远心镜头的原理、应用范围及其选型

远心镜头的原理、应用范围及其选型
远心镜头的原理、应用范围及其选型

工业镜头是机器视觉采集系统的重要组成部分,远心镜头是镜头大家族中相对年轻的成员,并且正以其独特的性能,成为最善良的明星。但是,也因为远心镜头被引入时间比较短,其很多特性还未广泛的为人们所熟知,本文即是本着向大家介绍远心镜头基础知识的原则,从远心镜头的原理,应用范围,选型方法三个方面,对其进行综合阐述,揭秘光在远心系统里经历的神秘的艺术之旅。

第一部分:远心镜头的原理说明

首先,我们从非远心镜头的几个问题说起。第一个问题,一般镜头在成像过程中,当工作距离发生变化时,其所成图像大小会相应的发生变化,造成的结果就是同一个焦距的镜头,对应不同的物距,将会有不同的放大倍率,这一现象跟人类视觉系统的近大远小视觉差类似。这一问题在某些应用场合是可以被忽略甚至加以利用的,但是当我们的视觉系统被用来执行精密测量任务时,这一特性则会成为极大的阻碍。第二个问题,普通的镜头都存在一定范围的景深,当被测物体不在镜头的景深范围内时,图像就会变得模糊,无法清晰聚焦,为此,设计师们在普通镜头上设计了调焦环,当工作距离发生变化时,可以通过调节对焦面来看清楚感兴趣的区域。问题是,如果被测物体本身的深度超出了一定范围,镜头始终没办法同时看清首尾两端,这个问题,必须通过其他的途径来解决。第三个问题,随着现在成像芯片分辨率的不断提高,用户对测量精度的要求也越来越苛刻,普通的镜头受制于其光学成像的原理,最好的也只能做到10um左右,视觉检测领域需要精度更高的成像产品。

双远心镜头即是为了解决这些问题应运而生的。双远心镜头通过在光学系统的中间位置放置孔径光阑,使主光线一定通过孔径中心点,则物体侧和成像侧的主光线一定平行于光轴进入镜头。入射平行光保证了足够大的景深范围,从镜头出来的平行光则保证了即是工作距离在景深范围内发生大幅度变化,成像的高度也就是放大倍率不会发生变化。

第二部分:远心镜头使用范围

什么情况下应该选用远心镜头呢?根据笔者多年从事机器视觉产品选型的经验,再次给读者一些参考,如下情况,建议选用双远心镜头。

1)当被检测物体厚度较大,需要检测不止一个平面时,典型应用如食品盒,饮料瓶等。

2)当被测物体的摆放位置不确定,可能跟镜头成一定角度时。

3)当被测物体在被检测过程中上下跳动,如生产线上下震动导致工作距离发生变化时。

4)当被测物体带孔径、或是三维立体物体时。

5)当需要低畸变率、图像效果亮度几乎完全一致时。

6)当需要检测的缺陷只在同一方向平行照明下才能检测到时。

7)当需要超过检测精度时,如容许误差为1um。

第三部分:远心镜头的选型方法

远心镜头的选型办法其实跟普通光学系统中的镜头类似,需要关注的几个点如下:

兼容的CCD靶面尺寸。这一点跟普通镜头的选择类似,要求远心镜头兼容的CCD靶面大于或等于配套的相机靶面,否则会造成分辨率的浪费。

接口类型。目前远心镜头提供的接口类型也跟普通镜头类似,有C口,F口等,只要跟相机配套即可使用。

放大倍率,或成像范围。当放大倍率和CCD靶面确定时,成像范围即确定,反之亦然。

工作距离。一般以上三点选定的情况下,工作距离已经确定在一个范围之内,这是其成像光路决定的。需要注意的就是此工作距离是否满足实际使用要求。当选用远心系统进行检测时,我们建议先选定镜头,依据其工作距离设计其他机械结构。

景深范围。在满足前面几个使用条件的前提下,景深范围越大,说明远心系统的光学特性越好,在选型时可作为参考。

因为远心镜头的这些特性,导致其生产工艺要求非常高,所以目前主要的生产厂家都在国外,维视图像作为国内领先的远心光学自主品牌,其BT系列双远心产品以其超高的精度,稳定性和性价比,正在取得越来越多客户的认可,希望在远心光学这条路上,我们能陪伴您一起成长,为机器视觉这个大家庭的建设,贡献自己的一份力量。

远心镜头的原理、应用范围及其选型

工业镜头是机器视觉采集系统的重要组成部分,远心镜头是镜头大家族中相对年轻的成员,并且正以其独特的性能,成为最善良的明星。但是,也因为远心镜头被引入时间比较短,其很多特性还未广泛的为人们所熟知,本文即是本着向大家介绍远心镜头基础知识的原则,从远心镜头的原理,应用范围,选型方法三个方面,对其进行综合阐述,揭秘光在远心系统里经历的神秘的艺术之旅。 第一部分:远心镜头的原理说明 首先,我们从非远心镜头的几个问题说起。第一个问题,一般镜头在成像过程中,当工作距离发生变化时,其所成图像大小会相应的发生变化,造成的结果就是同一个焦距的镜头,对应不同的物距,将会有不同的放大倍率,这一现象跟人类视觉系统的近大远小视觉差类似。这一问题在某些应用场合是可以被忽略甚至加以利用的,但是当我们的视觉系统被用来执行精密测量任务时,这一特性则会成为极大的阻碍。第二个问题,普通的镜头都存在一定范围的景深,当被测物体不在镜头的景深范围内时,图像就会变得模糊,无法清晰聚焦,为此,设计师们在普通镜头上设计了调焦环,当工作距离发生变化时,可以通过调节对焦面来看清楚感兴趣的区域。问题是,如果被测物体本身的深度超出了一定范围,镜头始终没办法同时看清首尾两端,这个问题,必须通过其他的途径来解决。第三个问题,随着现在成像芯片分辨率的不断提高,用户对测量精度的要求也越来越苛刻,普通的镜头受制于其光学成像的原理,最好的也只能做到10um左右,视觉检测领域需要精度更高的成像产品。 双远心镜头即是为了解决这些问题应运而生的。双远心镜头通过在光学系统的中间位置放置孔径光阑,使主光线一定通过孔径中心点,则物体侧和成像侧的主光线一定平行于光轴进入镜头。入射平行光保证了足够大的景深范围,从镜头出来的平行光则保证了即是工作距离在景深范围内发生大幅度变化,成像的高度也就是放大倍率不会发生变化。 第二部分:远心镜头使用范围 什么情况下应该选用远心镜头呢?根据笔者多年从事机器视觉产品选型的经验,再次给读者一些参考,如下情况,建议选用双远心镜头。 1)当被检测物体厚度较大,需要检测不止一个平面时,典型应用如食品盒,饮料瓶等。 2)当被测物体的摆放位置不确定,可能跟镜头成一定角度时。 3)当被测物体在被检测过程中上下跳动,如生产线上下震动导致工作距离发生变化时。 4)当被测物体带孔径、或是三维立体物体时。

双远心工业镜头的原理简述

双远心工业镜头的原理简述 近年来,经常做机器视觉精密测量的公司就会听到一些比较新的名词,如双侧远心、单侧远心、物方远心、像方远心等等这些以前并不是经常被提起的光学概念,让人一头雾水,不知如何理解,收集到的资料往往也都是专业化程度高不容易理解,今天就让维视图像从实际应用角度出发来简述双远心工业镜头的相关原理。 凸透镜成像原理 特性一:所有经过光心的光不改变其传播方向 特性二:凸透镜对平行光有汇聚作用,镜头的成像即利用这一点 双远心镜头成像原理 原理:通过在镜头中间放置光阑,使得进出镜头的光线均为平行光,其他光线被光阑遮挡,无法到达成像芯片 各看一侧分别是物方远心、像方远心镜头。物方解决景深问题,像方解决放大倍率变化问题。 双远心镜头解决的问题 分辨率问题:普通工业镜头分辨率跟不上芯片分辨率提高的脚步,其受制于其光学成像的原理,最好的也只能做到10um左右,最多可配合1000W像素的相机使用,满足不了现在高分辨率相机和高精度测量检测的要求。 景深问题:普通镜头的景深比较小,当需要测量的物体在镜头纵深方向超出其范围,检测或测量无法进行。

放大倍率问题:放大倍率随作距离变化而发生变化。当我们的视觉系统被用来执行精密测量任务时,这一特性会导致不可容忍的误差。 FAQ&答疑 ?Q:为什么双远心镜头的体积通常比较大 ?A:因为双远心镜头是平行光进出,所以需要多大拍摄面积,就需要多大面积的平行光进入,因此就需要多大面积的镜筒,所以双远心镜头体积通常都比较大,而且视场越大,体积越大。?Q:双远心镜头怎样选型? ?A:主要注意以下几点:视场范围,兼容的CCD靶面,接口类型等满足要求,其他的如工作距离,景深范围,外形尺寸等只要不影响使用就可以。 ?Q:双远心镜头配合什么样的光源效果比较好? ?A:由于远心镜头只接受平行光,滤除了几乎所有的漫反射光源,所以在自然环境下成像比较暗,所以选用平行光源能够最大限度的发挥双远心镜头的优势,使被测物体边缘清晰、稳定,并有效去除检测过程中的噪声。

垫片选择选型(详细1)

垫片弹片选型指南编辑:马立强

前言 本手册是指导设计、工艺、质检的参考手册。根据手册的相关标准及参考行业的相关标准进行垫片、弹片选型,并指导工艺设计、质量检验和质量验收。

第一章垫片原材料选择 选择垫片的材料主要取决于下列三种因素: 温度、压力、介质。 一). 金属垫片材料 1. 碳钢: 推荐最大工作温度不超过538℃,特别当介质具有氧化性时。优质薄碳钢板地不适合应用于制造无机酸、中性或酸性盐溶液的设备,如果碳钢受到在的应力,用于热水工况条件下的设备事故率非常高。碳钢垫片通常用于高浓度的酸和许多碱溶液。布氏硬度约120。 2. 304不锈钢 18-8(铬18-20%、镍8-10%),推荐最大工作温度不超过760℃。在温度 -196~538℃区间,易发生应力腐蚀和晶界腐蚀。布氏硬度160。 3. 304L 不锈钢 含碳量不超过0。03%。推荐最大工作温度不超过760℃。耐腐蚀性能类似304不锈钢。低的含碳量减少了碳从晶格的析出,耐晶界腐蚀性能高于304不锈钢。布氏硬度约140。 4. 316不锈钢 18-12(铬18%、镍12%),在304不锈钢中增加约2%钼,当温度提高其强度和耐腐蚀性能提高。当温度提高时比其它普通不锈钢具有更高抗蠕变性能。推荐最大工作温度不超过760℃。布氏硬度约160。 5. 316L不锈钢 推荐最续工作温度不超过760℃~815℃。碳含量不超过相对于316不锈钢具有更优秀的耐应力和晶界腐蚀。布氏硬度约140。 6. 20合金 45%铁、24%镍、20%铬和少量钼和铜。推荐最大工作温度不超过760℃~815℃。特别适用于制造耐硫酸腐蚀的设备,布氏硬度约160。 7.铝 铝(含量不低于99%)。铝具有优秀耐腐蚀性能和加工性能,适用于制造双夹垫片。布氏硬度约35。推荐最续工作温度不超过426℃。 8.紫铜 紫铜的成份接近于纯铜,其含有微量的银以增加其连续工作温度。推荐最续工作温

镜头的特性详细介绍要点

除了立足点和相机位置的选择,镜头的选择也对最终的图像区域有着至关重要的作用,因为不同的镜头可以产生不同的像场角。另外,不同的焦距也会给最终的照片带来各具特色的成像特征,这可以影响整张照片的构图,从而控制和影响观赏者对照片的认知。 基础 镜头将射入的光线进行整合、加工,然后在传感器(或者胶片)上形成圆形的、倒立的现实的成像。矩形的传感器会对这一圆形的图像进行裁切,于是就形成了典型的画面格式(见第40页)。镜头既可以与相机固定在一起,又可以随意更换,这就为摄影提供了更多的灵活性。镜头基本可以分为变焦镜头和定焦镜头,根据不同的焦距范围它又可以分为广角镜头、标准镜头、长焦镜头,这些镜头具有不同的性能并能适合特定的拍摄目的。 镜头的名称分类是根据其焦距或者说焦距范围,以及光圈或者说光圈范围划分的。“焦距范围”的说法涉及的是变焦镜头,但是我们在下文中将会集中介绍定焦,因为这样解释会更容易、更清楚,而且有了关于定焦的明确理解之后,你在拍摄时就能够将其直接运用于变焦镜头中,无需进一步的补充知识。

拍摄每个场景都有专门的镜头。例如拍摄动物时,我们要和它们保持一段警戒距离,以防吓走它们。这时就要选用长焦镜头,因为即使隔着较远的距离也能清晰地捕捉到动物的身影。 焦距400mm 像场角 很遗憾,另一个与焦距和光圈同样重要,甚至比它们更重要的概念却没有它们一样知名,这就是像场角。根据不同的镜头焦距,相机可以获取或大或小的像场角。它连同相机与主题之间的距离一起影响着图像区域,且该像场角外的所有内容都不会出现在照片上。在相机位置不变的情况下,像场角越小,图像区域就越紧凑;像场角越大,图像区域就越宽松。相反,在图像区域不变的情况下,像场角越大,相机距离主题就越近,这时你必须用较小的像场角来扩大相机与主题之间的距离。像场角不仅对图像中的“数量”非常重要,还关系到摄影者自身与主题间的距离,通过距离的调节来实现全画面成像或者局部成像。

工业相机的原理及选择

工业相机的原理及选择 随着工业4.0的到来,机器视觉系统在智能制造领域的应用越来越广泛,相机、镜头是机器视觉的重要组成部分,合适的相机和镜头决定了系统应用的好坏。因此,选择合适的工业相机与镜头非常重要,本文主要介绍如何选择合适的工业相机和对应的镜头。 小孔成像原理 由光源A发出的一束光线通过一个小孔后,在孔后面的屏幕上就会留下一个光斑。同理光源B也会在屏幕上形成一个光斑,如果A和B离得足够远,它们在屏幕上的光斑也分开比较远,这就得到了物体AB的一个比较清晰的像。 凸透镜成像原理

由光源发出的一束光线,经过透镜的折射作用后方向和发散度都出现变化,在像平面上形成一个新的交点,即像点。 工业相机结构和成像过程 被摄物通过镜头汇聚光线,使机身内部的感光材料(就是传统的胶片,或者说现在数码时代说的ccd、cmos)感知光线,然后通过相应的光电或者化学反应,让影像清晰的留在感光材料上,并通过光电技术存储在存储卡上。光线通过镜头后,在机身内有一个五棱镜,光线通过反复折射后,将影像还原成了正的。如下图所示。 工业相机的选择步骤: 步骤一,需要先知道系统精度要求和工业相机分辨率; 步骤二,需要知道系统速度要求与工业相机成像速度; 步骤三,需要将工业相机与图像采集卡一并考虑,因为这涉及到两者的匹配; 步骤四,价格的比较。 选择工业相机应注意什么?

1、根据应用的不同来决定是需要选用CCD还是CMOS相机。CCD工业相机主要应用在运动物体的图像提取,如贴片机,当然随着CMOS技术的发展,许多贴片机也在选用CMOS工业相机。用在视觉自动检查的方案或行业中一般用CCD工业相机比较多。CMOS工业相机由成本低,功耗低也应用越来越广泛。 2、分辨率的选择,首先考虑待观察或待测量物体的精度,根据精度选择分辨率。其次看工业相机的输出,若是体式观察或机器软件分析识别,分辨率高是有帮助的;若是VGA输出或USB输出,在显示器上观察,则还依赖于显示器的分辨率,工业相机的分辨率再高,显示器分辨率不够,也是没有意义的;利用存储卡或拍照功能,工业相机的分辨率高也是有帮助的。 3、与镜头的匹配,传感器芯片尺寸需要小于或等于镜头尺寸,C或CS安装座也要匹配(或者增加转接口); 4、相机帧数选择,当被测物体有运动要求时,要选择帧数高的工业相机。但一般来说分辨率越高,帧数越低。

垫片选型

石化行业如何选用垫片?HG20608-97为柔性石墨复合垫,HG20609-97为金属包覆垫,HG20610-97为缠绕垫,HG20611-97为齿形组合垫。 问:HG20608-97为柔性石墨复合垫,HG20609-97为金属包覆垫,HG20610-97为缠绕垫,HG20611-97为齿形组合垫。根据HG20614-97《钢制管法兰、垫片、紧固件的选配规定》,本人认为上述四种垫片在多数情况下是可以通用的。想请教大家本人的想法是否准确?在石化设计中通常选用哪一种垫片?如果考虑经济性,应优先选用哪一种垫片? 答一:一般炼油厂应用最普遍的是缠绕垫.柔性石墨复合垫承受力不够,压紧一次就损坏了.金属包覆垫一般用在防腐蚀部位,压力也不太高.聚四氟垫对温度压力也有要求(多用在1.0MP,250度一下),齿形组合垫用在特殊密封部位. 所以缠绕垫比较耐用常见的.比如可以热紧.发生轻微泄露可以继续适当紧固.一般内外环缠绕垫用在平面法兰压力1.0MP以下;内环缠绕垫用于凹凸面法兰,压力2.5MP4.0MP6.4MP和部分10.0MP部位. 较高压力时一般还常使用梯形槽法兰配钢圈垫片,压力使用在4.0MP~40MP,比如中高压蒸汽系统. 答二:要素:1、温度 2、压力 3、介质 4、开工周期 5、压力温度的波动 6、经济性 上面提到的几种垫片,由于其刚性、垫片系数等原因,大多数场合可以互替,但要考虑经济性。 答三:按标准来就可以只要压力等级搞对了就没问题!我选择4.0Mpa以上的要选用RJ的金属环垫,以下的石墨缠绕垫要316L石墨填充的,金属包垫也可以!看温度和介质也有很大关系,灵活用吧!10。0Mpa以上的还可以使用透镜垫的视情况吧! 答四:常用的垫片可以分为三大类,即非金属垫片、半金属垫片和金属垫片。 a.非金属垫片: 石棉橡胶垫片,它是通过向石棉中加入不同的添加剂压制而成。在美国,很多标准中都将石棉制品列为致癌物质而禁用。但在世界范围内,石棉仍以其弹性好、强度高、耐油性好、耐高温、易获得等优点而得到广泛应用。 适用范围:T≤260℃,PN≤2.0MPa(SH 3401) T≤400℃,PN≤4.0MPa(国标) 用于水、空气、氮气、酸、碱、油品等介质工况下。 聚四氟乙烯(PTFE)包覆垫片: 适用范围:T=-180~200℃,PN≤4.0MPa 常用于低温或者要求干净的场合下 b.半金属垫片 半金属垫片有缠绕式垫片、金属包覆垫片和柔性石墨缠绕垫三大类。 缠绕式垫片:是半金属垫片中最理想、也是应用最普遍的垫片。 特点:压缩回弹性好、强度高,有利于适应压力和温度的变化,能在高温、低温、冲击、振动及交变载荷下保持良好的密封性能。 缠绕钢带:20、1Cr13、0Cr19Ni9、0Cr18Ni10Ti、0Cr17Ni12Mo2等材料 非金属缠绕带:特制石棉、柔性石墨带和聚四氟乙烯带, 适用范围:PN=2.0~10.0MPa 表6-3缠绕式垫片的型式及代号

佳能镜头初级知识

佳能镜头扫盲 买单反相机不是买机身,而是买镜头,至少是买机身和镜头的组合。 这里先介绍几套APS幅面的DSLR常见的镜头配置 P:优点 C:缺点 一、单镜头的选择 1.成本最低,性价比最高 EF-S 18-55/3.5-5.6 只有二手的看成色¥400上下 P:广角长焦都沾上,关键是便宜好用 C:就花了这么点钱来说,没什么可说的 我常说看得起套头的人,会使用套头的人,常常让拿着数nW器材的人大吃一惊。 也可以选择低EF-S 18-55/3.5-5.6II、EF-S 18-55/3.5-5.6 USM版。 2. 成本最低,性价比最高II EF50/1.8II ¥750 P:成像相当不错 C:焦段严重不足,做工很差,只适合入门 不少人对50/1.8II的做工严重不屑,但使用50/1.8II 的人很多对其性能价格很满意。不要以貌取镜,也不要想凭它争面子,要么它拍出的片子说话。

3.一镜足矣 EF-S 17-85/4-5.6 IS USM ¥4800 P:焦段太合适了,IS用了都说好, C:性价比略低 FSLR上,EF28-135/3.5-5.6 IS USM是非常经典的头头,价格不错、成像不错,I、U俱全。17-85作为对应的EF-S 版本,虽然价格高了不少,光圈略小,但无法阻止它成为单镜头配置的好选择。 4.失去长焦,得到红圈 EF17-40/4L USM ¥6000 P:非常好的广角头,不论价格、成像还是做工。 C:缺乏长焦,遮光罩太难看。 有评测指出,17-40L在广角段成像优于昂贵的16-35L。它外形很象16-35L足够你亮骚、机械性能很好、使用和成像都让人满意。 5. 拥有F2.8=拥抱高端 EF-S 17-55mm f/2.8 IS USM ¥8000 P:不画红圈的L头,IS、USM、恒定F2.8一样都不少 C:你真的不考虑全副了吗? Canon为了APS尺寸打造的主力镜头,性能成像没啥说的。不标L有两种可能:Canon认为L头应该是全副的;这个头毕竟是塑料的,与24-70之流还是有差距的。唯一的问

一键测量仪介绍、原理及技术参数说明

一键式测量仪OMQ100系列 放置后仅按一键即可测量 艾弗特一键测量仪又叫一键式测量仪,只需一按,即可快速测量。采用大视野影像闪 测、高精度、全自动,开创快速测量新理念。通过将远心成像与智能图像处理软件的 完美结合,任何繁琐的测量任务,都变得无比简单。只需把工件放置到有效测量区 域,然后轻轻按一键,工件所有二维尺寸瞬间完成测量。

一、仪器介绍 大视野影像闪测、高精度、全自动,开创快速测量新理念, 通过将远心成像与智能图像处理软件的完美结合, 任何繁琐的测量任务,都变得无比简单。 只需把工件放置到有效测量区域,然后轻轻按一键, 工件所有二维尺寸瞬间完成测量。 二、应用行业 广泛应用于机械、电子、模具、注塑、五金、橡胶、低压电器、磁性材料、精密冲压、接插件、连接器、端子、手机、家电、印刷电路板、医疗器械、钟表、刀具等尺寸较小的产品及零部件的批量快速测量。

三、仪器特点 1.打破尺寸测量的常规。 仅需要它

2.大口径高景深,实现全视野范围成像清晰,超低畸变。 (传统镜头)(精密双远心镜头) 3.高分辨率数字相机。仪器采用1200万~4300万像素高分辨率数字相 机。 4.软件采用先进的20:1亚像素图象边缘处理。 5.最小二乘法回归处理可自动祛除毛刺和异常点,将对特征位置上 的影响降低到最低。

6.自动识别工件、无需定位。 7.高效的批量测量。 测量范围内一次性可测量大于20000个尺寸,100个尺寸测量时间小于1秒,大幅缩短测量时间,提高测量效率。 8.多个工件任意摆放,自动识别,批量测量。

四、软件介绍 完全自主研发,软件界面简洁、功能强大,极易学习;采用我司自主研发的畸变校正技术,保证在视野的各位置、各角度测量结果稳定精准;自主研发的图像拼接技术,保证拼接误差小于0.003mm。 (特殊软件功能可接受定制) 用户程序: (一)自动匹配工件,任意放置,一键测量。可自动搜索匹配并调出用户程序。可 框选建立匹配、多个位置框选组合建立匹配、用测量元素建立匹配、可导入CAD 建立匹配。可建立程序组,实现工件多个面翻面测量。 (二)全面的测量元素: 点、最高点、线、最高线、圆(中心坐标,半径、直径、真圆度、周长、面积,最大半径、最小半径)、弧、矩形(中心坐标,长、宽、周长、面积)、椭圆(中心坐标,长轴、短轴、周长、面积)、键槽(中心坐标,长、宽、周长、面积)、导入CAD轮廓扫描比对、轮廓PV、面积对比、圆柱直径、密封圈(通过周长计算半径、密封圈最大半径、最小半径、厚度)、测量结果再计算(最大值、最小值、平均值、求和)、二维码识别、条码识别。 (三)标注: 距离、X距离、Y距离、半径、直径、角度。

电警相机镜头选择(立杆位置)原理及杆件速查参考

1.1.1 镜头焦距选择依据 1.1.1.1 令狐采学1.1.1.2原理图

镜头焦距测算原理图 1.1.1.3 焦距测算公式 同样的CCD 宽度、同样的物距下,焦距越小,物宽越大。电警抓拍图片范围要求为3个车道,所以这里的物宽即为施工现场车道宽度的3倍。如车道一般为3.75米标准宽度,则物宽为11.25米。 其中600W电警CCD宽度为12.8mm。 以600W电警安装高度6米、停车线到立杆的距离20米(停止线后面要求有7米的路面视场)、物宽11.25米(3个车道宽度,车道宽度为3.75米标准车道)为例子。 物距计算三角形 所以w=12.8mm,L=(6*6+20*20)?=20.88米,W=11.25米 按照等比三角形原理,f=wL/W,所以f=23.70mm 因此在18米远安装方式下我们推荐使用20mm的定焦镜头,如果车道宽度不是3.75米,则可以按照此公式推算出大致

焦距范围,然后选择镜头。 1.1.2 立杆安装位置与停止线距离计算依据 立杆安装位置与停止线距离需要考虑的因素: 1)主视场覆盖范围要求:停止线前的视频检测区域长度不低于7米,能够覆盖车道宽度并且看到信号灯; 2)车牌识别要求:在触发线1位置抓拍的车辆,其车牌像素点建议不低于90; 3)补光要求:补光灯的光斑能够覆盖整个视场; 4)车辆遮挡行为:由于视频电警抓拍车辆尾部,这就可能存在后一辆车的车头遮挡前一辆车尾车牌的现象。见下图:A为车辆尾牌的下边界(一般车辆距离地面为70CM,部分小型车50CM,大型车辆80CM),B是车辆前部的高度,一般为80CM,C为车辆最高点一般为140CM,D为摄像机安装处,一般高度为630CM,BC距离一般车辆为2米,摄像机到A点的水平距离为安装距离减去4.5米(遮挡一般发生在红灯

双远心镜头技术优势简述

工业相机,选择迪奥科技。 双远心镜头技术优势简述 远心镜头主要是为纠正传统工业镜头视差而设计,其主光线与镜头光源平行,根据远心光路分类设计原理分别有物方远心和像方远心,而双侧远心是综合这两者的双重作用,用于视觉检测和测量领域可以有更好的成像效果和成像精度。这里简要阐述双远心镜头的几点技术优势: 一、无透视误差 在计量学应用中进行精密线性测量时,经常需要从物体标准正面(完全不包括侧面)观测。此外,许多机械零件无法精确放置,测量时间距也在不断地变化。而软件工程师却需要能精确反映实物的图像。远心镜头可以完美解决以上困惑:因为入射光瞳可位于无穷远处,成像时只会接收平行光轴的主射线。 二、近乎零失真度 畸变系数即实物大小与图像传感器成像大小的差异百分比。普通机器镜头通常有高于1~2%的畸变,可能严重影响测量时的精确水平。(如:实际 50 毫米宽的物体,在这种镜头下成像宽度可能达到 51毫米)。比方说畸变小于 0.1% :实际宽 50毫米的物体,在成像时宽度绝不会大于 50.05 毫米,相比之下,畸变系数仅为普通镜头的二十分之一。梯形畸变(亦即梯形失真效应或“薄棱镜”效应)不仅会导致成像不对称,也难以采用软件校正,是成像中需要消减的另一个重要因素。 三、高分辨率 图像分辨率一般以量化图像传感器既有空间频率对比度的 CTF (对比传递函数)衡量,单位为lp/mm(每毫米线耦数)。采用普通的集合了大量廉价的低像素、低分辨率镜头,最后只能生成模糊的影像。而采用远心镜头,即使是配合小像素图像传感器(如 5.5百万像素, 2/3″),也能生成高分辨率图像。 四、更精准更一致的放大率 一般普通远心镜头只接收与光轴平行的光束,但在使用普通远心镜头时,光束通过物镜后就与一般光线路径无异,因此光线会以不同的角度投射到感应芯片上,形成误差。也就是说,光束在通过一般的远心镜头后即失去了远心的特性,因此物体在感应芯片上的成像依然会变形,而且离中心点距离越远的光点变形程度越严重,因此当物体位移时,光束成像的中心位置也会跟着改变,造成放大倍率上的误差。 非双侧远心镜头就算在物镜上具有良好的远心特性,但就整体系统而言,非双侧远心镜头的放大倍率具较低的稳定度。通过双侧远心镜头的光束则在物镜与成像

机械设计必备知识点 —— 密封垫片如何选型

机械设计必备知识点——密封垫片如何选型 在石油、石化、化工等行业的生产、加工、储运乃至销售环节,常常伴随着易燃、易爆、高温、高压、有毒有害和腐蚀等危险因素,机器及设备在使用中工作介质的“跑、冒、滴、漏”,给生产带来极大的危害。设备中工作介质的泄漏,会造成浪费并污染环境。 垫片密封是过程工业装置中压力容器、过程设备、动力机器和连接管道等可拆连接处最主要的静密封型式。它们所包含的流体介质范围相当广泛,防止液体或气体通过这些接头处泄漏出来是工厂面临的最重要,也是最困难的任务。 随着生产装置的大型化,生产工艺向高温、高压、高速的方向发展,出现泄漏的机会越来越多,发生事故的概率越来越大,造成的经济损失也越来越大。往往一处法兰的泄漏就有可能导致一套装置乃至全厂停产,还极有可能会引起火灾、爆炸,造成人员伤亡等重大事故,发生泄漏带来环境污染、产品损失甚至事故,垫片密封的重要性也就不言而喻了。因此,垫片的选用、设计、制造所存在的问题已逐步引起人们的高度重视。 那么,究竟应该如何选择合适的垫片呢? 垫片与垫片密封 垫片是一种夹持在两个独立的连接件(主要是指法兰)之间的材料或材料的组合,其作用是在预定的使用寿命内,保持两个连接件间的密封。 垫片必须能够密封结合面,并确保密封介质不渗透和不被腐蚀,能够承受得住温度和压力的作用。垫片密封一般有连接件(如法兰)、垫片和紧固件(如螺栓、螺母)等组成(见图1),因此决定某个法兰密封性时,必须将整个法兰连接结构作为一个系统进行考虑。垫片工作正常或失效与否,除了取决于设计选用垫片本身的性能外,还取决于系统的刚度和变形、结合面的粗糙度和平行度以及紧固载荷的大小和均匀性。

镜头的种类及选择

镜头的种类及选择 1.镜头的种类(根据应用场合分类) 广角镜头:视角90 度以上,观察范围较大近处图像有变形。松下公司有WV-LA2R8C3、WV-LA210。 标准镜头:视角30 度左右,使用范围较广。松下公司有WV-LA9C3B。 长焦镜头:视角20 度以内,焦距可达几十毫米或上百毫米。松下公司有WV-LA18A、WV-LZ62/8 等。 变焦镜头:镜头焦距连续可变,焦距可以从广角变到长焦,焦距越长则成像越大。松下公司型号有WV-LZ61/10、WV-LZ61/15 等。 针孔镜头:用于隐蔽观察,经常被安装在如天花板或墙壁等地方。 2.被摄物体的大小、距离与焦距的关系 假设被摄物体的宽度和高度分别为W.H,被摄物体与镜头间的距离为L,镜头的焦距为F。 3.相对孔径 为了控制通过镜头的光通量的大小,在镜头的后部均设臵了光圈。假定光圈的有效孔径为d,由于光线折射的关系,镜光实际有效的有效孔径为D,比 d 大,D 与焦距 f 之比定义为相对孔径A,即

A=D/f,镜头的相对孔径决定被摄像的照度,像的照度与镜头的相对孔径的倒数来表示镜头光圈的大小。F 值越小,光圈越大,到达CCD 芯片的光通量就越大。所以在焦距f 相同的情况下,F 值越小,表示镜头越好。 4.镜头的焦距 1)定焦距:焦距固定不变,可分为有光圈和无光圈两种。 有光圈:镜头光圈的大小可以调节。根据环境江照的变化,应相应调节光圈的大小。光圈的大小可以通过手动或自动调节,人为手工调节光圈的,称为手动光圈。镜头自带微型电机自动调整光圈的,称为自动光圈。 无光圈:即定光圈,其通光量是固定不变的。主要用于光源恒定或摄像机自带电子快门的情况。 2)变焦距:焦距可以根据需要进行调整,使被摄物体的图像放大或缩小。 常用的变焦镜头为六倍、十售变焦。 三可变和二可变镜头 三可变镜头:可调焦距、调聚焦、调光圈。 二可变镜头:可调焦调、调聚焦、自动光圈。

光学镜头的选择及主要参数

光学镜头的选择及主要参数 发布者:pomeas浏览次数:EE] 13 摄像头镜头是视频监视系统的最关键设备,它的质量(指标)优劣直接影响摄像头的整机指标,因此,摄像头镜头的选择是否恰当既关系到系统质量,又关系到工程造价。 镜头相当于人眼的晶状体,如果没有晶状体,人眼看不到任何物体;如果没有镜头,那么摄像头所输出的图像就是白茫茫的一片,没有清晰的图像输出,这与我们家用摄像头和照相机的原理是一致的。当人眼的肌肉无法将晶状体拉伸至正常位置时,也就是人们常说的近视眼,眼前的景物就变得模糊不清;摄像头与镜头的配合也有类似现象,当图像变得不清楚时,可以调整摄像头的后焦点,改变CCD芯片与镜头 基准面的距离(相当于调整人眼晶状体的位置),可以将模糊的图像变得清晰。由此可见,镜头在闭路监控系统中的作用是非常重要的。 工程设计人员和施工人员都要经常与镜头打交道:设计人员要根据物距、成像大小计算镜头焦距,施工人员经常进行现场调试,其中一部分就是把镜头调整到最佳状态。 1、镜头的分类 (1)以镜头安装分类 所有的摄像头镜头均是螺纹口的,CCD摄像头的镜头安装有两种工业标准,即C安装座和CS安装座。 两者螺纹部分相同,但两者从镜头到感光表面的距离不同。 C安装座:从镜头安装基准面到焦点的距离是17.526mm。 CS安装座:特种C安装,此时应将摄像头前部的垫圈取下再安装镜头。其镜头安装基准面到焦点的

距离是12.5mm。如果要将一个C安装座镜头安装到一个 CS安装座摄像头上时,则需要使用镜头转换器 (2)以摄像头镜头规格分类 摄像头镜头规格应视摄像头的 CCD尺寸而定,两者应相对应。即摄像头的CCD靶面大小为1/2英寸 时,镜头应选1/2英寸。摄像头的CCD靶面大小为1/3英寸时,镜头应选1/3英寸。摄像头的CCD靶面大小为1/4英寸时,镜头应选1/4英寸。如果镜头尺寸与摄像头 CCD靶面尺寸不一致时,观察角度将不符合设计要求,或者发生画面在焦点以外等问题。 (3)以镜头光圈分类 镜头有手动光圈( manual iris )和自动光圈( auto iris )之分,配合摄像头使用,手动光圈镜头适合于亮度不变的应用场合,自动光圈镜头因亮度变更时其光圈亦作自动调整,故适用亮度变化的场合。 自动光圈镜头有两类:一类是将一个视频信号及电源从摄像头输送到透镜来控制镜头上的光圈,称为视频输入型,另一类则利用摄像头上的直流电压来直接控制光圈,称为 DC 输入型。自动光圈镜头上的 ALC (自动镜头控制)调整用于设定测光系统,可以整个画面的平均亮度,也可以画面中最亮部分(峰值)来设定基准信号强度,供给自动光圈调整使用。 一般而言, ALC 已在出厂时经过设定,可不作调整,但是对于拍摄景物中包含有一个亮度极高的目标 时,明亮目标物之影像可能会造成 "白电平削波”现象,而使得全部屏幕变成白色,此时可以调节ALC来变 换画面。 另外,自动光圈镜头装有光圈环,转动光圈环时,通过镜头的光通量会发生变化,光通量即光圈,一 般用F表示,其取值为镜头焦距与镜头通光口径之比,即:F= f (焦距)/D (镜头实际有效口径),F值 越小,则光圈越大。 采用自动光圈镜头,对于下列应用情况是理想的选择,它们是:在诸如太阳光直射等非常亮的情况下,用自动光圈镜头可有较宽的动态范围。要求在整个视野有良好的聚焦时,用自动光圈镜头有比固定光圈镜头更大的景深。要求在亮光上因光信号导致的模糊最小时,应使用自动光圈镜头。 (4)以镜头的视场大小分类

镜头选型方法

如果把摄像机比喻为人的眼睛,镜头就好比是眼球,它直接关系到监看物体的远近、范围和效果。镜头的选用应考虑一下几点: 1)镜头尺寸应等于或大于摄像机成像面尺寸。例如:1/3″摄像机可选1/3″~1″整个范围内的镜头,但水平视角的大小都是一样的。只是使用大于1/3″的镜头能够更多地利用成形,更精确了镜头中心光路,所以可提高图像质量和分辨率。 2)选用合适的镜头焦距。焦距越大,监看距离越远,水平视角越小,监视范围越窄;焦距越小,监看距离越近,水平视角越大,监视范围越宽。镜头焦距可按照以下公式估算。 f=A×L/H (f--镜头焦距;A--摄像机CCD垂向尺寸;L--被摄物体到镜头距离;H--被摄物体高度) 3)考虑环境光线的变化。光线对图像的采集效果起着十分重要的作用。一般来说,对于光线变化不明显的环境,我们常选用手动光圈镜头,将光圈手调到一个比较理想的数值后就可不动了;如果光线变化较大,如室外24小时监看,应选用自动光圈,能够根据光线的明暗变化自动调节光圈值的大小,保证图像质量。但需注意的是,如果光线照度不均匀,特别是监视目标与背景光反差较大时,采用自动光圈镜头效果不理想。 4)考虑最佳监看范围。因为镜头焦距和水平视角成反比,因此既想看得远,又想看得宽阔和清晰,这是无法同时实现的。每个焦距的镜头都只能在一定范围内达到最佳的监看效果,所以如果监看的距离较远且范围较大,最好是增加摄像机的数量,或采用电动变焦镜头配合云台安装。 5)镜头接口与摄像机接口要一致。现在的摄像机和镜头通常都是CS型接口,CS型摄像机可以和CS型、C型镜头配接,但和C型镜头接配时,必须在镜头和摄像机之间加接配环,否则可能碰坏CCD成像面的保护玻璃,造成CCD摄像机的损坏。C型摄像机不能和CS 型镜头配接。

工业相机镜头的参数与选型

工业相机镜头的参数与选型 一、镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距 离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm /F1.4代表最大孔径为 5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、 2/3″、1″和1″以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。 5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。 光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;

焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。 9、光学放大倍数(Magnification,?) CCD/FOV,即芯片尺寸除以视野范围。 10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个

远心镜头技术及选型

远心镜头技术及选型 远心镜头(Telecentric),主要是为纠正传统镜头的视差而特殊设计的镜头,它可以在一定的物距范围内,使得到的图像放大倍率不会随物距的变化而变化,这对被测物不在同一物面上的情况是非常重要的应用。远心镜头由于其特有的平行光路设计一直为对镜头畸变要求很高的机器视觉应用场合所青睐,目前世界知名镜头厂商如美国Navitar、德国施乃德、Opto Engineering、日本Kowa等厂商已经有了自己品牌的远心镜头产品线。但是远心镜头由于应用领域不是非常广泛一直带着神秘色彩而不为人所熟知,下面让专家来引导我们一起破解远心镜头神秘的平行光艺术。 Navitar、施乃德、Opto Engineering、computar、Kowa这些知名的镜头企业都有自己的远心镜头产品线。我们知道远心镜头有普通镜头所不具有的平行光路的独特性,那么实现这种平行光是否是远心镜头的制造难点?除了这个技术特性外,远心镜头的研发、制造还有哪些技术难点?Mr.Claudio Sedazzari总裁以他多年的经验向我们介绍到Opto Engineering镜头本身的设计要求十分苛刻,以确保优秀的远心特性。组成镜头的光学零件和机械零件的制造过程更为严格。对此Opto Engineering开发了专用设备,用于对这些零部件进行测试。同时,对于每组镜头的测试与定标,Opto Engineering都倍加用心。该公司投入了数年的时间和数目可观的资金用于研发这些设备,以这些设备为依托,Opto Engineering可以制作出足以应对机器视觉使用的远心镜头。CBC梁立经理介绍,设计平行光成像的远心镜头理论上并不复杂,但若想达到一定解析能力和成像质量就是另外一回事了。远心镜头的设计和制造难度确实要大于一般意义上的镜头,究其原因是由于远心镜头光学镜片的尺寸都比较大,使得边缘光线的各类相差的校正难度增大,要想获得良好的边缘视场的成像质量,需要更高的产品设计和制造精度,有很多时候是需要设计者具有比较丰富的设计经验方能实现的。 远心光学系统图示 曾经有一种观点认为远心镜头主要解决畸变问题,那么普通工业镜头通过与标定板的组合可以有意识的通过软件算法矫正,也就是说远心镜头是可以替代的。CBC梁立经理及Mr.Claudio Sedazzari都对这种观点做了一定的反驳。梁经理认为,远心镜头解决的不单单是畸变的问题,远心镜头的独特光学特性决定了其在某些场和是无法采用普通工业镜头予以替代的,例如其更大的景深范围可以很好地适应现场的工作环境,这不是只通过算法就能解决的问题。Mr.Claudio Sedazzari总裁也提出了类似的看法,他认为:远心镜头的主要特点并不是低畸变,而是远心特性:物体在视场内移动时,其在不同位置的放大率不会发生改变,另外,对于物体上不同物距的特征,可以在同一时刻完成检测。低畸变只是远心镜头的附加属性。典型的远心镜头是低畸变的,然而许多其它种类的优质镜头畸变也相当小。不过非远心的光学系统在大多数测量应用中是不宜使用的,因为这种光学系统无法确保视场内一致的放大率,于是总会造成测量精度的下降。

垫片基础知识

垫片基础知识 一、基本概念 1.垫片密封原理: 垫片密封是靠外力压紧密封垫片,使其本身发生弹性或塑性变形,以填满密封面上的微观凹凸不平来实现。也就是利用密封面上的比压使介质通过密封面的阻力大于密封面两侧的介质压力差来实现密封。 2.垫片密封的泄漏有二种:渗透泄漏与界面泄漏 渗透泄漏(垫片中间泄露):对非金属材料而言,从材料的微观结构看,本身存在微小缝隙和细微的毛细管。具有一定压力的流体自然容易通过它们泄漏出来,此泄漏称为渗透泄漏,其泄漏量约占总泄漏量的10~20%。可以采用不同材料的复合或机械组合型式形成不渗透性的结构。或者使用较大的压紧力使材料更加密实,减少以至消除泄漏。 界面泄漏(两连接面泄露):两连接表面(即密封面)从机械加工的微观纹理来看存在粗糙度和变形,它们与垫片之间总存在泄漏通道,由此产生的泄漏叫界面泄漏,其泄漏量约占总泄漏量的80~90%。界面泄漏与垫片材料的性质、接头的机械性质与状态、密封流淌的特性以及紧固件的夹紧程度有关。 总结:要少泄露,首先垫片要“夹紧”,同时要求垫片有一定的“回弹力”以回弹填满空隙,否则也不行。回弹力取决于垫片本身的材质和结构及使用条件(温度、压力)。垫片夹紧后(初始密封),在介质压力作用下(垫片内侧直接和介质接触)的密封叫工作密封。从理论上说,预紧应力愈大,垫片中贮存的弹性应变能也愈大,因而可用于补偿分离或松弛的

余地也就愈大,当然要以密封材料本身最大弹性变形能力为极限。紧固件因受热引起应力松弛、垫片老化弹性下降,垫片长期受压等原因都可能导致“昨天不漏今天漏”。 二、钢制管法兰用垫片标记 根据现行国家标准《钢制管法兰、垫片、紧固件》(HG/T 20592~20635-2009)的要求,钢制管法兰用垫片(PN系列)标记规定如下: 其中: a为标准编号 1、HG/T 20606-2009 钢制管法兰用非金属平垫片(PN系列); 2、 HG/T 20607-2009 钢制管法兰用聚四氟乙烯包覆垫片(PN系列); 3、HG/T 20609-2009 钢制管法兰用金属包覆垫片(PN系列); 4、HG/T 20610-2009 钢制管法兰用缠绕式垫片(PN系列); 5、 HG/T 20611-2009 钢制管法兰具有覆盖层的齿形组合垫(PN系列); 6、HG/T 20612-2009 钢制管法兰非金属环形垫(PN系列)。 b为垫片名称 1、非金属平垫片用“垫片”表示; 2、聚四氟乙烯包覆垫片用“四氟包覆垫”表示; 3、金属包覆垫片用“金属包垫片”表示; 4、缠绕式垫片用“缠绕垫”表示; 5、具有覆盖层的齿形组合垫用“齿形垫”表示。 6、非金属环形垫用“椭圆垫/八角垫”表示。

FA镜头基础知识

FA镜头基础知识 1.镜头的景深 物体和镜头之间距离(W.D)虽然变化,但在前后一定范围内所成像仍然感觉清晰,这个距离范围被称为景深。相反的,对应于确定的物平面,成像面和镜头之间的距离不同,但在一定的范围内图像仍感觉清晰,称为焦深。 这样,可利用镜头的景深来拍摄有高低错落、凹凸不平的物体。通常,广角镜头比望远镜头有更深的景深。另外,光圈值变大(孔径变小)景深变大。 被摄体景深=FXεX(1/β) (ε容许弥散园参数--2/3≒0.02、1/2≒0.015、1/3≒0.01、β倍率) 2.镜头的各种象差 从物体的一点发出的光线、通过透镜后、应该成像在光軸上的像面上的一点。但是透镜的特性决定了光束不能严密地集中到一点、在像面上会在一定范围内形成弥散斑。由此而产生的聚焦不清的各种现象、总称为「象差」。对这样的情况、使用多个各种各样折射率和特性的透镜、通过多个面的修正、可以减少象差。在设计阶段、选择能修正多种象差的方式来多次计算、以达到最好的光路设计。另外,也增加了使用非球面镜片来抑制部分象差的手法。 3.非球面镜头 将镜片的表面加工成非球面形状,可以制作成象差少、明亮的镜头(F值小)。 非球面镜片的加工要求非常高的研磨技术。合成镜片、树脂镜片等的使用、可以逐渐解决加工难的问题。 4.球面象差--光线在光轴上不能汇聚到一点 镜片的表面是球面时、通过镜片边缘的光和通过靠近光轴的光所成像的位置会有偏移,这样就会出现图像模糊、焦点偏移的现象。这个是因透镜是球形表面而产生的现象。 5.慧差--光轴外的点所成像呈慧星状 即使校正了球面象差、使光轴上的点成像能集中到一点,但是稍微偏离光轴的点、其所成像就发散,像点呈慧星尾状的弥散状态,称为「慧差」。通过凹凸镜片的组合、使用非球面镜片、调节光阑的位置、可修正慧差。 6.像散--同心圆像与放射线像的成像点不一致 通过透镜所成像的一端仔细观察,会发现竖线(放射状)和横线(同心圆状)的聚焦位置不

机器视觉创新综合试验

机器视觉创新综合实验 一、介绍: 机器视觉系统的特点是提高生产的自动化程度。在一些不适合人工作的危险环境下或者人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量生产过程中,人工视觉检测产品效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和自动化程度。在现代化生产中,人们广泛的将机器视觉系统广泛地用于工况监测、成品检验和质量控制等领域。本实验模拟机器视觉系统在生产实践中的多种应用,深化同学对机器视觉系统的认识。 二、涉及内容: 光电检测、信息光学、数字图像处理 三、实验原理 (1)机器视觉系统的基本构成及工作原理: 一个典型的工业机器视觉系统包括:光源、镜头、相机(包括CCD 相机和COMS相机)、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯/ 输入输出单元等。 1)照明系统 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。 2)图像传感系统 机器视觉的图像传感器一般包括三个部分:镜头,摄像机,图形采集卡。一般来说,图像传感器实施对景物图像的采集;图形采集卡承担着对摄像机所采集图像的前置处理任务,是图像传感器与主处理器之间的链接“桥梁”。 3)图像处理系统 机器视觉系统的图像处理系统软件主要包括计算机操作系统及其应用软件、图像处理算法软件、控制软件等。其中,图像处理算法软件是机器视觉系统中最为关键的软件,因为它反映出对不同被测对象图像特征检测的核心思想(数学模型)。实际上图像处理算法的涉及范围十分广阔,根据应用目的的不同,可包括摄像机标定算法、图像输入处理、图像滤波、边缘检测、特征提取、图像匹配、深度识别。 (2)图像采集设备的研究 1)、远心光路 远心光路就是孔径光阑位于光学系统焦点处的光路。

相关文档
最新文档