理化学功能高分子(高吸水性树脂、离子交换树脂、高分子试剂及催化剂等)、电功能高分子(复合导电型、电子导电型、离子导电型等导电高分子材料、电致发光、电致变色等电活性高分子材料)、光功能高分子(感光性树脂、光致变色高分子、光降解、光转换高分子材料等)、生物医用高分子(生物惰性、生物降解、组织工程、药物高分子材料等)、高分子助剂(高分子絮凝剂、高分子电解质、高分子染料、高分子食品添加剂等)其它一些类型功能高分子材料制备方法,机理,应用。 二、课程的基本内容及要求:第一章功能高分子材料概述 1. 教学内容 1)功能高分子材料的研究对象和研究内容 2)功能高分子材料的发展历程

功能高分子材料

《功能高分子材料》复习 1、说明离子交换树脂的类型及作用机理?试述离子交换树脂的主要用途。 类型与作用机理:(1)离子交换树脂分为阳离子交换树脂和阴离子交换树脂两大类。能解离出阳离子、并能与外来阳离子进行交换的树脂被称作阳离子交换树脂;能解离出阴离子、并能与外来阴离子进行交换的树脂被称作阴离子交换树脂。 (2)按其物理结构的不同,可将离子交换树脂分为凝胶型、大孔型和载体型三类。 (3)氧化还原树脂。指带有能与周围活性物质进行电子交换、发生氧化还原反应的一类树脂。在交换过程中,树脂失去电子,由原来的还原形式转变为氧化形式,而周围的物质被还原。 (4)两性树脂。两性树脂中的两种功能基团是以共价键连接在树脂骨架上的,互相靠得较近,呈中和状态。但遇到溶液中的离子时,却能起交换作用。树脂使用后,只需大量的水淋洗即可再生,恢复到树脂原来的形式。 (5)热再生树脂。在同一树脂骨架中带有弱酸性和弱碱性离子交换基团。(6)螯合树脂。 用途:(1)水处理。水处理包括水质的软化、水的脱盐和高纯水的制备等。(2)冶金工业。离子交换是冶金工业的重要单元操作之一,离子交换树脂还可用于选矿。(3)原子能工业。利用离子交换树脂对核燃料进行分离、提纯、精制、回收等。离子交换树脂还是原子能工业废水去除放射性污染处理的主要方法。(4)海洋资源利用。利用离子交换树脂,可从许多海洋生物中提取碘、溴、镁等重要化工原料。(5)化学工业。离子交换树脂普遍用于多种无机、有机化合物的分离、提纯,浓缩和回收等。离子交换树脂用作化学反应催化剂,可大大提高催化效率。(6)食品工业。离子交换树脂在制糖、酿酒、烟草、乳品、饮料、调味品等食品加工中都有广泛的应用。(7)医药卫生。离子交换树脂在医药卫生事业中被大量应用。(8)环境保护。离子交换树脂在废水,废气的浓缩、处理、分离、回收及分析检测上都有重要应用。 2、按膜的功能简述高分子分离膜的分类及其分离机理。 (1)分离功能膜(包括气体分离膜、液体分离膜、离子交换膜、化学功能膜)

液晶高分子材料的现状及研究进展.doc

液晶高分子材料研究进展 肖桂真,纺织学院,1030011063 摘要:高分子液晶是近年来迅速兴起的一类新型高分子材料,它具有高强度、高模量、耐高温、低膨胀率、低收缩率、耐化学腐蚀的特点。本文综述了液晶高分子材料的发展历史,结构及性能,详细介绍了液晶高分子材料的种类以及在各个领域的应用,和液晶高分子材料的潜在发展前景。 关键词:功能高分子材料;液晶高分子材料;研究;应用 0前言 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。功能高分子材料之所以具有特定的功能,在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。高分子液晶材料是近年来研究较多的一种功能高分子材料,它是介于液体和晶体之间的一种中介态,具有独特的结构与性能。 1高分子液晶的发展 1.1液晶的发现 液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。液晶的发现可以追溯到1888年,奥地利植物学家F.Reinitzer发现,把胆甾醇苯酸脂(Ch01.esteryl Benzoate,C6 H5C02C27 H45.简称CB)晶体加热到145.5℃会熔融成为混浊的液体,145.5℃就是该物质的熔点,继续加热到178.5 ℃,混浊的液体会突然变成清亮的液体,而且这种由混浊到清亮的过程是可逆的。O.Lehnmnn经过系统地研究指出,在一定的温度范围内,有些物质的机械性能与各向同性液体相似;但是它们的光学性质却和晶体相似,是各向异性的。因此,这些介于液体和晶体之间的相被称为液晶相。 1.2液晶高分子的发展 1937年Bawden和Pirie在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性,这是人们第一次发现生物高分子的液晶特性。其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就:1959年推出芳香酰胺液晶,但分子量较低;1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex;1972年研制出强度优于玻璃纤维的超高强、高模量的Kevlar纤维,并付注实用;此后,高分子液晶的研究则从溶致型转向为热致型,在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。 从应用领域分析,液晶高分子材料在电子电气行业中需求量最大且发展迅速,1998年可达3600 吨,平均年增长23.1 %;其次是通讯业,需求量约1540 吨,增长21.1%;工业界及运输业总需求量不到1700 吨,平均年增长率约为I1%,主要用于接插件、开关、继电

液晶高分子材料

高分子液晶材料 Liquid crystal polymer materials 摘要: 液晶高分子是在一定条件下能以液晶相态存在的高分子,高分子化合物的功能特性和液晶相序的有机结合赋予了液晶高分子以鲜明的个性和特色,以高强度、高模量、低热膨胀率、耐辐射和化学药品腐蚀等优异性能开辟了特种高分子材料的新领域。在机械、电子、航空航天等领域的应用已崭露头角,目前正向生命科学、信息科学、环境科学蔓延渗透,并将波及其它科技领域。 关键词:高分子液晶材料历史与发展结构与性能 正文 简述液晶高分子材料是在一定条件下能以液晶相态存在的高分子,与其它高分子材料相比,液晶高分子有液晶相所特有的取向序和位置序;与普通低分子液晶化合物相比,液晶高分子又具有高分子化合物的结构和功能特性,如具有高分子量等。液晶高分子材料从应用的角度可分为热致型和溶致型两类,这两种分类方法是相互交叉的,即主链型液晶高分子同样具有热致型和溶致型,而热致型液晶高分子又同样存在主链型和侧链型。从液晶高分子在空间排列的有序性不同,液晶高分有近晶型、向列型、胆甾型三种不同的结构类

型 历史·现状·发展追溯历史,人类关于液晶现象的研究已有上百年的记载。 1937年Bawden和Pirie在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性,这是人们第一次发现生物高分子的液晶特性。其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。1956年Flory卿从理论上说明了高分子液晶相的存在。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就:1959年推出芳香酰胺液晶,但分子量较低;1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex;1972年研制出强度优于玻璃纤维的超高强、高模量的Kevlar纤维,并付注实用;此后,高分子液晶的研究则从溶致型转向为热致型,在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。 技术·合成溶致性主链型液晶高分子又可分为天然的(如多肽、核酸、蛋白质、病毒和纤维素衍生物等)和人工合成的两类。前者的溶剂一般是水或极性溶剂;后者的主要代表是芳族聚酰胺和聚芳杂环,其溶剂是强质子酸或对质子惰性的酰胺类溶剂,并且添加少量氯化锂或氯化钙。这类溶液出现液晶态态条件是:①聚合物的浓度高于临界值;②聚合物的分子量高于临界值;③溶液的温度低于临界值。

功能高分子材料复习提要讲解

功能高分子材料复习提要 (答案仅供参考) 一.名词解释: 1.功能高分子材料:指与常规聚合物相比,除了具有一定的力学性能之外,还具有特定功能(如导电性、光敏性、催化性、化学活性和生物活性等)的高分子材料。 2.功能高分子材料化学:以功能高分子材料为研究对象,研究它们的结构和组成、物理化学性质、制备方法及其应用的科学,就称为功能高分子材料化学。 3.结构型功能高分子材料:是指在大分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由于高分子本身的结构因素决定的。 4.复合型功能高分子材料:是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁等)的其它材料进行复合而制得的功能材料。 5.渗透系数:是指在单位时间、单位膜面积通过的被测物与单位膜厚度所施加的驱动力的比值。 6.高分子骨架的邻位效应:在功能高分子材料中,高分子骨架上邻近功能基团的一些结构和基团对功能基的性能具有明显的影响力,这种作用称为高分子的邻位效应。 7.高分子骨架的模板效应:模板效应是指利用高分子骨架的空间结构,包括构型和构象,在其周围建立起特殊的局部空间环境,在有机合成和其他应用场合提供一个类似于工业上浇铸过程中使用的模板的作用。 8.聚合物的半透性:指聚合物对某些气体或液体有一定透过性,而对另外一些物质没有透过性,或者透过性很小。 9.一次功能:指向材料输入的能量和从材料输出的能量同种形式时,即材料仅起能量传送作用时的这种功能称为一次功能。 10.二次功能:指向材料输入的能量和输出的能量不同形式时,即材料起能量转换作用时的这种功能称为二次功能。 11.功能高分子材料的多功能复合:将两种以上的功能高分子材料以某种方式结合,形成的新的功能材料具有任何单一功能高分子均不具备的性能,这一结合过程被称为功能高分子材料的多功能复合过程。 12.阳离子交换树脂:带有酸性基团(即可解离的反离子是H+或金属阳离子),能与阳离子进行交换反应的称作阳离子交换树脂。 阴离子交换树脂:带有碱性基团(即可解离的反离子是OH-或其它酸根离子),能与阴离子进行交换反应的称作阴离子交换树脂。 13.交换容量:交换容量也叫交换量,是指一定数量的离子交换树脂所带的可交换离子的数量。通常把交换容量分为总交换容量、工作交换容量和再生交换容量。总交换容量表示单位重量(或体积)树脂中所具有的可交换离子的总数,它反映了离子交换树脂的化学结构特点。工作交换容量是指离子交换树脂在一定工作条件下表现出的交换量,它是离子交换树脂实际交换能力的量度。再生交换容量是离子交换树脂在指定再生剂用量条件下的交换容量。 14.高吸水性树脂:是指含有强亲水性基团并具有一定交联度,能吸收数百倍至数千倍于自身重量水的功能性高分子材料。 15.絮凝作用:凡具有吸附架桥或表面吸附而导致分散相成絮团沉降的过沉叫做絮凝作用。起絮凝作用的药剂即絮凝剂。

液晶高分子材料的现状及发展前景

液晶高分子材料的现状及发展前景 1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。 一、液晶主要分类: 1、主链型液晶高分子,主要包括 (1)溶液型主链高分子液晶 (2)热熔型主链高分子液晶 2、侧链型高分子液晶,主要包括 (1)溶液型侧链高分子液晶 (2)热熔型侧链高分子液晶 二、液晶高分子的研究进展 关于液晶高分子几年来的主要进展可概括为以下几个方面: (1)合成出一系列含有各种新型介晶基元的液晶高分子,如柱状(或碟状)液晶分子、复合型液晶高分子以及刚性链侧链型液晶高分子. (2)部分液晶高分子品种已实现了工业化生产.基础研究和应用基础研究取得了显著进展,如液晶高分子结构与性能关系;液晶高分子相变动力学和热力学;液晶高分子的固态结构和结晶行为;溶致液晶高分子相图;热致液晶高分子加工流变学及其共混改性理论等,都取得了显著进展.在此基础上开发了复合材料和原位复合材料. (3)新型功能液晶高分子的合成以及液晶高分子在外场作用下的液晶行为研究也取得发显著进展. 三、液晶高分子研究趋势 液晶高分子虽然近年来有了迅速的发展,但总体上还只是处于发展的初期.预计今后将会更蓬勃的发展.其发展趋势主要有以下几方面: (1)努力降低液晶高分子产品成本.主要途径是扩大生产规模、寻找和选用更廉价的单体、改进合成工艺和采用共混方法等. (2)研究解决制品的各向异性如“焊缝”等问题.主要途径有:改进模具设计和成型条件、玻纤增强和填料填充以及共混技术. (3)大力发展分子复合材料和原位复合材料. (4)发展功能液晶高分子,这主要是侧链型液晶高分子,主要集中于聚硅氧烷类、聚丙烯酸

液晶高分子材料

液晶高分子材料开发进展及应用 摘要:液晶高分子材料超越高分子材料化学、化学科学和材料科学的领域,涉及了物理学、生命科学和信息科学等多学科领域,是一个十分活跃的研究领域和前言科学。本文主要阐述了高分子材料的开发和在各个领域的应用。 关键词:液晶高分子材料;进展;应用 液晶是一些化合物所具有的介于固态晶体的三维有序和无规液态之间的一种中间相态,又称介晶相( meso phase) ,是一种取向有序流体, 既具有液体的易流动性,又有晶体的双折射等各向异性的特征。液晶1888 年由奥地利植物学家Reinitzer首次发现,在本世纪50 年代之前,液晶没能引起科技界的广泛重视。然而60 年代,以RCA 公司进行液晶显示和光阀方面的工作为标志,液晶得到了实际的应用。液晶高分子( LCP) 的大规模研究工作起步更晚,但目前已发展为液晶领域中举足轻重的部分。如果说小分子液晶是有机化学和电子学之间的边缘科学,那么液晶高分子则牵涉到高分子科学、材料科学、生物工程等多门学科,而且在高分子材料、生命科学等方面都得到大量应用。 1.液晶高分子的分类[1] 1.1按照液晶相分类 1.1.1向列型液晶 液晶分子刚性部分平行排列,重心排列无序,保持一维有序性,液晶分子沿其长轴方向可移动,不影响晶相结构,是流动性最好的液晶。 1.1.2近晶型液晶 在所有液晶中近固体晶体而得名。分子刚性部分平行排列,构成垂直于分子长轴方向的层状结构,具二维有序性。 1.1.3胆甾型液晶 构成液晶的分子是扁平型的,依靠端基的相互作用平行排列成层状结构。但它们的长轴与层面平行而不是垂直。在相邻两层之间,由于伸出平面外的光学活性基团的作用,分子长轴取向依次规则地旋转一定角度,层层旋转构成螺旋结构。此类液晶可使反射的白光发生色散而呈现彩虹般颜色。 1.2按照分子中液晶基元的位置分类 1.2.1主链型液晶高分子 液晶基元在高分子主链上。如kevlar纤维。

液晶高分子材料的类型

液晶高分子材料的类型,结构特点,主要应用领域及其发展 趋势 摘要:对液晶高分子材料的类型,结构特点进行重点介绍,并对其的应用领域与发展趋势进行介绍与展望。 关键词:液晶高分子材料,高分子材料,新型高分子液晶材料, 引言:液晶高分子材料是近十儿年迅速兴起的一类新型高分子材料,它具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶白增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。正是由于其优异的性能和广阔的应用前景,使得液晶高分子材料成为当前高分子科学中颇有吸引力的一个研究领域。 我国液晶高分子研究始于20世纪70年代初,1987年在上海召开的第一届全国高分子液晶学术会议标志着我国高分子液晶的研究上了一个新的台阶。此后,全国高分子液晶态学术会议每两年召开一次,共召开了8次。1994年在北京召开IUPAL国际液晶高分子会议,20世纪80年代周其凤等提出了新的甲壳型液晶高分子的概念并从化学合成和物理性质等角度给出了明确的结论,得到了国内学者的关注。而北京大学在该研究一直处于领先地位,已成功合成了上百个具有不同化学结构的甲壳型液晶高分子,并从不同的视角对其结构和性质开展了研究。 1.1液晶的发现 液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。液晶的发现可以追溯到1888年,奥地利植物学家F.Reinitzer发现,把胆甾醇苯酸脂(Ch01.esteryl Benzoate,简称CB)晶体加热到145.5℃会熔融成为混浊的液体,145.5℃就是该物质的熔点,继续加热到178.5 ℃,混浊的液体会突然变成清亮的液体,而且这种由混浊到清亮的过程是可逆的。

高分子液晶材料

高分子液晶材料 一.高分子液晶概述 1.過渡中間態:外觀呈現液體物質的流動性,但仍保留著晶態物質的有 序性且在物理性質上呈現各向異性稱為過渡中間態(Mesophase). 2.液晶物質(Liquid crystals):在溶液或熔融狀態下兼有晶體和液體部 份性質的物質. 單體液晶(monomer liquid crystals) 3.液晶: 高分子液晶(polymer liquid crystals) 4.液晶按形態分類: a.向列型液晶相液晶(nematic liquid crystal): 液晶分子剛性部分之間相互平行排列,但是其重心排列無序,只保 持著一維有序性. 液晶分子在沿其長軸方向可以相對運動,而不影響晶相結構,故 其在外力作用下可以非常容易沿著此方向流動,是三種晶相中 流動性最好的一種液晶. b.近晶型晶相液晶(smectic liquid crystal): 此液晶分子剛性部份相互平行排列,並構成垂直於分子長軸方 向的層狀結構.此液晶層內分子可以沿著層面相對運動保持其 流動性.

c. 膽甾醇型液晶(cholesteric liquid crytal): 構成液晶的分子基本是扁平型,依靠端基的相互作用,彼此平行排弄列成層狀結構,其長軸與層面平行. 5. 按形成液晶的條件分類: a.溶液型液晶(lyotropic liquid crystral):液晶分子在溶解過程中 在溶液中達到一定濃度時形成有序排列,產生各向異性特征構成 液晶;當溶解的是高分子時稱為溶液型高分子液晶。 b.熱熔型液晶(thermotropic liquid crystal):三維各向異向的晶體 在熔融過程中不完全失去晶體特征,保持一定有序性構成液晶; 同樣當晶體為高分子時稱為熱熔型高分子液晶。 二. 溶液型高分子液晶之結構、性能及應用 溶液型高分子液晶是液晶高分子在另外一種分子體系中進行的有 序排列,根據液晶高分子中剛性部分在聚合物中的位置將此分為 側鏈型和主鏈型液晶高分子。 相列型液晶結構 近晶型液晶結構 膽甾醇型液晶結構

第七章功能高分子材料概论

第七章功能高分子材料概论 第一节功能高分子基本概念 一、高分子材料发展史 15世纪美洲玛雅人用天然橡胶做容器,雨具等生活用品。1839年美国人Charles Goodyear发现天然橡胶与硫磺共热后明显地改变了性能,使它变为富有弹性、可塑性的材料。1869年美国人John Wesley Hyatt把硝化纤维、樟脑和乙醇的混合物在高压下共热,制造出了第一种人工合成塑料“赛璐珞”。1887年法国人Count Hilaire de Chardonnet用硝化纤维素的溶液进行纺丝,制得了第一种人造丝。1909年美国人Leo Baekeland用苯酚与甲醛反应制造出第一种完全人工合成的塑料——酚醛树酯。1920年德国人Hermann Staudinger发表了“关于聚合反应”的论文提出:高分子物质通过化学键连接在一起的大分子化合物。1926年美国化学家Waldo Semon合成了聚氯乙烯,并于1927年实现了工业化生产。1932年Hermann Staudinger总结了自己的大分子理论,出版了划时代的巨著《高分子有机化合物》成为高分子化学作为一门新兴学科建立的标志。1935年杜邦公司基础化学研究所有机化学部的Wallace H. Carothers合成出聚酰胺66,即尼龙。尼龙在1938年实现工业化生产。1930年德国人用金属钠作为催化剂,用丁二烯合成出丁钠橡胶和丁苯橡胶。1940年英国人T. R. Whinfield合成出聚酯纤维(PET)。1948年Paul Flory 建立了高分子长链结构的数学理论。1953年德国人Karl Ziegler与意大利人Giulio Natta分别用金属络合催化剂合成了聚乙烯与聚丙烯。1955年美国人利用齐格勒-纳塔催化剂聚合异戊二烯,首次用人工方法合成了结构与天然橡胶基本一样的合成天然橡胶。1956年Szwarc提出活性聚合概念。高分子进入分子设计时代。1970年以后高分子合成新技术不断涌现,高分子新材料层出不穷。 二、高分子基本概念 高分子又称聚合物(Polymer)、高聚物(High polymer)、大分子(Macromolecule),分子量一般大于1000。而分子量较低(<10000)的低聚物称为齐聚物,寡聚物。 根据聚合物结构类型,可将聚合物分为线型(Linear Polymer)、支化型(Branched Polymer)、交联型(Crosslinked Polymer)、星型及树状(Star Polymer、Dendrimer),见图7-1。 高分子学科包括高分子化学(Polymer chemistry)、高分子物理(Polymer physics)、高分子工艺学(Polymer technology)。高分子化学主要研究高分子合成机理、结构设计、控制方法。高分子物理主要研究高分子物理性质、结构与性能的关系。高分子工艺学主要研究高分子合成工艺、加工工艺。

功能高分子材料知识点

第一章 1.什么是材料的功能,什么是材料的性能,举例说明。第1页 材料的功能,从本质上来说是向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性。如化学性、导电性、磁性、光敏性、生物活性等。 材料的性能是指材料对外部作用的表征与抵抗的特性,如对外里的抵抗表现为强度、模量,对热的抵抗表现为耐热性,对光、电、化学药品的抵抗表现为材料的耐光性、绝缘性、耐化学药品性等。 2.功能高分子材料的制备方法以及各自的特点。第4页 方法:(1)功能性小分子的高分子化,高分子化学反应引入预期的功能基团。 功能性小分子的高分子化主要优点在于可以使生成的功能高分子功能基团分布均匀,生成的聚合物结构可以通过小分子分析和聚合机理加以预测,产物的稳定性高,但这种方法需在功能性小分子中引入可聚单体,从而使反应较为复杂,同时在反应中反应条件对功能基团会产生一定的影响,需对功能集团加以保护,使材料的成本增加。例如,高吸水性树脂可以通过将亲水性基团的丙烯酸钠进行自由基聚合实现。 利用高分子化学反应制备功能高分子的主要优点在于合成或天然高分子骨架是现成的,可选择的高分子母体多,来源广,价格低廉。但是在进行高分子化学反应时,反应不可能100%完成,尤其是在多不得高分子化学反应中,制的的产物中含有未反应的官能团,即功能集团较少,功能基团在分子链上的分布也不均匀。例如聚苯乙烯、尼龙、淀粉都可以作为高分子母体。 (2)通过特殊加工赋予高分子的功能特性。 许多聚合物通过特定的加工方法和加工工艺,可以较精确地控制其聚集状态结构及宏观状态,从而使之体现出一定的功能性。例如,许多塑料可以经过适当的制膜工艺,制成具有分离功能的多孔膜和致密膜。 (3)通过普通聚合物与功能材料的复合,制成复合型功能高分子材料。 这种制备方法简便快速,不受场地和设备限制,不受聚合物和功能性化合物官能团反应活性的影响,适用范围宽,功能基团的分布较均匀。但其共混体不稳定,在使用条件下(如溶胀、成膜等)功能聚合物易由于功能小分子的流失而逐步失去活性,如固定化酶。例如,将绝缘塑料和导电涂料共混制得导电塑料。 3.功能高分子材料功能与结构的关系。课本第2页 骨架与功能的关系:高分子骨架在功能高分子材料中起承载官能团的作用。线性聚合物呈现线状,在适宜的溶剂中可以形成分子分散溶液,某些线性聚合物玻璃化温度较低,小分子和离子在其中比较容易进行扩散和传导,但是这种易于溶解的性质在某些情况下会降低它的机械性能和稳定性。支化高分子由于支链的存在,其分子链的刚性及结构的规整性受到影响,因此其熔融性能溶液的黏度不同于线性高分子。交联聚合物在高温下不能熔融在溶剂中不能溶解,只能溶胀,交联度影响机械强度,物理、化学稳定性以及其他与材料功能相关的性质。交联聚合物机械强度得到提高,不易加工处理,不易对其进行结构和组成分析。树形高分子具有高度规整的支化结构,具有大量的端基结构,与相同分子量的线性高分子相比,具有较低的溶液粘度和熔体粘度,同时利用端基上的官能团,可以对其进行改性,引入不同的功能。官能团与功能的关系:(1)官能团的性质对高分子的功能其主要作用。如侧链聚合物液晶中的刚性侧链。(2)聚合物与官能团协同作用。如固相合成用高分子试剂。(3)聚合物骨架起作用,如主链型聚合物液晶。(4)官能团起辅助作用,如主链型液晶高分子的芳香环上引入

相关文档
最新文档