平板变压器设计详解

平板变压器设计详解
平板变压器设计详解

Design of Planar

Po wer T ransfo rmers

Contents

Introduction 3

Design procedure4

Design examples

-flyback8

-forward 10

Formulas13

Layer design14

1

Ferroxcube

Exploded view of a planar transformer

2

Ferroxcube

3 Ferroxcube

T able 1: Fit parameters to calculate the power loss density

4

Ferroxcube

3. Determination of temperature rise in the PCB caused by the currents

The final step is to check the temperature rise in the copper tracks induced by the currents. For this purpose the effective (= RMS) currents have to be calculated from the input data and desired output. The calculation method depends on the topology used. In the design examples this is shown for a conventional standard forward and flyback converter topology. An example of relations between the RMS currents and induced temperature rises for various cross sections of conductors in PCBs is shown in fig. 2. For single conductor applications or inductors which are not too closely spaced this chart can be used directly for determining conductor widths, conductor thickness, cross sectional areas and allowed maximum currents for various preset values of the temperature rise.

Note:

For groups of similar parallel inductors, if closely spaced, the temperature rise may be found by using an equivalent cross section and equivalent current. The equivalent cross section is the sum of the cross sections

of the parallel conductors and the equivalent current is the sum of the currents in the inductor.

A shortcoming in this design approach is that the induced heat in the windings is assumed to be caused by a DC current while in reality there is an AC current causing skin effect and proximity effect.

The skin effect is the result of the magnetic field inside a conductor generated by the conductors own current. Fast current changes (high frequency) induce alternating fluxes which cause eddy currents. These eddy currents which add to the main current are opposite to the direction of the main current. The current is cancelled out in the centre of the conductor and moves towards the surface. The current density decreases exponentially from the surface towards the centre.The skin depth δ is the distance from the conductor surface towards the centre over which the current density has reduced by a factor of 1/e. The skin depth depends on material properties as conductivity and permeability and is inversely proportional to the square root of the frequency. For copper at 60 °C the skin depth can be approximated by: δ(μm) = 2230/(f [kHz])1/2 .

When the conductor width (w t ) is taken smaller than 2δ, the contribution of this effect will be limited.This means a track width of <200 μm for a frequency of 500 kHz.

If there is more winding width b w available for the concerned number of turns, the best solution from the magnetic point of view would be to split them up in parallel tracks.

In practical situations there will be eddy current effects in the conductor not only due to the alternating field of its own current (skin effect) but also due to the fields of other conductors in the vicinity. This effect is called

the proximity effect. When the primary and secondary layers are sandwiched this effect will be strongly decreased. Reason is that the primary and secondary currents flow

in opposite directions so that their magnetic fields will cancel out. However there will still be a contribution to the proximity effect of the neighbouring conductors in the same layer.

Empirical tool

Temperature measurements on several designs of multilayer PCBs with AC currents supplied to the windings, show with reasonable accuracy that up to 1MHz each increase

of 100 kHz in frequency gives 2 °C extra in temperature rise of the PCB compared to the values determined for DC currents.

Ferroxcube

6

Fig.2 Relation between current, dimensions of tracks in PCBs and temperature rise.

7

Ferroxcube

8 Ferroxcube

Depending on the heat generated by the currents the Array choice can be made between 35 or 70 μm copper layers. Between primary and secondary layers a distance of 400

μm is required for the mains insulation. An E-PLT 18 combination has a minimum winding window of 1.8.mm. This is sufficient for the 35 μm layer design which results in

a PCB thickness of about 1710 μm.

To achieve a economic design we assumed a spacing

of 300 μm between the tracks. Calculating the track width

for the secondary winding with [5] returns 1.06 mm, inclusive mains insulation.

Looking in fig 2. and using the calculated (see table 2) secondary RMS current of 1.6 A, results in a temperature

rise of 25 °C for the 35 μm layers and approx. 7 °C for

the 70 μm design.

The temperature rise caused by the winding loss is allowed

to be about half the total temperature rise, in this case

17.5 °C. Clearly the 35 μm layers will give a too large temperature rise for an RMS current of 1.6 A and the

70 μm layers will have to be used.

The track widths for the primary winding turns can be calculated with [5] and will be approx. 416 μm. This track width will cause hardly any temperature rise by the primary RMS current of 0.24 A.

Because the frequency is 120 kHz, 2 °C extra temperature

rise of the PCB is expected compared to the DC current situation. The total temperature rise of the PCB caused by

the currents only will remain below 10 °C.

This design with 6 layers of 70 μm Cu tracks should

function within its specification. The nominal thickness

of the PCB will be about 1920 μm which means that a standard planar E-PLT18 combination cannot be used.

The standard E-E18 combination with a winding window

of 3.6 mm is usable. However its winding window is excessive, so a customized core shape with a winding

window of approximately 2 mm would be a more elegant solution.

Measurements on a comparable design with an E-E core combination in 3C90 material showed a total temperature

rise of 28 °C. This is in line with a calculated contribution

of 17.5 °C temperature rise from the core losses and 10 °C caused by winding losses.

The coupling between primary and secondary is good because the leakage inductance turns out to be only

0.6 % of the primary inductance.

9

Ferroxcube

References

1. Mulder S.A., 1990

Application note on the design of low profile high frequency transformers, Ferroxcube Components.

2. Mulder S.A.,1994

Loss formulas for power ferrites and their use in transformer design,Philips Components.

3. Durbaum Th, Albach M, 1995

Core losses in transformers with an arbitrary shape of the magnetizing current.1995 EPE Sevilla.

4. Brockmeyer A., 1995

Experimental Evaluation of the influence of DC premagnetization on the properties of power electronic ferrites, Aachen University of T echnology

5. Ferroxcube Components technical note, 1996

25 Watt DC/DC converter using integrated Planar Magnetics.(9398 236 26011)

12

Ferroxcube

Ferroxcube

13

Appendix 1: Formulas used for the calculations of the design

formulas for flyback transformers formulas for forward transformers

Appendix 2: Layer design for the planar E 14 forward transformer

14

Ferroxcube

Top view of the example multilayer PCB

15

Ferroxcube

变压器设计基础知识

变压器基础知识 第一章变压器的概述

一. 变压器的用途 在各种电气设备中,往往需要不同的电压电源。如我们日常生活的照明用电,家用电器的电压一般都为220V,而各种动力的电压是380V,而线路的电压一般为:6、10、35、110、220、500KV的电压。 这些称为供电系统。3KV以上的称为高压系统。现代化的工业,广泛采用了电力为能源。电能是由水电站、发电厂的发电机转化来的,发电机所发送来的电力根据输电距离将按照不同的电压等级传输出去,这种传输需一种特殊的专门设备。这种设备就是我们熟悉的电力变压器。 变压器在输配电系统中有着很重要的地位,要求它能安全可靠的运行。当变压器出现故障或损坏,将造成大面积的停电。随着技术的发展,工农业生产需要,变压器在很多的领域也广泛的应用。如,根据需要配套的冶炼用的电炉变压器、电解化工用的整流电压器、铁路电力机车用的牵引变压器……等很多。 二. 变压器的分类 按用途分类: 2.1电力变压器:这是目前工农业生产上广泛使用的变压器,它主要用途是为了输配电系统上使用的 变压器。目前电力变压器形成了系列,已经大批量生产。 按容量和电压等级分成以下类别: Ⅰ、Ⅱ类 10~630 KVA Ⅲ类 800~6300 KVA Ⅳ类 8000~63000 KVA Ⅴ类 63000 KVA以上 按电压所用和发电厂的用途不同可分为: 1.降压变压器; 2.升压变压器; 3.其中低压为400伏的降压变压器称为配电变压器。 电能的输配电过程 首先发电厂发电机发出电能,电压一般是6.3或10.5KV,这样低的电压要输送几百公里以外的 地区是不可能的。所以要将电压升高到38.5、121、242、500KV以后再输出去。这样高的电压到 (把电压降为38.5或110KV)和二次变电所(降为10.5或6.3KV)供电区域后还要经过一次变电所, 变压,再把电能直接送到用户区,经过附近的配电变压器降压为(一般为400V)以供工厂或住户 使用。 2.2电炉变压器:

变压器教学设计

第四节《变压器》教学设计一、教学思路 “变压器”的教学围绕“变压器为什么能改变电压”变压器是怎样改变电压、电流等问题为线索来展开教学过程,采用定性分析和定量相结合,理论推导和实验验证相结合的方法,先使学生理解互感现象,再通过学生探究活动,验证电压与匝数的关系,邂逅通过法拉第电磁感应定推导出电压与线圈匝数之间存在的关系。 教材分析:教材是落实课程标准、实现教学目标的重要载体,新教材的特点之一是“具有基础性、丰富性和开放性。”即学习内容是基础而丰富的,呈现形式是丰富而开放的。本节教材配有小实验,思考与讨论,简明扼要的文字说明,贴近生活的图片生动而形象,开阔眼界的科学漫步。教材对变压器原理的表述比较浅,在处理时要将这部分内容情境化,将静态知识动态化,利于学生理解透彻。? 学生分析:学生通过前面《电磁感应》整章的学习,已经对磁生电以及涡旋电流有了基本的掌握,在《交流电?》前两节的学习,对交流电的特点也比较清楚,已经基本具备了学习变压器这一节内容的必备知识。但对变压器原线圈两端的电压与原线圈产生的电动势大小关系这一知识点比较欠缺,在教学中需作出补充提示。? 二、教学目标 1、知识与技能: 1)知道变压器的基本构造 2)理解变压器的工作原理 3)探究并应用变压器的各种规律 2、?过程与方法: 1)能熟练应用控制变量法解决多变量问题 2)进一步掌握科学探究的一般思路 3、?情感态度与价值观: 1)通过实验探究,体会科学探索的过程,激发探究物理规律的兴趣 2)通过真实操作和记录,获得团队合作精神的体验和实事求是的科学态度 三、教学重难点 教学重点:变压器工作原理及工作规律. 教学难点:(l)理解副线圈两端的电压为交变电压. (2)推导变压器原副线圈电流与匝数关系. (3)掌握公式中各物理量所表示对象的含义. 重难点的突破措施: (l)通过演示实验来研究变压器工作规律使学生能在实验基础上建立规律. (2)通过理想化模型建立及理论推导得出通过原副线圈电流与匝数间的关系. (3)通过运用变压器工作规律的公式来解题使学生从实践中理解公式各物理量的含义. 四、教学媒体 变压器模型、学生电源、闭合铁芯、小灯泡、导线、多媒体等 五、教学过程 (一)知识回顾: 1、什么是互感现象?

变压器基础性知识

单选题 基础知识 1、变压器绕组匝间绝缘属于()。 A.主绝缘 B.纵绝缘 C.横向绝缘 D.外绝缘 答案:B 2、电源频率增加一倍,变压器绕组的感应电动势()(电源电压不变为前提)。 A.增加一倍 B.不变 C.是原来的1/2 D.略有增加 答案:A 3、变压器调整电压的分接引线一般从(C)引出。 A.一次侧绕组 B.低压绕组 C.高压绕组 主要原因是高压侧电流较小,分接开关或引出线可以节省体积和材料,通过相应的变比达到调节低压侧电压的目地 4、变压器的高压绕组的电流一定(C)低压绕组电流。 A.大于B等于 C.小于 5、变压器二次绕组短路,一次绕组施加电压使其电流达到(C)时,此时所施加的电压称为阻抗电压。 A.最大值 B.最小值 C.额定值

6.变压器一次绕组一般用绝缘纸包的(B)或铝线绕制而成。 A、绝缘 B.铜线 C.硅钢片D那种都行 7、变压器稳定升温的大小与(A)相关。 A.变压器的损耗和散热能力等 B.变压器周围环境温度 C.变压器绕组排列方式 8、升压变压器,一次绕组的每匝电势(A)二次绕组的每匝电势。 A.等于 B.大于C小于 9、在变压器中同时和一次绕组、二次绕组相交链的磁通称为(A) A.主磁通 B.漏磁通C无法确定 10、变压器二次绕组短路,一次绕组施加电压使其电流达到额定值时,变压器从电源吸取的功率称为(A ) A短路损耗 B.开路损耗C空载损耗 D.负载损耗 1、电力系统一般事故备用容量约为系统最大负荷的()。 A.2%~5% B.3%~5% C.5%~10% D.5%~8% 答案:C 2、额定电压为1kVA以上的变压器绕组,在测量绝缘电阻时,必须用()。A.1000V兆欧表 B.2500V兆欧表 C.500V兆欧表 D.200V兆欧表 答案:B

变压器基础知识

变压器原理、质量等基础知识 作者:未知????文章来源:未知????点击数:669????更新时间:2008-2-14 变压器的基本原理??????? ??? 变压器是利用线圈互感特性构成的一种元器件,几乎在所有的电子产品中都要用到。它原理简单,但根据不同的使用场合(不同的用途),变压器的绕制工艺会有所不同。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等。它是由一个初级线圈(线圈圈数n1)及一个次级线圈(线圈圈数n2)环绕着一个核心。常用的铁心形状一般有E型和C型。 ?

???????E1是初级电压,次级电压E2是? E2 = E1×(n2/n1)??????? ??? 上图是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。??????? ??? 如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2 所抵消的那部分磁通,以保持铁心里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。???????? ??? 下图是各种变压器的电路符号,从变压器的电路符号可以看出变压器的线圈结构。 ? ?

变压器基础知识

变压器基础知识有哪些 变压器基础知识有哪些 第一章:通用部分 1.1 什么是变压器? 答:变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。 1.2 什么是局部放电? 答:局部放电是指高压电器中的绝缘介质在高压电的作用下,发生在电极之间但未贯通的放电。 1.3 局放试验的目的是什么? 答:发现设备结构和制造工艺的缺陷,例如:绝缘内部局放电场过高,金属部件有尖角;绝缘混入杂质或局部带有缺陷,防止局部放电对绝缘造成损坏。 1.4 什么是铁损? 答:变压器的铁损又叫空载损耗,它属于励磁损耗而与负载无关,它不随负载大小而变化,只要加上励磁电压后就存在,它的大小仅随电压波动而略有变化。包括铁心材料的磁滞损耗、涡流损耗以及附加损耗三部分。 1.5 什么是铜损? 答:负载损耗又称铜损,它是指在变压器一对绕组中,一个绕组流经

额定电流,另一个绕组短路,其他绕组开路时,在额定频率及参考温度下,所汲取的功率。 1.6 什么是高压首端? 答:与高压中部出头连接的2至3个饼,及附近的纸板、相间隔板等叫做高压首端(强调电气连接)。 1.7 什么是高压首头? 答:普通220kV变压器高压线圈中部出头一直到高压佛手叫做高压首头(强调空间位置)。 1.8 什么是主绝缘?它包括哪些内容? 答:主绝缘是指绕组(或引线)对地(如对铁轭及芯柱)、对其他绕组(或引线)之间的绝缘。 它包括:同柱各线圈间绝缘、距铁心柱和铁轭的绝缘、各相之间的绝缘、线圈与油箱的绝缘、引线距接地部分的绝缘、引线与其他线圈的绝缘、分接开关距地或其他线圈的绝缘、异相触头间的绝缘。 1.9 什么是纵绝缘?它包括哪些内容? 答:纵绝缘是指同一绕组上各点(线匝、线饼、层间)之间或其相应引线之间以及分接开关各部分之间的绝缘。 它包括:桶式线圈的层间绝缘、饼式线圈的段间绝缘、导线线匝的匝间绝缘、同线圈引线间的绝缘、分接开关同触头间的绝缘。 1.10 高压试验有哪些?分别考核重点是什么? 答:高压试验包含空载试验、负载试验、外施耐压试验、感应耐压试验、局部放电试验、雷电冲击试验。

变压器UL知识

—基本安规知识的普及基本内容 一.简述安规作用 二.涉及变压器安规的几个概念和问题 三.变压器的几种常规安规设计 四. 申请安规,及安规厂检注意事项 一.简述安规作用 Ⅰ.设立安规的意义 ⑴防人身触电;⑵防人身受过高温危害;⑶防人身受辐射危害;⑷防人身受爆炸危害;⑸防人身受机械不稳定和运动部件危害;⑹防火。 Ⅱ.安规的作用 ⑴它是为保障因为器件的漏电或起火而引起对人身安全和财物安全造成的危害; ⑵它是出入各国境内的通行证; ⑶它是一个产品的质量认证。 Ⅲ.安规标准.标志的认识 ⑴国内. CQC自愿认证.GB8898. GB4943.(开关电源) 我公司过的CQC:BCK-35 ,BCK40,BCK-28 ,BCK-42E系列 ⑵境外. UL. TUV. VDE.CE.CSA认证 UL1411 –UL1423 ,EN61558,EN60950(开关电源) E211706,E233230(BCK42E894B) GS安全认证由德国TUV. VDE机构颁发.(自愿) CE安全认证由欧盟机构颁发.(强制) 二.涉及变压器安规的几个概念和问题 Ⅰ.安规中常见的几个概念 ⑴空间距离 creepage

在两个导电组件之间或是导电组件与物体界面之间经由空气分离测得最短直线距离; ⑵爬电距离 clearance distance 沿绝缘表面测得两个导电组件之间或是导电组件与物体界面之间的最短距离. ⑶基本绝缘 basic insulation 是指为对触电进行基本防护而对带电件所加的绝缘。 ⑷附加绝缘 supplementary insulation 是指对基本绝缘所添增的独立绝缘,但基本绝缘一旦失效仍能防止触电。 ⑸双重绝缘 double insulation 是指包括基本绝缘和附加绝缘的绝缘。 ⑹加强绝缘 reinforced insulation 是指对带电件所加的单独绝缘系统,其防触电等级相当于双重绝缘。 ⑺绝缘系统 insulation system 它是一套独特的物料组合。它在指定限制温度以下使用时,不会因热力降解而导致过早失效。 UL1446绝缘系统—我公司申请的绝缘系统:E211706 UL1446共有5个温度等级:ClassB,ClassF,ClassH,ClassN,ClassR. 130℃, 155℃, 180℃, 200℃, 220℃ E211706包含两个等级:130 ℃,155 ℃ ⑻可触及件 accessible part 是指做标准实验能触及部分 ⑼带电件 live part 是指与其接触可能引起明显触电的部分 ⑽Ⅰ类设备 class Ⅰ apparatus

变压器知识培训学习资料

变压器知识培训 变压器概述 变压器是利电磁感应原理传输电能和电信号的器件,它具有变压,变流,变阻抗的作用。变压器种类很多,应用也十分广泛,例如在电力系统中用电力变压器把发电机发出的电压升高后进行远离输电,到达目的地后再用变压器把电压降低以便用户使用,以此减少运输过程中电能的损耗。 变压器的工作原理 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的一侧叫一次侧,一次侧的绕组叫一次绕组,把变压器接负载的一侧叫二次侧,二次侧的绕组叫二次绕组。 变压器是变换交流电压、电流和阻抗的器件,一次线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使二次级线圈中感应出电压(或电流)。 变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器设备。 型号说明:

一、变压器的制作原理: 在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。 二、分类 按容量分类:中小型变压器(35KV及以下,容量在5-6300KVA)、大型变压器(110KV及以下容量为8000-63000KVA)、特大型变压器(220KV以上)。 按用途分类:电力变压器(升压变、降压变、配电变、联络变、厂用或电所用等)、仪用变压器(电流互感器、电压互感器等用于测量和保护用)、电炉变压器、试验变压器、整流变压器、调压变压器、矿用变压器、其它变压器。 按冷却价质分类:干式(自冷)变压器、油浸(自冷)变压器、气体(SF6)变压器。 按冷却方式分类:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫油循环水冷式、蒸发冷却式。

变压器的基础知识

变压器的基础知识 一、变压器: 就是一种静止的电机,它利用电磁感应原理将一种电压、电流的交流电能转换成同频率的另一种电压、电流的电能。换句话说,变压器就就是实现电能在不同等级之间进行转换。 二、结构: 铁心与绕组:变压器中最主要的部件,她们构成了变压器的器身。 铁心:构成了变压器的磁路,同时又就是套装绕组的骨架。铁心由铁心柱与铁轭两部分构成。铁心柱上套绕组,铁轭将铁心柱连接起来形成闭合磁路。 铁心材料:为了提高磁路的导磁性能,减少铁心中的磁滞、涡流损耗,铁心一般用高磁导率的磁性材料——硅钢片叠成。硅钢片有热轧与冷轧两种,其厚度为0、35~0、5mm,两面涂以厚0、02~0、23mm的漆膜,使片与片之间绝缘。 绕组:绕组就是变压器的电路部分,它由铜或铝绝缘导线绕制而成。 一次绕组(原绕组):输入电能 二次绕组(副绕组):输出电能 她们通常套装在同一个心柱上,一次与二次绕组具有不同的匝数,通过电磁感应作用,一次绕组的电能就可传递到二次绕组,且使一、二次绕组具有不同的电压与电流。 其中,两个绕组中,电压较高的我们称为高压绕组,相应的电压较低的称为低压绕组。从高、低压绕组的相对位置来瞧,变压器的绕组又可分为同心式、交迭式。由于同心式绕组结构简单,制造方便,所以,国产的均采用这种结构,交迭式主要用于特种变压器中。 其她部件:除器身外,典型的油锓电力变压器中还有油箱、变压器油、绝缘套管及继电保护装置等部件。 三、额定值 额定值就是制造厂对变压器在指定工作条件下运行时所规定的一些量值。额定值通常标注在变压器的铭牌上。变压器的额定值主要有: 1、额定容量S N

额定容量就是指额定运行时的视在功率。以 V A 、kV A 或MV A 表示。由于变压器的效率很高,通常一、二次侧的额定容量设计成相等。 2、额定电压U 1N 与U 2N 正常运行时规定加在一次侧的端电压称为变压器一次侧的额定电压U 1N 。二次侧的额定电压U 2N 就是指变压器一次侧加额定电压时二次侧的空载电压。额定电压以V 或kV 表示。对三相变压器,额定电压就是指线电压。 3、额定电流I 1N 与I 2N 根据额定容量与额定电压计算出的线电流,称为额定电流,以A 表示。 对单相变压器 N N N U S I 11=; N N N U S I 22= 对三相变压器 N N N U S I 113=;N N N U S I 223= 4、额定频率 f N 除额定值外,变压器的相数、绕组连接方式及联结组别、短路电压、运行方式与冷却方式等均标注在铭牌上。额定状态就是电机的理想工作状态,具有优良的性能,可长期工作。 四、变压器的空载运行

变压器基础知识初级

变压器基础知识(初级) 一、变压器原理及分类 1.原理:变压器是借助于电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输电能的一种静止电器。其基本原理是电磁感应原理,即“电生磁,磁生电”的一种具体应用。 2.分类: 电力变压器——用于输配电系统 按用途分 特种变压器——用于特殊用途的变压器 1.升压变压器:把发电机电压升高 2.降压变压器:把输电电压降低 3.联络变压器:联接几个不同电压等级电力变压器又分为的系统

4.配电变压器:把电压降到用户所需电压 5.厂用变压器:供发电厂本身用电 特种变压器:整流变压器,电炉变压器等。 3.符号含义:

□□□□□□□□-□/□□-防护代号(一般不标,TH-湿热,TA-干热) 高压绕组额定电压等级(kV) 额定容量(kVA) 设计序号(1、2、3……;半铜半铝加b) 调压方式(无励磁调压不标,Z-有载调压) 导线材质(铜线不标,L-铝线) 绕组数(双绕组不标,S-三绕组,F-双分裂绕 组) 循环方式(自然循环不标,P-强迫循环) 冷却方式(J-油浸自冷,亦可不标,G-干式空 气自冷,C-干式浇注绝缘, F-油浸风冷,S-油水冷)

相数(D-单相,S-三相) 绕组耦合方式(一般不标,O-自耦) 4.油浸变压器(电力)的基本组成: 变压器主要由下列部分组成: 铁心 器身绕组 引线和绝缘 油箱本体(箱盖、箱壁和箱底或上、下节变压器油箱油箱) 油箱附件(放油阀门) 调压装置——无励磁分接开关或有载分接开关 保护装置——储油柜、油位计、安全气道、吸湿 器、油温元件、净油器、气体继电器等 出线装置高、中、低压套管、电缆出线等 二、组件 1.压力释放阀 1.1用途及工作特点 压力释放阀是用来保护油浸电气设备,例如变压器、高压开关、电容器、有载分接开关等的安全装置,可以避免油箱变形或爆裂。

平面变压器的设计原理及其应用

平面变压器的应用 1 概述 目前,电力电子技术的应用十分广泛。如:航空航天电源,舰载电源,雷达电源,通讯电源,电动机车-汽车电源,计算机-集成芯片电源,高频加热-照明电源,变频器,逆变器和各种AC/DC,DC/DC变换器等。而且应用的水平和对电源性能提出的要求不断提高。比如:高频开关电源的功率密度要求越来越高,成为当前主要研究课题。 功率磁性元件是所有电力电子装置中必不可少的关键器件,其体积和重量一般占到整个电路的20%到30%,磁性元件的损耗占到总损耗的30%左右,且磁性元件的各项参数对电路的性能影响很大。从目前看来,磁性元件无论在研究上,还是在应用上都已成为电力电子际踅 徊椒⒄沟钠烤保 谀持殖潭壬现苯佑跋炝说缌Φ缱蛹际醯姆⒄埂R虼耍 愿咂担 吖β拭芏群吞厥馔庑谓峁沟拇判栽 难芯浚 ⑹鞘 种匾 摹1热纾捍判栽 钠矫* 旌霞 苫 取? 目前来看,以铁氧体为磁芯的平面变压器体积小,功率密度大,将在较大功率的模块电源中发挥主要作用,成为主流产品,可在电力电子技术的领域大力推广和广泛应用,在某种程度上可以推动电力电子技术的发展。 2 平面变压器的优势 平面变压器与常规变压器相比,磁芯尺寸大幅度缩小,特别是高度缩小最大。这一特色对电源设备中在空间受到严格限制的场合下具有相当大的吸引力,从而可成为许多电源设备中首选的磁性元件。平面变压器结构上的优势,也为它的电气特性带来了许多优点:功率密度高,效率高,漏感低,散热性好,成本低等。详见下表:

3 制造方式 1、线绕式平面变压器:这种绕组方式与常规变压器的绕制方式一样,适合于高频,高压变压器的制造。 2、铜箔式平面变压器:这种方式是用铜箔作绕组,折叠成多层线圈。适合于制造低压,大电流的变压器。 3、多层印制板式平面变压器:这种方式是用印制板的制造工艺,在多层板上形成螺旋式的线圈。适合于制造中,小功率的变压器。 以上三种形式的平面变压器,在现有的机械设备、生产规模和工艺水平下,能很方便地制造出来。所以,大力推广平面变压器的开发和应用,具有特别的实际意义。 4、多元化的开发与应用 1、并联组合形式:因平面变压器铁芯扁平,所以很容易用两个,四个或八个铁芯合成来实

变压器基础知识

变压器基础知识 1、什么叫变压器? 在交流电路中,将电压升高或降低的设备叫变压器,变压器能把任一数值的电压转变成频率相同的我们所需的电压值,以满足电能的输送,分配和使用要求。 例如发电厂发出来的电,电压等级较低,必须把电压升高才能输送到较远的用电区,用电区又必须通过降压变成适用的电压等级,供给动力设备及日常用电设备使用。 2、变压器是怎样变换电压的? 变压器是根据电磁感应制成的。它由一个用硅钢片(或矽钢片)叠成的铁芯和绕在铁芯上的两组线圈构成,铁芯与线圈间彼此相互绝缘,没有任何电的联系。 将变压器和电源一侧连接的线圈叫初级线圈(或叫原边),把变压器和用电设备连接的线圈叫作次级线圈(或副边)。当将变压器的初级线圈接到交流电源上时,铁芯中就会产生变化的磁力线。 由于次级线圈绕在同一铁芯上,磁力线切割次级线圈,次级线圈上必然产生感应电动势,使线圈两端出现电压。因磁力线是交变的,所以次级线圈的电压也是交变的。而且频率与电源频率完全相同。 经理论证实,变压器初级线圈与次级线圈电压比和初级线圈与次级线圈的匝数比值有关,可用下式表示:初级线圈电压/次级线圈电压=初级线圈匝数/次级线圈匝数 说明匝数越多,电压就越高。因此可以看出,次级线圈比初级线圈少,就是降压变压器。相反则为升压变压器。 3、变压器设计有哪些类型? 按相数分有单相和三相变压器 按用途分有电力变压器,专用电源变压器,调压变压器,测量变压器(电压互感器、电流互感器),小型电源变压器(用于小功率设备),安全变压器.

按结构分有芯式和壳式两种。线圈有双绕组和多绕组,自耦变压器。 按冷却方式分有油浸式和空气冷却式。 4、变压器部件是由哪些部分组成的? 变压器部件主要是由铁芯、线圈组成,此外还有油箱、油枕、绝缘套管及分接开头等。 5、变压器油有什么用处? 变压器油的作用是: (1)、绝缘作用 (2)、散热作用 (3)、消灭电弧作用 6、什么是自耦变压器? 自耦变压器只有一组线圈,次级线圈是从初级线圈抽头出来的,它的电能传递,除了有电磁感应传递外,还有电的传送,这种变压器硅钢片和铜线数量比一般变压器要少,常用作调节电压。 7、调压器是怎样调压的? 调压器的构造与自耦变压器相同,只是将铁芯作成环形线圈就绕在环形铁芯上。

电力基础知识最新版

一、名词解释: 1、三相交流电:由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统,叫三相交流电。 2、一次设备:直接与生产电能和输配电有关的设备称为一次设备。包括各种高压断路器、隔离开关、母线、电力电缆、电压互感器、电流互感器、电抗器、避雷器、消弧线圈、并联电容器及高压熔断器等。3、二次设备:对一次设备进行监视、测量、操纵控制和保护作用的辅助设备。如各种继电器、信号装置、测量仪表、录波记录装置以及遥测、遥信装置和各种控制电缆、小母线等。 4、高压断路器:又称高压开关,它不仅可以切断或闭合高压电路中的空载电流和负荷电流,而且当系统发生故障时,通过继电保护装置的作用,切断过负荷电流和短路电流。它具有相当完善的灭弧结构和足够的断流能力。 5、负荷开关:负荷开关的构造秘隔离开关相似,只是加装了简单的灭弧装置。它也是有一个明显的断开点,有一定的断流能力,可以带负荷操作,但不能直接断开短路电流,如果需要,要依靠与它串接的高压熔断器来实现。 6、空气断路器(自动开关):是用手动(或电动)合闸,用锁扣保持合闸位置,由脱扣机构作用于跳闸并具有灭弧装置的低压开关,目前被广泛用于500V 以下的交、直流装置中,当电路内发生过负荷、短路、电压降低或消失时,能自动切断电路。 7、电缆:由芯线(导电部分)、外加绝缘层和保护层三部分组成的电

线称为电缆。 8、母线:电气母线是汇集和分配电能的通路设备,它决定了配电装置设备的数量,并表明以什么方式来连接发电机、变压器和线路,以及怎样与系统连接来完成输配电任务。 9、电流互感器:又称仪用变流器,是一种将大电流变成小电流的仪器。 10 、变压器:一种静止的电气设备,是用来将某一数值的交流电压变成频率相同的另一种或几种数值不同的交流电压的设备。 11 、高压验电笔:用来检查高压网络变配电设备、架空线、电缆是否带电的工具。 12 、接地线:是为了在已停电的设备和线路上意外地出现电压时保证工作人员的重要工具。按部颁规定,接地线必须是25mm 2 以上裸铜软线制成。 13 、标示牌:用来警告人们不得接近设备和带电部分,指示为工作人员准备的工作地点,提醒采取安全措施,以及禁止微量某设备或某段线路合闸通电的通告示牌。可分为警告类、允许类、提示类和禁止在等。 14 、遮栏:为防止工作人员无意碰到带电设备部分而装设备的屏护,分临时遮栏和常设遮栏两种。 15 、绝缘棒:又称令克棒、绝缘拉杆、操作杆等。绝缘棒由工作头、绝缘杆和握柄三部分构成。它供在闭合或位开高压隔离开关,装拆携带式接地线,以及进行测量和试验时使用。 16 、跨步电压:如果地面上水平距离为0.8m 的两点之间有电位差,

变压器的设计

目录 目录_________________________________________________________________________ 1摘要_____________________________________________________________________ 2 一、变压器的基本结构 ________________________________________________________ 3 二、变压器的工作原理________________________________________________________ 4 1.电压变换_______________________________________________________________ 4 2.电流变换_______________________________________________________________ 5 三、设计内容________________________________________________________________ 5 1、额定容量的确定 _______________________________________________________ 5 2、铁心尺寸的选定_______________________________________________________ 6 3、计算绕组线圈匝数______________________________________________________ 8 4、计算各绕组导线的直径并选择导线________________________________________ 9 5、计算绕组的总尺寸,核算铁芯窗口的面积_________________________________ 10四设计实例________________________________________________________________ 11 4.1 设计要求 ____________________________________________________________ 11 4.2计算变压器参数_______________________________________________________ 12五总结_____________________________________________________________________ 15参考文献____________________________________________________________________ 15附录

变压器基本工作基础学习知识原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ -=22 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。

三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。

变压器设计

应用领域: ?逆变焊机电源 ?通讯电源 ?高频感应加热电源 ? UPS电源 ?激光电源 ?电解电镀电源 性能特点: ?高饱和磁感应强度----有效缩小变压器体积 ?高导磁率、低矫顽力-提高变压器效率、减小激磁功率、降低铜损 ?低损耗-降低变压器的温升 ?优良的温度稳定性-可在-55~130℃长期工作 铁基纳米晶铁芯与铁氧体铁芯基本磁性能对比 纳米晶铁芯铁氧体铁芯 基本参数 饱和磁感强度Bs 1.25T 0.5 剩余磁感Br(20KHz) <0.20 0.2 铁损(20KHz/0.2T)(W/Kg) <3.4 7.5 铁损(20KHz/0.5T)(W/Kg) <30 — 铁损(50KHz/0.3T)(W/Kg) <40 — 磁导率(20KHz)(Gs/Oe) >20,000 2,000 矫顽力Hc(A/m) <1.60 6 饱和磁致伸缩系数(×10-6) <2 4 电阻率(μΩ.cm) 80 106 居里温度(℃) 560 <200 铁芯叠片系数 >0.70 — 纳米晶主变铁芯一代产品 安泰非晶生产的第一代逆变主变压器铁芯,带材厚度30μm,适合20KHz条件下工作。磁芯设计最大功率=重量最小值x10

产品规格 铁芯尺寸保护盒尺寸 有效截面 积 磁路长 度 重量最小 值 建议适用焊机 电流 od(mm) id (mm) ht(mm) OD (mm) ID (mm) HT (mm) (cm2) (cm) (g)(A) ONL-503220 50 32 20 53 28 23 1.35 12.8 125 120, 140, 160 ONL-644020 64 40 20 66 37 23 1.68 16.3 200 160, 180 ONL-704020 70 40 20 73 38 24 2.16 17.3 270 180, 200 ONL-704025 70 40 25 72 37 28 2.63 17.3 330 180, 200 ONL-755025 * 75 50 25 77 47 28 2.19 19.6 310 180, 200 ONL-805020 80 50 20 82 46 23 2.1 20.4 300 160, 180, 200 ONL-805 025 80 50 25 85 44 30 2.63 20.4 390 200, 250, 300 ONL-1006020 100 60 20 105 56 23 2.8 25.1 510 315, 350, 400 ONL-1056030 105 60 30 110 56 35 5.06 25.9 945 315, 350, 400 ONL-1206030 120 60 30 125 57 35 6.3 28.3 1280 400, 500, 630 ONL-1206040 * 120 60 40 125 57 45 8.4 28.3 1710 500, 630 ONL-1207020 120 70 20 125 67 25 3.5 29.8 750 350, 400, 500 ONL-1207025 120 70 25 125 67 30 4.38 29.8 940 315, 350, 400 ONL-1207030 120 70 30 125 67 35 5.25 29.8 1130 500, 630, 800 ONL-1207040 * 120 70 40 125 67 45 7 29.8 1500 500, 630, 800, ONL-1308040 130 80 40 136 76 45 7 33 1660 500, 630, 800 ONL-17011050 * 170 110 5 0 176 104 56 10.5 43.96 3320 1000, 1250, 1600 注:可以根据用户要求提供其它规格的铁芯。 纳米晶主变铁芯二代产品 相比一代逆变主变压器铁芯,二代铁芯减小了发热量,在同等工作条件可以选择更加小型化的铁芯,满足焊机行业轻量化、小型化的发展要求。

网络变压器和连接器的设计及应用

《网络变压器设计原理和连接器应用》 连康科技有限公司培训教材 编制:宋迁审核:核准:

简介 A.变压器的最基本型式包括两组,绕有导线之线圈,并且彼此以电感方式耦合一起,当一交流 电流(具有某一己知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之 交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度,变压器区分为升压与降压 变压器两种,大部分的变压器均有固定的铁芯,其上绕有一次与二次的线圈. 变压器之主要构造可分为下述三项: ①铁芯由:铁钴、镍等合金之导磁材料构成,作为导磁回路籍以增强电磁感应作用,提高变压 器之电磁转换效率. ②线圈:以铜铝及其合金作成导电回路,围绕于铁芯之上,用来传送输入及输出之电流. ③绝缘物:包含各种固态、液态及汽态之不导电绝缘材料.如纸,纱,漆,陶瓷,树脂及 N2,CO2,SF6 等汽体.用以支持隔离导电回路及协助散热,冷却. 2.变压器分类: 依频率分为:①高频变压器②低频变压器③音频变压器 . 依材料分为:①矽钢片变压器②镍钢片变压器③IRON POWER变压器④KOOL变压器⑤ 矽钢卷变压器⑥Ferrite变压器. 依功能分为:①低频电源变压器②高压变压器③线性滤波器④镇流器⑤高频电源 变压器⑥电流变压器⑦DC/AC逆交变压器⑧网络变压器⑨通讯变压器⑩通信 变压器 (11)匹配变压器. 在通讯网络或局域网中,变压器经常被用在电路的物理层部份或模拟部份,主要起隔离、滤 波、阻抗匹配以及倒相作用,优化电路以求信号在传输过程中有最小的损失从而达到最佳的 信号传输效果。 近年来由于网络通讯的飞速发展,网络变压器发展尤为迅速,市场需求量十分巨大,在ISDN、 10/100/1000BASET以太网、ADSL/VDSL、T1/P1上都有大量的使用。 二.变压器的基本工作原理 1.器的基本原理图如(图二),当给变压器初级绕组加上电压Ui时,在该绕组中产生电流 i1,电流i1建立了沿铁芯磁路而闭合的磁通Ф0,该磁通同时也穿过次级绕组,并在次级绕 组中产生感应电动势E2。 按电磁感应定律可得:

变压器基础知识培训教材

变压器基础知识培训教材 第一部分 原材料类 培训资料一 变压器工作原理 一变压器组成 变压器主要由骨架铁芯漆包线绝缘胶带纸等组成其中骨架起支撑作 用铁芯起能量转换桥梁作用漆包线主要用来做绕组绝缘胶带则用来对各绕组之间 的绝缘作保证最简单的变压器应有铁芯和漆包线缺一不可 胶带漆包线 铁芯磁芯 骨架 第1页 二变压器种类 按用途可分为 1电源变压器为电子设备提供电源如整流隔离灯丝等变压器 2音频变压器用于音频放大电路及音响设备中如话筒线间匹配等变压器 3开关电源变压器用于开关电源中的变压器如反激正激半桥正桥等变压 器 4特种变压器主要指具备特殊功能的一些变压器如电力变压器等 按工作频率可分为 1工频变压器指工作频率为50或60HZ的变压器俗称低频变压器

2中频变压器指工作频率为4001000HZ的变压器 3 音频变压器指工作频率在20KHZ 以下的变压器 4 高频变压器指工作频率在20KHZ 以上的变压器 其分类方法有多种如按铁芯结构按相位按绝缘等级按升降压方式等 二变压器工作原理 变压器是把电能从一个电路传递到另一个电路的静止电磁装置 磁力线 初级次级 ui RL 变压器工作原理图 图中与输入电源相连的为初级绕组初级绕组流过交变电流与负载相连的为次级绕组产生的电流同样是交变的 第2页 培训资料二 漆包线 WIRE 一漆包线类别 聚胺基甲酸脂漆包线是以Polyure thane树脂为主体的油脂为绝缘漆膜直铜软化 后表面涂一层或数层绝缘漆并经加工烘干而成其最大的特点是漆包膜在300?以上 时能于短时间内溶解便于直接上锡作业 1 UEW类型直接焊锡容易着色耐温等级有7级分别为 90度--Y级 105度--A级

UC2845的应用和PWM变压器设计说明

VCC 7GND 5REF_5V 8VFB 2Comp 1Isense 3Output 6Rt/Ct 4UC2845D UC2845芯片资料介绍及维修方法和设计汇总 第一节:UC2845D 芯片介绍 ①管脚介绍 Unitrode 公司的UC2845D(D 是贴片)是一种高性能固定频率电流型控制器,包含误差放大器、PWM 比较器、PWM 锁存器、振荡 器、内部基准电源和欠压锁定等单元,其结构图 1脚: 是误差放大器的输出端,外接阻容元件用于改善误差放器的 增益和频率特性。 2脚: 是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准 电压进行比较,产生误差(控制)电压,误差(控制)电压变大,第6 脚输出脉冲变窄,占空比降低,抑制输出电压的增加,从而使输 出电压稳定,而控制脉冲宽度,脉宽越宽,电源输出电压越高, Vref 比较器高低门限为:3.6V/3.4V 。 3脚: 电流检测输入端。在外围电路中,在功率开关管(如Mos 管)的源 极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电 压,此电压送入3脚,控制脉宽。此外,当电源电压异常时,功率开 关管的电流增大,当取样电阻上的电压超过1V 时,缩小脉冲宽度 使电源处于间歇工作状态,UC2845就停止输出,有效地保护了功 率开关管。 4脚: 定时端,内部振荡器的工作频率由外接的阻容时间常数决定, 当上电后,5VDC 通过Rt 电阻给Ct 充电,使④脚电 压近 似线性上升,当电压上升到2.8V 时,在振荡器内部,将定时电容 器CT 上的电压突然放掉,当电压下降到1.4V 时,电压又开始上 升,这样就形成一个锯齿波电压。 UC2845的管脚图

变压器安规规范

规范编码: 版本:V1.0密级: 生效日期:页数:16 变压器安规规范 拟制:___________________日期:__________ 审核:___________________日期:__________ _____________________________________________ 规范化审查:_______________日期:__________ 批准:___________________日期:__________

更改信息登记表 规范名称: 变压器安规规范规范编码: 版本更改原因更改说明更改人更改时间 Ver 1.0新拟制新拟制2000-8-2

1. 目的 规范公司变压器安规设计; 2. 适用范围 公司产品中电网过电压等级为II ,应用环境污染等级为2所有的变压器; 3. 定义 3.1 一次电路 primary circuit 直接与AC 电网电源连接的电路。包括例如:与AC 电网电源连接的装置,变压器的初级绕组 电动机及其它负载装置。 3.2 二次电路 secondary circuit 不与一次电路直接连接,而是由位于设备内的变压器、变换器或等效的隔离装置供电与由电 池供电的一种电路。 3.3 危险电压 hazardous voltage 存在于既不符合限流电路要求也不符合TNV 电路要求的电路中,其交流峰值超过42.4V 或直 流值超过60V 的电压。 3.4 ELV 电路 ELV circuit 在正常工作条件下,在电路的任意两个导体之间或任一导体与地之间电压的交流峰值不超过42.4V 或直流值不超过60V 的二次电路;使用基本绝缘与危险电压隔离,但它既不符合SELV 电路 的全部要求,也不符合限流电路的全部要求。 ELV L N 基本绝缘 <42.4VP ,<60VDC 不能触摸,因基本绝缘有击穿的可能220V~ 3.5 SELV 电路 SELV circuit 作了适当的设计和保护的二次电路,使得在正常条件下和单一故障条件下,它的电压值均不会超过各自对应的安全值。 SELV L N <42.4VP ,<60VDC 能触摸220V~ 双重绝缘 3.6 功能绝缘 functional insulation 仅为设备正常工作所需的绝缘。

相关文档
最新文档