虚设隐零点 巧解高考题

虚设隐零点 巧解高考题
虚设隐零点 巧解高考题

虚设隐零点 巧解高考题

求解导数压轴题时,很多时候都需要求函数在给定区间上的零点,但经常会碰到函数具有零点但求解相对比较繁杂甚至无法求解的情形.此时,可以将这个零点虚设出来而不必求出来,然后谋求一种整体的转换和过渡,再结合其他条件,从而最终获得问题的解决.我们称这种解题方法为“虚设零点”法.此解题方法类似于解析几何中的“设而不求”.

例1:(2017年全国II ,理21)已知函数()2

ln f x ax ax x x =--,且()0f x ≥.

(1)求a ;

(2)证明()f x 存在唯一的极大值点0x ,且()2

202e f x --<<.

解:(1)1a =;

(2)由(1)知 ()2

ln f x x x x x =--,()'22ln f x x x =--,1

()2f x x

''=-

∴()f x '在10,

2?? ???单调递减,在1,2??+∞ ???

单调递增.

即min 1

()()ln 2102

f x f ''==-<

222(1)0,()0f f e e -''==

> ∴201(,)2

x e -?∈使得0()0f x '= 当0(0,)x x ∈时,()0f x '>,0(,1)x x ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>

∴()f x 在()()00,,1,x +∞单调递增,在()0,1x 单调递减

即()f x 存在唯一的极大值点0x . 又

000()22ln 0f x x x '=--= ∴00ln 22x x =-

从而 222000000001

1()ln ()2

4

f x x x x x x x x =--=-+=--+

201

(,)2

x e -∈ ∴ 2011()()()24f e f x f -<<=

而2

22

2

2()()f e e e

e ----=+> ∴()2202e

f x --<<

评析:当导函数存在零点且无法求出时,可考虑虚设零点0x ,再对0()0f x '=进行合理的变形与代换,将超越式转化为普通式,从而达到化简0()f x 的目的.再根据零点存在性判定定理,得出201

(,)2

x e -∈,并结合0()f x 的单调性即可完成证明. 例2:(2015年全国Ⅰ文科21(2))设函数

()2e ln x f x a x =-.

求证:当0a >时,()

22ln

f x a a a

+. 解:根据第(1)问可知()f x '有唯一零点,设零点为0x ,且()f x '在()0,+∞单调递增, 当()00,x x ∈时,()0f x '<,即()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,即()f x 单调递增.

∴()f x 在0x x =处取得极小值,即()()0

200min e ln x f x f x a x ==-.

()02002e 0x a

f x x '=-

=,解得020

e 2x a x =.① ①两边分别取自然对数,得002ln ln 2x a x =-,即00ln ln 22

a

x x =-. 所以()00000

ln 22ln 2222a a a a f x a x ax a x x ??=

--=+- ???2

2ln

2ln 2a a a a a a

-=+(当且仅当0022a

ax x =,即012

x =时取等号). 评析:欲证()

2

2ln

f x a a a +,只需证()min 2

2ln f x a a a

+,而()min f x 在()f x '的

零点处取得.但

()0200

2e 0x a

f x x '=-

=为超越方程,无法求出其解,故只需“设而不求”,有等式()02002e 0x

a

f x x '=-

=的合理变换,得()00022ln 2a f x ax a x a

=++,再利用均值不等式即可证明.

例3:(2013全国Ⅱ理科21)已知函数()()e ln x

f x x m =-+. (1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (2)当2m ≤时,证明()>0f x . 解:(1)()1

e x

f x x m

'=-

+.由0x =是()f x 的极值点得()00f '=,所以1m =. 于是()(

)e l n 1x f x x =-+,定义域为()1,-+∞,()1

e 1

x f x x '=-+.函数()1

e 1

x f x x '=-

+在()1,-+∞上单调递增,且()00f '=,因此当()1,0x ∈-时,()

0f x ';

当()0,x ∈+∞时,()0f x '.所以,()f x 在()1,0-上单调递减,在()0,+∞上单调

递增.

(2)证明:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x ++≤,

则()()ln ln 2x m x -+≥+-从而 ()()ln 2x

f x e x ≥+-

故只需证 ()()ln 20(2)x

g x e x x =+>>--

()2

11e ,()e 02(2)x x g x g x x x '''=-

=+>++ ∴()1

e 2x g x x '=-

+在()2,-+∞上单调递增.

()()11

110,002

g g e ''-=-<=>,∴存在唯一()01,0x ∈-,使得()00g x '=

当()02,x x ∈-时,()0g x ';当()0,x x ∈+∞时,()

0g x ',

从而当0x x =时,()g x 取得最小值.由()00g x '=得0

01

e

2

x x =

+,()00ln 2x x +=-, 故()()()2

000011

022

x g x g x x x x +=+=++≥.

综上,当2m ≤时,()

0f x .

例4:(2014年全国Ⅱ文科21)已知函数()3

2

32f x x x ax =-++,曲线()y f x =在点

()0,2处的切线与x 轴交点的横坐标为2-.

(1)求a ;

(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.

解:(1)1a =.

(2)由(1)知,32()32f x x x x =-++

设()g x ()2f x kx =-+323(1)4x x k x =-+-+,下证()y g x =与x 轴只有一个交点 由题设知10k ->.当0x ≤时,'()g x 23610x x k =-+->,()g x 单调递增,

(1)10,(0)4g k g -=-<=,所以()g x =0在(],0-∞有唯一实根.

当0x >时,令32()34h x x x =-+,则()g x ()(1)()h x k x h x =+->.

而2'()363(2)h x x x x x =-=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,

∴ ()()(2)0g x h x h >≥=即()0g x =在(0,)+∞没有实根.

综上,()g x =0在R 有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点.

例5:(2009年全国Ⅱ理科22)

设函数()()2

1f x x aln x =++有两个极值点12x x 、,且12x x <

(I )求a 的取值范围,并讨论()f x 的单调性; (II )证明:()2122

4

ln f x ->

解: (I )()2222(1)11a x x a

f x x x x x

++'=+=>-++

令2

()22g x x x a =++,其对称轴为1

2

x =-

.由题意知12x x 、是方程()0g x =的两个均大于1-的不相等的实根,其充要条件为480(1)0

a g a ?=->??-=>?,得1

02a <<

⑴当1(1,)x x ∈-时,()0,()f x f x '>∴在1(1,)x -内为增函数; ⑵当12(,)x x x ∈时,()0,()f x f x '<∴在12(,)x x 内为减函数; ⑶当2,()x x ∈+∞时,()0,()f x f x '>∴在2,()x +∞内为增函数; (II )由(I )21

(0)0,02

g a x =>∴-

<<,222(2)a x x =-+2 ()()()22222222221(2)1f x x aln x x x x ln x ∴=++=-++2

设()()221(22)1()2

h x x x x ln x x =-++>-,

则()()()22(21)122(21)1h x x x ln x x x ln x '=-++-=-++ ⑴当1

(,0)2

x ∈-

时,()0,()h x h x '>∴在1[,0)2-单调递增;

⑵当(0,)x ∈+∞时,()0h x '<,()h x 在(0,)+∞单调递减.

()1112ln 2(,0),()224

x h x h -∴∈->-=

当时 故()22122

()4

In f x h x -=>.

例6:(2013年湖北理科10)已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点

)(,2121x x x x <,则( )

A.)(1x f >0, )(2x f >-21

B. )(1x f <0, )(2x f <-21

C. )(1x f >0, )(2x f <-21

D. )(1x f <0, )(2x f >-2

1

【解析】选D

∵()(ln )f x x x ax =-,∴()ln 21f x x ax '=-+ 又函数()(ln )f x x x ax =-有两个极值点12,x x , ∴()ln 21f x x ax '=-+有两个零点12,x x ,

即函数()ln g x x =与函数()21h x ax =-有两个交点.∴120,0a x x ><<

设经过点()0,1-的曲线()ln g x x =的切线与曲线()ln g x x =相切于点()00,ln x x ,则切线方程为000

1

ln ()y x x x x -=

-,将点()0,1-代入,得01x =,故切点为()1,0. 此时,切线的斜率1k =,∴要函数()ln g x x =与函数()21h x ax =-有两个交点,结合图象可知,021a <<,即121

0,012

a x x <<

<<< ∴ 1111()(ln )f x x x ax =-而111()ln 210f x x ax '=-+=的11ln 21x ax =- ∴21111111()(21)(0)0(01)f x x ax ax ax x f x =--=-<=<<

同理,由222()ln 210f x x ax '=-+=得22ln 1

2

x ax +=

∴2

222222()(ln )(ln 1)(1)2

x f x x x ax x x =-=

->, 设()(ln 1)(1)2x h x x x =

->则ln ()0(1)2

x h x x '=>>,即()h x 在(1,)+∞单调递增, ∴1()(1)2h x h >=-即21

()2

f x >-

导数结合洛必达法则巧解高考压轴题-2019年精选文档

导数结合xx法则巧解高考压轴题 高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成为热点.许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查题型.这类题目简易让考生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决.利用分离参数的方法不能解决这类问题的原因是出现了“”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有用方法就是洛必达法则.利用导数确定函数的单调性,再用洛必达法则就能顺利解决上面提出的“”型的导数应用问题.本文首先给出洛必达法则,然后用洛必达法则和导数解决高考试题并将这种方法应用于其他试题,从中可以发现运用高等数学知识解?}的优越性. 洛必达法则:设函数f(x)、g(x)满足: (1)f(x)=g(x)=0; (2)在U0(a)内,f ′(x)和g′(x)都存在,且g′(x)≠0; (3)=A(A可为实数,也可以是±∞).则==A. 1.(2011海南宁夏理21)已知函数f(x)=+,曲线y=f(x)在点(1,f (1))处的切线方程为x+2y-3=0.(1)求a,b的值; (2)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.解析:(1)略解,易知a=1,b=1; (2)当x>0,且x≠1时,由f(x)>+,易得k0,从而h(x)=lnx+在x∈(0,+∞)时单调递增,且h(1)=0,所以当x∈(0,1)时,h(x)0;当 x∈(0,1)时, g′(x)0,所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.由洛必达法则有: g(x)=(+1)=1+=1+=0, 即当x→1时,g(x)→0所以当x>0,且x≠1时,g(x)>0.因为k0,且x≠1时,f(x)>+成立,求k的取值范围是(-∞,0].

用好零点”,证明函数不等式 高考数学压轴题之函数零点问题

“用好零点”,证明函数不等式 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围;

若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当 时,证明: (其中为自然对数的底数). 4.已知函数f (x )=lnx+a (x ﹣1)2 (a >0). (1)讨论f (x )的单调性; (2)若f (x )在区间(0,1)内有唯一的零点x 0,证明:. 5. 已知函数f (x )=3e x +x 2 ,g (x )=9x ﹣1. (1)求函数φ(x )=xe x +4x ﹣f (x )的单调区间; (2)比较f (x )与g (x )的大小,并加以证明. 6. 已知函数f (x )=lnx ﹣x+1,函数g (x )=ax?e x ﹣4x ,其中a 为大于零的常数. (Ⅰ)求函数f (x )的单调区间; (Ⅱ)求证:g (x )﹣2f (x )≥2(lna ﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数 的最大值 为. (1)求实数的值; (2)若 ,证明: . 8.【山东省日照市2017届高三下学期一模】设(e 为自然对数的底数), . (I)记,讨论函单调性; (II)令 ,若函数G(x )有两个零点. (i)求参数a 的取值范围; (ii)设 的两个零点,证明 . 9.已知函数()()()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性; (2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3 12 0e x e - -<<. 10.已知函数()1x f x e ax =--,其中e 为自然对数的底数, a R ∈

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题 导数压轴题之隐零点问题(共13题) 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增,

而==1, 故a≤1, 综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤() 2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

洛必达法则巧解高考压轴题

洛必达法则巧解高考压 轴题 This model paper was revised by LINDA on December 15, 2012.

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() ()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=() ()lim x a f x l g x →'='。 0 0型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() ()lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() ()lim x a f x l g x →'='。 ∞ ∞型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必 达法则

也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20cos ln lim x x x → (00 型) (4)x x x ln lim +∞ → (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2 (1)当1-=m 时,求)(x f 在[]1,2-上的最小值 (2)若)()2('2x f x m x >++在()0,∞-上恒成立,求m 的取值范围 例题3.已知函数)0(,)(>++ =a c x b ax x f 的图像在点())1(,1f 处的切线方程为1-=x y ,

专题03 “用好零点”,证明函数不等式-2019年高考数学压轴题之函数零点问题(原卷版)

专题三“用好零点”,证明函数不等式 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中已知零点(零点个数),证明函数不等式问题,例题说法,高效训练. 【典型例题】 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 【规律与方法】 应用函数的零点证明不等式问题,从已知条件来看,有两类,一类是题目中并未提及函数零点,二一

类是题目中明确函数零点或零点个数;从要求证明的不等式看,也有两种类型,一类是求证不等式是函数值的范围或参数的范围,二一类是求证不等式是零点或零点的函数值满足的不等关系. 1.由于函数零点存在定理明确的是函数值满足的不等关系,所以,通过设出函数的零点,利用函数零点存在定理,可建立不等关系,向目标不等式靠近,如上述类型一;也可以利用不等式的性质,向目标不等式靠近,如上述类型二,这两类问题突出的一点是“设而不求”. 2. 当求证不等式是零点或零点的函数值满足的不等关系时,则注意将零点代入函数式,构建方程(组),进一步确定零点之间的关系,然后在通过求导、分离参数、构造函数等手段. 【提升训练】 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围; 若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当时,证明:(其中为自然对数的底数). 4.已知函数f(x)=lnx+a(x﹣1)2(a>0). (1)讨论f(x)的单调性; (2)若f(x)在区间(0,1)内有唯一的零点x0,证明:. 5. 已知函数f(x)=3e x+x2,g(x)=9x﹣1. (1)求函数φ(x)=xe x+4x﹣f(x)的单调区间; (2)比较f(x)与g(x)的大小,并加以证明. 6. 已知函数f(x)=lnx﹣x+1,函数g(x)=ax?e x﹣4x,其中a为大于零的常数. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数的最大值

导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题 2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。 洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()() lim x f x l g x →∞'=', 那么 ()() lim x f x g x →∞ =() () lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型。 ○ 3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数2()1x f x e x ax =---。 (1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围 原解:(1)0a =时,()1x f x e x =--,'()1x f x e =-. 当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在 (0,)+∞单调增加 (II )'()12x f x e ax =-- 由(I )知1x e x ≥+,当且仅当0x =时等号成立.故 '()2(12)f x x ax a x ≥-=-, 从而当120a -≥,即1 2 a ≤ 时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥. 由1(0)x e x x >+≠可得1(0)x e x x ->-≠.从而当1 2 a > 时, '()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--, 故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <. 综合得a 的取值范围为1,2? ?-∞ ???

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

(完整版)洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20 cos ln lim x x x → (00 型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2

导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题 第一部分:历届导数高考压轴题 (全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围. (全国1理)已知函数()11ax x f x e x -+=-. (Ⅰ)设0a >,讨论()y f x =的单调性; (Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥; (Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos x f x x = +. (Ⅰ)求()f x 的单调区间; (Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. (辽宁理)设函数ln ()ln ln(1)1x f x x x x = -+++. ⑴求()f x 的单调区间和极值; ⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的 取值范围;若不存在,试说明理由. (新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间; (Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--. (Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1 x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤ +,求a 的取值范围. (新课标理)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程 为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围. 例题:若不等式3sin x x ax >-对于(0,)2 x π ∈恒成立,求a 的取值范围 第二部分:泰勒展开式 1.23 11,1!2!3! !(1)! n n x x x x x x x e e n n θ+=++++ +++其中(01)θ<<;

高考导数(洛必达法则)

第二部分:泰勒展开式 1.2311,1!2!3!!(1)!n n x x x x x x x e e n n θ+=+++++++K 其中(01)θ<<; 2. 23 1ln(1)(1),2!3!! n n n x x x x x R n -+=-+-+-+K 其中111(1)()(1)!1n n n n x R n x θ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+-K ,其中21 (1)cos (21)! k k n x R x k θ+=-+; 4. 2422 1cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+-K 其中2(1)cos (2)! k k n x R x k θ=-; 第三部分:新课标高考命题趋势及方法 许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路——分类讨论和假设反证的方法.虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了 00 ”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则. 第四部分:洛必达法则及其解法 洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x a x a f x g x →→==; (2)在()U a o 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim () x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. (2011新)例:已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法 由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--.

专题03 直击函数压轴题中零点问题(解析版)

一、解答题 1.(2020·湖南省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,求实数k 的取值范围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

高中数学专题---隐零点及卡根思想

高中数学专题--- 隐零点及卡根思想 基本方法: 导数解决函数综合性问题最终都回归于函数单调性的判断,而函数的单调性与其导数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计成为导数综合应用中最为核心的问题. 导函数的零点,根据其数值上的差异,我们可以分为两类:一类是数值上能精确求解的,我们不妨称为“显零点”;另一类是能判断其存在但数值上无法精确求解的,我们不妨称为“隐零点”. (1)函数“隐零点”的存在性判断 对于函数“隐零点”的存在性判断,常采用下列两种方法求解:①若连续函数()f x 在(,)a b 上单调,且()()0f a f b ?,则()f x 在(,)a b 上存在唯一零点;②借助图像分析,即将函数()f x 的零点问题转化为方程()0f x =的解的判断,并通过合理的变形将方程转化为合适的形式在处理. (2)函数“隐零点”的虚设和代换 对于函数“隐零点”,由于无法求出其显性表达式,这给我们求解问题带来一定困难. 处理这类问题的基本方法为“虚设及代换”:在确定零点存在的条件下虚设零点0x ,再借助零点的表达式 进行合理的代换进而求解. (3)函数“隐零点”的数值估计-卡根思想 函数“隐零点”尽管无法求解,但是我们可以进行数值估计,最简单的方法即为判断其存在性的前提下利用二分法进行估计,估值范围越精确越容易解决问题. 对于“隐零点”的代数估计,可以通过单调函数构造函数不等式进行估计. 一、典型例题 1. 已知函数()22e x f x x x =+-,记0x 为函数()f x 极大值点,求证:()0124f x <<. 2. 已知函数()4ln (1)x f x x x += >. 若*k N ∈,且()1k f x x <+恒成立. 求k 的最大值. 二、课堂练习 1. 已知函数()2ln f x x x x x =--,证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<. 2. 已知函数ln 1()x f x ax x -= -. 若12a <<,求证:()1f x <-. 三、课后作业 1. 已知函数()ln f x x =,若关于x 的方程()()1f x m x =+,()m Z ∈有实数解,求整数m 的最大值. 2. 已知函数()22ln f x x =+,令()() 2xf x g x x =-在()2,+∞上的最小值为m ,求证:()67f m <<.

函数与导数压轴题中零点问题

导数压轴题零点问题练习题 一、解答题 1.(2020·省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,数k 的取值围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

导数方法与技巧一(隐零点问题)

高三数学一轮复习第二十讲:导数的方法与技巧一(隐零点问题) 1.已知函数 ()()()ln ,f x x h x ax a R ==∈(1)若函数与的图像无公共点,试求实数的取值范围; ()f x ()g x a (2)是否存在实数,使得对任意的,都有函数的图像在的图像m 1,2x ??∈+∞ ??? ()m y f x x =+()x e g x x =的下方?若存在,求出最大整数的值;若不存在,请说明理由. m (参考数据:) ln 20.6931,ln 3 1.3956≈≈≈≈ 2.已知函数,其中,为自然对数的底数. ()()222 x a f x x e x =--a R ∈e (1)函数的图象能否与轴相切?若能求出实数的值;否则,说明理由. ()f x x a (2)若函数在上单调递增,求实数能取到的最大整数值. ()2y f x x =+R a

3.设函数. ()()ln ,21x f x x x g x x e x =-=?--(1)关于的方程在区间上有解,求实数的取值范围; x ()2103 f x x x m =-+[]1,3m (2)证明:当时,. 0x >()()g x f x ≥ 4.已知函数,若恒成立,求实数的取值范围. ()()()2 23,x f x e x a a R =--+∈()0,0x f x ≥≥a

5.已知函数. ()ln 1f x ax x =++(1)讨论函数零点的个数; ()f x (2)对任意的恒成立,求实数的取值范围. ()20,x x f x xe >≤a 6.已知函数. ()2 x f x e x ax =--(1)若函数在R 上单调递增,求实数的取值范围. ()f x a (2)若,证明:当时,. 1a =0x >()2 ln 2ln 2122f x ??>-- ??? (参考数据:) 2.71828,ln 20.69e ≈≈

洛必达法则解高考题

洛必达法则解高考题 2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。 洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)() () lim x f x l g x →∞'=', 那么 ()() lim x f x g x →∞ =() () lim x f x l g x →∞ '='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型。 ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

导数压轴分类(6)---函数的隐零点问题 任务一、完成下面问题,总结隐零点问题的解题方法。 例1. [2013湖北理10] 已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点21x x ,,且21x x <,则( ) A.)(1x f >0,)(2x f >21- B. )(1x f <0,)(2x f <2 1- C. )(1x f >0,)(2x f <21- D . )(1x f <0,)(2x f >21- 例2. [2012全国文21] 设函数2)(--=ax e x f x . (1)求函数)(x f 的单调区间; (2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。 k 的最大值=2 任务二、完成下面问题,体验隐零点问题的解题方法的应用。 2.1 [2015北京海淀二模理18] 设函数2ln 1)(x x x f -=. (Ⅰ)求函数)(x f 的零点及单调区间; (Ⅱ)求证:曲线x x y ln = 存在斜率为6的切线,且切点的纵坐标0y <1- 提示解析:(Ⅰ)函数)(x f 的零点为x e =,单调减区间32(0,)e ;单调增区间32(,)e +∞; (Ⅱ)x x y ln =存在斜率为6的切线即存在点000ln (,)x x x 处导数为6,于是020 1ln 6x x -=,即2001ln 60x x --=,令2()1ln 6f x x x =--为增函数,易判断所以01(,1)2x ∈,所以20000000 ln 1616x x y x x x x -===-为减函数,所以0001 2|231x y y =<=-=-

隐零点问题

隐零点问题 有一种零点客观存在,但不可解,然而通过研究其取值范围、利用其满足的等量关系实现消元、换元以及降次达到解题的目的.这类问题就是隐零点问题. 类型一 根据隐零点化简求范围 典例1. 已知函数的图像在点(其中为自然对数的底数)处的切线斜率为3. ()ln f x ax x x =+x e =e (1)求实数的值; a (2)若,且对任意恒成立,求的最大值; k Z ∈() 1 f x k x <-1x >k 【答案】 3【解析】解析:(1),由解得; ()'1ln f x a x =++()3f e =1a =(2),,, ()ln f x x x x =+()ln ()11f x x x x k g x x x +< =--@2 2ln '()(1)x x g x x --= -令,有,那么. ()2ln h x x x =--1 '()10h x x =- >()(1)1h x h >=-不妨设,由,,则可知,且. 0()0h x =(3)0h <(4)0h <0(3,4)x ∈00ln 2x x =-因此,当时,,;当时,,; ()0h x >()'0g x >0x x >()0h x <()'0g x <0x x <即可知, []000000min 00(ln 1)(1) ()()11 x x x x g x g x x x x +-== ==--所以,得到满足条件的的最大正整数为3. 0k x ≤k

类型二 根据隐零点分区间讨论 典例2 已知函数,为何值时,方程有唯一解. 2()2ln (0)f x x t x t =->t ()2f x tx =【答案】 (,0){1}-∞ 【解析】 , 222ln 22(ln )x t x tx t x x x -=?+=当时,有; ln 0x x +=t R ∈设,;又,,不妨设, ()ln u x x x =+1'()10u x x =+ >(1)10u =>11 ()10u e e =-<00ln 0x x +=则可知. 01(,1)x e ∈当时,得到; , ln 0x x +≠22()ln x t g x x x =+@222 2ln (12ln )'()(ln )(ln )x x x x x x x g x x x x x -+-+== ++令,易知,且时,;时,; ()12ln g x x x =-+(1)0g =1x >()0g x >1x <()0g x < 综上可知在区间上为减函数,在区间上为增函数;画图函数图像: ()g x 00(0,),(,1)x x (1,)+∞ 因此,可知所求的范围为. t (,0){1}-∞

高考数学专题复习函数隐性零点的处理技巧

高考数学专题复习函数隐性零点的处理技巧 近些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间; (2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k < 1 1 -+x e x +x (x >0)(*), 令g (x )=1 1 -+x e x +x ,则g′(x )=2)1()2(---x x x e x e e , 而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点. 设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ).

相关文档
最新文档