去除干扰蜂鸣音 信号与系统课程设计

去除干扰蜂鸣音 信号与系统课程设计
去除干扰蜂鸣音 信号与系统课程设计

一、课程设计题目

去除干扰蜂鸣音

1.目的:掌握信号时频域分析方法,正确理解采样定理,准确理解滤波器的概念。

2.内容:提供一个包含某人说话语音片段的声音文件,但该语音信号被一个包含有几个谐波分量的蜂鸣信号干扰了。

用Matlab 的wavread 命令读取该声音文件。注意,该命令可以同时得到声音文件的采样率和采样位宽,请查阅Matlab 的帮助文件。

(1) 用快速傅立叶变换(FFT )计算并画出声音信号的频谱,列写出蜂鸣信号的谐波频率。

(2) 思考如何将这些蜂鸣音去除?将去除了蜂鸣音的语音片段播放出来,仔细聆听并写下语音片

段中人物所说的话。注意:由于只能播放实信号,因此记得提取信号的实部。

Matlab 命令:wavread, wavplay, fft, fftshift, fir1, filter, plot, figure.

二、设计思路

用waveread()函数读取音频和其采样率和采样位宽,对读取的音频信号使用fft()函数进行快速傅立叶变换并绘出得到的频谱。观察频谱分析噪声(蜂鸣信号)的谐波频率分布,选择合适的滤波模式将噪声信号的谐波滤去,便可以得到去除噪声后的人声。

设计滤波器的频域特性便成了除去噪声并留下原声的关键,我们注意到所学的采样定理以及一维sinc 函数(辛格函数)x x x Sinc ππ)

sin()(=,然而汉宁窗可以看作是3个矩形时间窗的频谱之和,或者

说是 3个)(x Sinc 型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了π/T ,从而使旁瓣互相抵消,消去高频干扰和漏能。它适用于非周期性的连续信号。利用它的选择特性使用fir1()建立一个汉宁窗函数,并用filter()函数进行滤波,去除噪声部分。最后用play()函数播放音频检查效果。

三、设计过程

1.音频的读取和分析

先将原始音频文件读入,

[audio0, Fs, nbits] = wavread('C:\Users\Administrator\Desktop\signal\buzz.wav');%按路径读取音频存入audio0变量,并用Fs 变量记录采样率,nbits 变量记录采样位宽。

其中,

Fs=11025 #采样率为11025Hz

nbits=32 #采样带为32

p0=audioplayer(audio0,Fs);%将audio0载入音频播放器

play(p0);%并进行播放

subplot(2,1,1);%分屏绘图

plot(audio0);%绘制原始音频时域图,如下图所示

title('时域');%标注题目

[k]=fft(audio0,Fs);%对原始音频进行快速傅立叶变换

subplot(2,1,2);

plot(abs(k));%绘制原始音频频域图

title('频域');

频域图如图1下图所示

图1 原声时域频域图像

此时,在时域中杂乱分布的声音信号变换到频域中将噪声谐波所分布的频域中显得尤为清晰简洁,这样就不难发现干扰信号主要分布在0--1000Hz以内,由于听到的噪声比人声大得多,我们又画出了,声音强度的时域和频域图像,

figure;subplot(2,1,1);

plot(audio0);

plot(20*log10(abs(audio0)/max(abs(audio0)))); %绘制原始音频声音强度的频域图

ylabel('分贝/dB');

xlabel('时间/ms');

title('时域');

[k]=fft(audio0,Fs);

subplot(2,1,2);

plot(abs(k));

plot(20*log10(abs(abs(k))/max(abs(abs(k))))); %绘制原始音频声音强度的频域图

ylabel('分贝/dB');

xlabel('频率/Hz');

title('频域');

figure;

subplot(2,1,1);

plot(abs(k));

ylabel('振幅/A');

xlabel('频率/Hz');

set(gca,'XLim',[0 1000]);

set(gca,'XTick',[0:20:1000]);

得到如图2所示的声音强度的时域和频域图像

图2 原声声音强度时域频域图像

从频域图中我们仍然发现了四个异常尖峰,再次明显的证实了干扰信号主要分布在0--1000Hz以内;为了跟清晰地和观察干扰信号的频域分布情况,我们进一步绘制这一范围的图像,进行局部深入研究。

plot(abs(k));%重绘图像

set(gca,'XLim',[0 1000]);%更改显示范围为0-1000

set(gca,'XTick',[0:20:1000]);%更改坐标步长为20

图3 噪声局部频域放大图

观察图像可发现,干扰信号的谐波频率为:220Hz、440Hz、660Hz、880Hz,在放大后发现噪声信号为4个几乎对称的三角波,而非单位冲击,结合以上几个图,我们分析得到干扰信号主要分布在0--1000Hz以内,而人声是大部分分布于大于1000Hz区间的,由此我们想到了对频率具有选择特性的滤波器,且此处需要设计一个高通滤波器,以将位于0--1000Hz以内的噪声滤掉,留下大于1000Hz 人声信号。

2.滤波器的设计

由于干扰信号的谐波频率为:220Hz、440Hz、660Hz、880Hz,而人类说话的频率大概在300-3400Hz,而干扰信号非常大,需要一个滤波器来实现将大约高于1000Hz的信号保留,低于1000Hz的信号滤掉,

观察分贝图,发现大部分噪声分布在40dB以内,因此阻带最小衰减不应小于40dB

根据上表显示各种窗函数的参数特点,选择hanning窗滤波,利用其可以使旁瓣互相抵消频域特性,据此可设定合适的参数设计一个hanning窗函数高通滤波器。

fp=1000;fs=900;%通带频率fp,阻带频率fs

wp=2*fp*pi/Fs;ws=2*fs*pi/Fs;%归一化边界频率

wc=(wp+ws)/2/pi;%归一化中心频率

wdp=wp-ws;#过渡带宽

N=ceil(12*pi/wdp);%由窗函数主瓣宽和过渡带宽,求得窗函数最小长度

N=N+mod(N,2);%高通滤波器N必为奇数

HPfir=fir1(N,wc,'high',hanning(N+1));%设计高通hanning窗滤波器HPfir

该滤波器的主要参数为:通带边界为1000Hz,阻带边界为900Hz,阻带衰减不小于40dB。

接下来在时域和频域直观地展示其滤波特性,再根据滤波效果对其参数做微调,

figure;%新建图像

subplot(2,1,1);

plot(HPfir);%绘制滤波器时域图像

title('滤波器时域');

subplot(2,1,2);

plot(abs(fft(HPfir)));%绘制滤波器频域图像

title('滤波器频域');

得到图4所示的滤波器时域和频域特性图。

图4 基于汉宁函数的高通滤波器时域频域图

由图4可见该滤波器的截止频率大约在900Hz--1000Hz之间,完全符合设计的目的,滤波器设计完成之后,对原始音频信号进行滤波处理:

audio1=filter(HPfir,1,audio0);%使用filter函数对原声做一维数字滤波

p1=audioplayer(audio1,Fs);

figure;%新建滤波后的图像

subplot(2,1,1);

plot(audio1); %绘制滤波后的时域图像

title('滤波后时域');

[k0]=fft(audio1,Fs);%对滤波后的信号做快速傅里叶变换

subplot(2,1,2);

plot(abs(k0));%绘制滤波后的频域图像

title('滤波后频域');

此时,我们得到了如图5所示的滤波后的时域频域图像

图5 滤波后时域频域图

最后由于处理后的声音信号幅度较小,听不清晰,需要对音频信号进行增幅处理。audio1=audio1*10;%增幅处理

p1=audioplayer(audio1,Fs);

play(p1);%播放处理后的音频

至此,设计结束,我们获得了去除噪音后较为清晰的、完整的人声信号。

四、源代码

[audio0, Fs, nbits] = wavread('C:\Users\xufanyun\Desktop\signal\buzz.wav');

p0=audioplayer(audio0,Fs);

subplot(2,1,1);

plot(audio0);

ylabel('振幅/A');

xlabel('时间/ms');

title('时域');

[k]=fft(audio0,Fs);

subplot(2,1,2);

plot(abs(k));

ylabel('振幅/A');

xlabel('频率/Hz');

title('频域');

figure;subplot(2,1,1);

plot(audio0);

plot(20*log10(abs(audio0)/max(abs(audio0))));

ylabel('分贝/dB');

xlabel('时间/ms');

title('时域');

[k]=fft(audio0,Fs);

subplot(2,1,2);

plot(abs(k));

plot(20*log10(abs(abs(k))/max(abs(abs(k)))));

ylabel('分贝/dB');

xlabel('频率/Hz');

title('频域');

figure;

subplot(2,1,1);

plot(abs(k));

ylabel('振幅/A');

xlabel('频率/Hz');

set(gca,'XLim',[0 1000]);

set(gca,'XTick',[0:20:1000]);

fp=1000;fs=900;

wp=2*fp*pi/Fs;ws=2*fs*pi/Fs;

wc=(wp+ws)/2/pi

wdp=wp-ws;

N=ceil(8*pi/wdp)

N=N+mod(N,2);

HPfir=fir1(N,wc,'high',hanning(N+1));

figure;

subplot(2,1,1);

plot(HPfir);

title('滤波器时域');

subplot(2,1,2);

plot(abs(fft(HPfir)));

title('滤波器频域');

audio1=conv(audio0,HPfir);

audio1=filter(HPfir,1,audio0)

p1=audioplayer(audio1,Fs);

figure;

subplot(2,1,1);

plot(audio1);

title('滤波后时域');

[k0]=fft(audio1,Fs);

subplot(2,1,2);

plot(abs(k0));

title('滤波后频域');

xlabel('f(Hz)');

audio1=audio1*10;

p1=audioplayer(audio1,Fs);

wavwrite(audio1,Fs,nbits,'C:\Users\Administrator\Desktop\signal\buzz2.wav'

五、结论

我们将包含有几个谐波分量的蜂鸣信号干扰了的人声信号读入到MATLAB当中,对读取的音频信号做出其时域图,并用使用fft()函数进行快速傅立叶变换并绘出得到的含有噪声信号的频域图,此时,我们清楚地在频谱图里面看到4个峰值,说明干扰信号的谐波频率为:220Hz、440Hz、660Hz、880Hz。于是我们根据所学的采样定理、辛格函数以及汉宁窗函数去除旁瓣噪声信号的特性等信号与系统和数学知识设计了汉宁高通滤波器,将频率高于1000Hz的信号保留,而将低于1000Hz全部截取,再对幅度较小的处理后的信号做增幅处理。

通过信号处理后得到的清晰的内容为:“这里是,电子科技大学。”

六、参考文献

汽车设计课程设计

3 表1-2良好路面上常用轮胎滚动阻力系数

u a max + e e C D ——空 气 阻 力 系 数 , 取 C D =0.9; 一 般 中 重 型 货 车 可 取 0.8~1.0; 轻 型 货 车 或 大 客 车 0.6~0.8;中小型客车 0.4~0.6;轿车 0.3~0.5;赛车 0.2~0.4。 A ——迎风面积, m 2 ,取前轮距 B 1 ×总高 H , A =2.465 ? 3.53 m 2 u a max ——该载货汽车的最高车速, u a max =90km /h 。 将各值带入式 1-1 得: 也可以利用比功率的统计值来确定发动机的功率值: 比功率 = 1000P max m a = fg C D A 3.600ηT 76.14m a ηT u a max 3 (1-2) 求得比功率为 6.311kw 。 因此,通过比功率计算得,该汽车选用发动机的功率 kw 参考日本五十铃、德国奔驰等同类型车型,同时由于该载货汽车要求的最高车速相对较高,因此应 使其比功率相对较大,所选发动机功率应不小于 195.61KW ,初步选择发动机的最大功率为 200 kW ;发 动机最大功率时的转速 n p ,初取 n p =2200r/min 。 1.1.2 发动机最大转矩及其转速的确定 当发动机最大功率和其相应转速确定后,可用下式确定发动机的最大扭矩。 (1-3) 式中 T e max ——发动机最大转矩,N.m ; α ——转矩适应性系数, α = T e max T p T p ——最大功率时的转矩,N.m ; α 的大小标志着当行驶阻力增加时,发动机外特性曲线自动增加转矩的能力, α 可参考同类发动机数值 选取,初取 α =1.05; P max ——发动机最大功率,kW ; n p ——最大功率时的转速,r/min 。

信号与系统课程设计报告材料

课程设计报告 课程名称信号与系统课程设计指导教师 设计起止日期 学院信息与通信工程 专业电子信息工程 学生 班级/学号 成绩 指导老师签字

目录 1、课程设计目的 (1) 2、课程设计要求 (1) 3、课程设计任务 (1) 4、课程设计容 (1) 5、总结 (11) 参考文献 (12) 附录 (12)

1、课程设计目的 “信号与系统”是一门重要的专业基础课,MATLAB作为信号处理强有力的计算和分析工具是电子信息工程技术人员常用的重要工具之一。本课程设计基于MATLAB完成信号与系统综合设计实验,以提高学生的综合应用知识能力为目标,是“信号与系统”课程在实践教学环节上的必要补充。通过课设综合设计实验,激发学生理论课程学习兴趣,提高分析问题和解决问题的能力。 2、课程设计要求 (1)运用MATLAB编程得到简单信号、简单信号运算、复杂信号的频域响应图; (2)通过对线性时不变系统的输入、输出信号的时域和频域的分析,了解线性时不变系统的特性,同时加深对信号频谱的理解。 3、课程设计任务 (1)根据设计题目的要求,熟悉相关容的理论基础,理清程序设计的措施和步骤; (2)根据设计题目的要求,提出各目标的实施思路、方法和步骤; (3)根据相关步骤完成MATLAB程序设计,所编程序应能完整实现设计题目的要求; (4)调试程序,分析相关理论; (5)编写设计报告。 4、课程设计容 (一)基本部分 (1)信号的时频分析 任意给定单频周期信号的振幅、频率和初相,要求准确计算出其幅度谱,并准确画出时域和频域波形,正确显示时间和频率。 设计思路: 首先给出横坐标,即时间,根据设定的信号的振幅、频率和初相,写出时域波形的表达式;然后对时域波形信号进行傅里叶变化,得到频域波形;最后使用plot函数绘制各个响应图。 源程序: clc; clear; close all; Fs =128; % 采样频率 T = 1/Fs; % 采样周期 N = 600; % 采样点数 t = (0:N-1)*T; % 时间,单位:S x=2*cos(5*2*pi*t);

信号分析课程设计报告书

信号分析课程设计 信号系统的时域分析 编程实现的卷积积分或卷积和 一、课程设计题目: 基于 MATLAB 的连续时间LTI 系统的时域分析 二、基本要求: ① 掌握连续时不变信号处理的基本概念、基本理论和基本方法; ② 学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法; ③ 学会用 MATLAB 对信号进行分析和处理; ④ 编程实现卷积积分或卷积和,零输入响应,零状态响应; ⑤ 撰写课程设计论文,用信号处理基本理论分析结果。 三、设计方法与步骤: 一般的连续时间系统分析有以下几个步骤: ①求解系统的零输入响应; ②求解系统的零状态响应; ③求解系统的全响应; ④分析系统的卷积;⑤画出它们的图形. 下面以具体的微分方程为例说明利用MATLAB 软件分析系统的具体方法. 1.连续时间系统的零输入响应 描述n 阶线性时不变(LTI )连续系统的微分方程为: 已知y 及各阶导数的初始值为y(0),y (1)(0),… y (n-1)(0), 求系统的零输入响应。 建模 当LIT 系统的输入为零时,其零输入响应为微分方程的其次解(即令微分方程的等号右端为零),其形式为(设特征根均为单根) 其中p 1,p 2,…,p n 是特征方程a 1λ n +a 2λn-1+…+a n λ+a n =0的根,它们可以 用root(a)语句求得。各系数 由y 及其各阶导数的初始值来确定。对此有 1121111n n m n n m m n n m d y d y dy d u du a a a a y b b b u dt dt dt dt dt -++-++?????++=+????++1212()n p t p t p t n y t C e C e C e =++????+120n C C C y ++????+=11220 n n p C p C p C Dy ++????+=

汽车设计课程设计

XX大学 汽车设计课程设计说明书设计题目:轿车转向系设计 学院:X X 学号:XXXXXXXX 姓名:XXX 指导老师:XXX 日期:201X年XX月XX日

汽车设计课程设计任务书 题目:轿车转向系设计 内容: 1.零件图1张 2.课程设计说明书1份 原始资料: 1.整车性能参数 驱动形式4 2前轮 轴距2471mm 轮距前/后1429/1422mm 整备质量1060kg 空载时前轴分配负荷60% 最高车速180km/h 最大爬坡度35% 制动距离(初速30km/h) 5.6m 最小转向直径11m 最大功率/转速74/5800kW/rpm 最大转矩/转速150/4000N·m/rpm 2.对转向系的基本要求 1)汽车转弯行驶时,全部车轮应绕顺时转向中心旋转; 2)操纵轻便,作用于转向盘上的转向力小于200N; 3)转向系的角传动比在15~20之间,正效率在60%以上,逆效率在50%以上;4)转向灵敏; 5)转向器和转向传动机构中应有间隙调整机构; 6)转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

目录 序言 (4) 第一节转向系方案的选择 (4) 一、转向盘 (4) 二、转向轴 (5) 三、转向器 (6) 四、转向梯形 (6) 第二节齿轮齿条转向器的基本设计 (7) 一、齿轮齿条转向器的结构选择 (7) 二、齿轮齿条转向器的布置形式 (9) 三、设计目标参数及对应转向轮偏角计算 (9) 四、转向器参数选取与计算 (10) 五、齿轮轴结构设计 (12) 六、转向器材料 (13) 第三节齿轮齿条转向器数据校核 (13) 一、齿条强度校核 (13) 二、小齿轮强度校核 (15) 三、齿轮轴的强度校核 (18) 第四节转向梯形机构的设计 (21) 一、转向梯形机构尺寸的初步确定 (21) 二、断开式转向梯形机构横拉杆上断开点的确定 (24) 三、转向传动机构结构元件 (24) 第五节参考文献 (25)

信号与系统课程设计报告

信号与系统课程设计报告 实验题目:信号的运算与处理 内容简介: 设计一个信号,对其进行信号运算和处理,利用Matlab仿真。 课设方式: 利用电子技术、电路理论和信号与系统的知识学习验证信号的运算和处理,如延时、相加、微分、抽样等。自已设计信号及运算方式,并利用Matlab仿真。 分析计算结果。 课程设计要求: 独立完成; 完成信号设计(任意信号均可)及其某种运算(任意运算均可,也可多做几种,或做组合运算)的验证; 学会利用Matlab仿真;提交课程设计报告。 例如: 设计一个信号为f(t)=3sin2t 对其做微分运算得到f/(t) , 用MATLAB 编程实现计算过程,画出f(t)和f/(t)

本次课程设计本人选的信号运算是: 设计一个信号为y1=y(x)=sin2x,对其作微分运算得到dy1,用MATLAB对其实现运算过程,后画出y1,dy1,y1+dy1的图像 实验步骤(操作过程) 1、 首先打开MATLAB软件,在其命令窗口直接输入以下程序,对y(x)进 行微分运算。得到dy1 clear >> syms x y1; >> y1=sin(2*x); >> dy1=diff(y1,'x') dy1 =2*cos(2*x) 运算过程如下图所示: 2、 接着便是对其进行验证,点击fire,新建一个文件,输入以下程序(绘制出y1=sin2x, dy1=2cos2x, 以及y1+ dy1=sin2x+2cos2x。的波形)

3、保存文件,后缀名为.m,随后按F5执行输出输出图形。实验结果如下图所示 、

结果分析 如图所示绿色波形为y1=sin2x,蓝色为dy1=2cos2x,红色波形为y1+dy1。仿真结果与运算结果一致。 实验心得体会(调试过程) 总的来说,这次课程设计难度并不是太高,而我选取的正玄信号也是较为简单常用的一种函数,对其进行微分运算之后,得到了余弦函数,其仿真结果波形也如上所示,与预期一致。在设计过程中,还是出现了几个小问题的,一个是变量的定义,之前没有定义x,直接取范围结果出错了,还有一个是注意各种函数的调用以及运算格式,还是希望能在之后再接再厉,掌握好matlab软件!(附上调试过程图片) 左边为文件、历史窗口,底下是命令窗口,最右下角为实验仿真波形,中间为运算程序,绘图画图程序。

数字信号处理课程设计报告 杨俊

课程设计报告 课程名称数字信号处理 课题名称数字滤波器设计及在语音信号分析中的应用 专业通信工程 班级1281 学号201213120101 姓名杨俊 指导教师彭祯韩宁 2014年12月5日

湖南工程学院 课程设计任务书 课程名称数字信号处理 课题数字滤波器设计 及在语音信号分析中的应用专业班级通信工程1281班 学生姓名杨俊 学号201213120101 指导老师彭祯韩宁 审批 任务书下达日期2014 年12月5日 任务完成日期2014 年12月13日

《数字信号处理》课程设计任务书 一、课程设计的性质与目的 《数字信号处理》课程是通信专业的一门重要专业基础课,是信息的数字化处理、存储和应用的基础。通过该课程的课程设计实践,使学生对信号与信息的采集、处理、传输、显示、存储、分析和应用等有一个系统的掌握和理解;巩固和运用在《数字信号处理》课程中所学的理论知识和实验技能,掌握数字信号处理的基础理论和处理方法,提高分析和解决信号与信息处理相关问题的能力,为以后的工作和学习打下基础。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。 二、课程设计题目 题目1:数字滤波器设计及在语音信号分析中的应用。 1、设计步骤: (1)语音信号采集 录制一段课程设计学生的语音信号并保存为文件,要求长度不小于10秒,并对录制的信号进行采样;录制时可以使用Windows自带的录音机,或者使用其它专业的录音软件,录制时需要配备录音硬件(如麦克风),为便于比较,需要在安静、干扰小的环境下录音。 然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数。 (2)语音信号分析 使用MATLAB绘出采样后的语音信号的时域波形和频谱图。根据频谱图求出其带宽,并说明语音信号的采样频率不能低于多少赫兹。 (3)含噪语音信号合成 在MATLAB软件平台下,给原始的语音信号叠加上噪声,噪声类型分为如下几种:①白

《汽车设计》课程设计任务

《汽车设计》课程设计任务 第一组:总布置 总布置各组可用AutoCAD绘制总布置图,各组分图层布置相应总成或规定部分,最终汇总成总布置图。总体组协调各总成的布置。 任务1: 第一、二周:总体参数测绘 ●通过测绘和试验方式得到轮距离、轴距、轮距、前后悬、外廓尺寸、整备质量、总质量、 轴荷分配、最小转弯直径、通过性参数等相关参数。 ●结合各部分布置方案,绘制原车总布置图。 ●周五9.16提交总布置图。 第三、四周:总体性能参数计算 ●根据总体参数,计算通过性参数、平顺性参数、制动性参数、动力性参数等。 ●结合各总成的改进方案,绘制改进后的总布置图。 ●周五9.23中期检查过程报告 ●周五9.30提交设计说明书和总布置图。 任务2: 第一、二周:驾驶舱布置测绘 ●测绘得到座椅、方向盘、制动踏板、油门踏板、驻车制动、仪表或控制开关的布置位置, 对人机进行评价。 ●周五9.16提交驾驶舱布置图。 第三、四周:驾驶舱布置改进 ●根据测绘和分析结果,按照人机和安全性要求对驾驶舱布置进行改进。 ●绘制改进后的驾驶舱布置图。 ●周五9.23中期检查过程报告 ●周五9.30提交设计说明书和驾驶舱布置图。 任务3:车身布置 第一、二周:车身布置测绘 ●与车身组一同完成车架、车身上各附件、各总成安装装置等零部件的测绘 ●完成车身总布置图 ●周五9.16提交驾驶舱布置图。 第三、四周:车身布置改进 ●结合车身结构分析结果,完成对车身布置的修改 ●和悬架组合作完成后悬架修改,完成修改后车架的设计 ●绘制改进后的车身布置图 ●周五9.23中期检查过程报告 ●周五9.30提交设计说明书和车身布置图。 任务4: 第一、二周:底盘布置 ●与悬架组合作,测绘前后悬架结构形式,主观评价其性能,完成悬架布置图。

信号处理与系统课程设计指导书.

《信号处理与系统分析》课程设计指导书 南通大学电子信息学院 信息工程系 2013年5月

前言 《信号处理与系统》是南通大学杏林学院通信信息类专业的一门专业基础课程,其理论性强,是其它后续专业课程的基础。 开设该课程设计的重要意义在于:首先,从帮助学习《信号处理与系统》课程的角度讲,学生借助于计算机,通过系统仿真,可以对信号以及线性系统的分析方法有一个更深入、更直接的认识,巩固理解一些抽象的知识,从而掌握《信号处理与系统》课程中的主要理论与基本原理;其次,从长远意义讲,学生掌握了数值分析软件Matlab的应用方法,为后续专业课的学习打下了坚实的基础;另外实践环节使学生在综合使用现代电子信息技术和手段进行设计、制作和创新方面的能力有所提高,为以后走上工作岗位从事信号分析和系统分析创造了必备的条件。 本课程设计时间为两周,学生根据课程设计指导书进行练习,考核成绩将根据学生出席情况及学习态度、课程设计报告完成情况、最后检查情况综合给出。 编者:李蕴华 2013年5月

课程设计的要求 一、熟练掌握Matlab语言的编程方法; 二、熟悉用于《信号处理与系统分析》的Matlab主要函数的应用; 三、记录实验结果(包括波形和数据),撰写课程设计报告。 主要内容及步骤 一、连续系统的时域分析 1、信号的产生 (1)编写生成连续阶跃信号u(t-t0)及冲激信号δ(t-t0)的函数:function [x,y]=jieyue(t1,t2,t0) 和 function [x,y] =chongji(t1,t2,t0),信号的时间变量取值区间为t1~t2,t0为阶跃点或冲激点处的时间,x为信号的时间向量,y为相应的信号值向量。(提示:冲激信号可以用时间宽度为dt、高度为1/dt的矩形脉冲来近似表示。当dt很小时,矩形脉冲信号可近似认为是冲激信号。在对该矩形脉冲信号采点取样后(设取样间隔为dt),信号值y的第1+(t0- t1)/dt个元素的值为1/dt,其余元素的值为0。) 参考程序: function [t,y1]=jieyue(t1,t2,t0) dt=0.01; ttt=t1:dt:t0-dt; tt=t0:dt:t2; t=t1:dt:t2; n=length(ttt); nn=length(tt); u=zeros(1,n); uu=ones(1,nn); y1=[u,uu]; return

去除干扰蜂鸣音 信号与系统课程设计

一、课程设计题目 去除干扰蜂鸣音 1.目的:掌握信号时频域分析方法,正确理解采样定理,准确理解滤波器的概念。 2.内容:提供一个包含某人说话语音片段的声音文件,但该语音信号被一个包含有几个谐波分量的蜂鸣信号干扰了。 用Matlab 的wavread 命令读取该声音文件。注意,该命令可以同时得到声音文件的采样率和采样位宽,请查阅Matlab 的帮助文件。 (1) 用快速傅立叶变换(FFT )计算并画出声音信号的频谱,列写出蜂鸣信号的谐波频率。 (2) 思考如何将这些蜂鸣音去除?将去除了蜂鸣音的语音片段播放出来,仔细聆听并写下语音片 段中人物所说的话。注意:由于只能播放实信号,因此记得提取信号的实部。 Matlab 命令:wavread, wavplay, fft, fftshift, fir1, filter, plot, figure. 二、设计思路 用waveread()函数读取音频和其采样率和采样位宽,对读取的音频信号使用fft()函数进行快速傅立叶变换并绘出得到的频谱。观察频谱分析噪声(蜂鸣信号)的谐波频率分布,选择合适的滤波模式将噪声信号的谐波滤去,便可以得到去除噪声后的人声。 设计滤波器的频域特性便成了除去噪声并留下原声的关键,我们注意到所学的采样定理以及一维sinc 函数(辛格函数)x x x Sinc ππ) sin()(=,然而汉宁窗可以看作是3个矩形时间窗的频谱之和,或者 说是 3个)(x Sinc 型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了π/T ,从而使旁瓣互相抵消,消去高频干扰和漏能。它适用于非周期性的连续信号。利用它的选择特性使用fir1()建立一个汉宁窗函数,并用filter()函数进行滤波,去除噪声部分。最后用play()函数播放音频检查效果。 三、设计过程 1.音频的读取和分析 先将原始音频文件读入, [audio0, Fs, nbits] = wavread('C:\Users\Administrator\Desktop\signal\buzz.wav');%按路径读取音频存入audio0变量,并用Fs 变量记录采样率,nbits 变量记录采样位宽。 其中, Fs=11025 #采样率为11025Hz nbits=32 #采样带为32 p0=audioplayer(audio0,Fs);%将audio0载入音频播放器 play(p0);%并进行播放 subplot(2,1,1);%分屏绘图 plot(audio0);%绘制原始音频时域图,如下图所示 title('时域');%标注题目

信号发生器课程设计报告

目录 一、课题名称 (2) 二、内容摘要 (2) 三、设计目的 (2) 四、设计内容及要求 (2) 五、系统方案设计 (3) 六、电路设计及原理分析 (4) 七、电路仿真结果 (7) 八、硬件设计及焊接测试 (8) 九、故障的原因分析及解决方案 (11) 十、课程设计总结及心得体会 (12)

一、课题名称:函数信号发生器的设计 二、内容摘要: 函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。 三、设计目的: 1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。 2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。 3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。 4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。 5、在仿真结果的基础上,实现实际电路。 四、设计内容及要求: 1、要求完成原理设计并通过Multisim软件仿真部分 (1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。 (2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围

汽车设计(课程设计)钢板弹簧(DOC)

汽车设计——钢板弹簧课程设计 专业:车辆工程 教师:R老师 姓名:XXXXXX 学号:200XYYYY 2012 年7 月3 日

课程设计任务书 一、课程设计的性质、目的、题目和任务 本课程设计是我们在完成基础课、技术基础课和大部分专业课学习后的一个教学环节,是培养我们应用已学到的理论知识来解决实际工程问题的一次训练,并为毕业设计奠定基础。 1、课程设计的目的是: (1)进一步熟悉汽车设计理论教学内容; (2)培养我们理论联系实际的能力; (3)训练我们综合运用知识的能力以及分析问题、解决问题的能力。 2、设计题目: 设计载货汽车的纵置钢板弹簧 (1) 纵置钢板弹簧的已知参数 序号弹簧满载载荷静挠度伸直长度U型螺栓中心距有效长度 1 19800N 9.4cm 118cm 6cm 112cm 材料选用60Si2MnA ,弹性模量取E=2.1×105MPa 3、课程设计的任务: (1)由已知参数确定汽车悬架的其他主要参数; (2)计算悬架总成中主要零件的参数; (3)绘制悬架总成装配图。 二、课程设计的内容及工作量 根据所学的机械设计、汽车构造、汽车理论、汽车设计以及金属力学性能等课程,完成下述涉及内容: 1.学习汽车悬架设计的基本内容 2.选择、确定汽车悬架的主要参数 3.确定汽车悬架的结构 4.计算悬架总成中主要零件的参数 5.撰写设计说明书 6.绘制悬架总成装配图、零部件图共计1张A0。 设计要求: 1. 设计说明书 设计说明书是存档文件,是设计的理论计算依据。说明书的格式如下: (1)统一稿纸,正规书写; (2) 竖订横写,每页右侧画一竖线,留出25mm空白,在此空白内标出该页中所计算的主要数据; (3) 附图要清晰注上必要的符号和文字说明,不得潦草; 2. 说明书的内容及计算说明项目 (1)封面;(2)目录;(3)原始数据及资料;(4)对设计课题的分析;(5)汽车纵置钢板弹簧简图;(6)设计计算;(7)设计小结(设计特点及补充说明,鉴别比较分析,个人体会等);(8)参考文献。 3. 设计图纸 1)装配总图、零件图一张(0#);

信号与系统课程设计-用MATLAB模拟方波信号的分解与合成

信号与线性系统 课程设计 题目 学号姓名学号姓名学号姓名学号姓名 院系 年级 专业 日期

摘要 利用MATLAB对周期为T0的方波信号进行傅里叶级数展开,并绘制离散幅度谱和不同次谐波叠加后的图形。通过观察绘制的各个图像,加深对傅立叶变换和信号的分解与合成的理解。 Abstract Expanded the square wave signal with periodic T0 to Fourier series by MATLAB , and drew the discrete spectrum and plot the patterns after different sub harmonics are superimposed. Through the observation of each image, deepen the understanding of the Fourier transform and signal decomposition and synthesis. 关键词:矩形信号傅里叶级数谐波叠加分解与合成 Keywords: Squarewave signal.Fourier series. Harmonic superposition. Decomposition and synthesis 一、设计目的和要求 本设计主要利用MATLAB绘制信号的离散幅度谱和各次谐波叠加后的波形,通过观察谐波展开次数增加后的波形,进一步掌握信号分解与合成的原理。 培养运用所学知识分析解决问题的能力。 掌握用MATLAB实现通信系统仿真实验的能力。 这里要做一个信号的分解与合成的仿真系统,利用matlab软件的仿真模拟能力来体现信号的分解与合成过程中出现的情况。 MATLAB(矩阵实验室)是MATrix LABoratory的缩写,是一款由美国

信号与系统课程设计

南通大学电子信息学院信号与系统课程设计报告 班级: 姓名: 学号: 指导老师: 设计时间: 2014—2015学年第一学期

一、连续信号的时域分析 二、 1. 信号的产生 (1)阶跃函数 function [t,y1]=jieyue(t1,t2,t0) dt=0.01; ttt=t1:dt:t0-dt; tt=t0:dt:t2; t=t1:dt:t2; n=length(ttt); nn=length(tt); u=zeros(1,n); uu=ones(1,nn); y1=[u,uu]; return 冲激函数 function [t,y2]=chongji(t1,t2,t0) dt=0.01; t=t1:dt:t2; n=length(t); y2(1:n)=0; y2(1,(t0-t1)/dt+1)=1/dt; (2)调用上述函数产生信号)2-t ε(,)(4-t δ,-t e )(t ε,-6s ≤t ≤6s,并画出波形。 Command Window subplot(3,1,1); [t1,y1]=jieyue(-6,6,2);

stairs(t1,y1); axis([-6 6 0 1.5]); subplot(3,1,2); [t2,y2]=chongji(-6,6,4);plot(t2,y2); subplot(3,1,3); [t3,y3]=jieyue(-6,6,0); y3=exp(-(t3)).*y3;plot(t3,y3); 波形如下图所示: (3)根据f(t)画出f(2t)和f(1-0.5t)的波形 t=-3:0.01:3; y=tripuls(t,4,0.6); subplot(3,1,1); plot(t,y);

随机信号分析课程设计完整版

随机信号分析课程设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

随机信号分析课程设计 一、题目: 设计一个抑制载波的复AM 信号,载波为40MHz ,接收带宽10MHz ,调制信号带宽50KHz ,加入高斯白噪声,带内信噪比10dB : 1.1画出加噪后信号时域波形; 画出功率谱密度; 画出其同相、正交分量的功率谱; 统计方法画出包络概率密度。 二、问题分析: 画出加噪后信号时域波形: 首先,由已知条件先采样产生抑制载波的实AM 离散信号sr ,经过Hilbert 变换求得其解析信号s0,并经过低通滤波器,截止频率fs 限制在接收带宽下,加入噪声v ,得到此时的复AM 信号s ,再画出此时得到的复AM 信号时域波形。 画出功率谱密度: 将信号s 进行fft 变换后求得其功率谱密度,画出图形。 画出其同相、正交分量的功率谱: 将信号s 分解为正交分量)(cos )()(t t A t A s φ=和同相分量 )(sin )(t t A A c φ=,进行fft 变换得到功率谱密度,画出图形。 三、程序代码: f0=4*10^7;%载波信号频率40MHz f1=5*10^4;%调制信号频率50kHz fs=1*10^7;%接收机带宽采样频率10Mhz N=40001;%采样点数 %t=(0:1:N-1)/fs; f =10*f0; %画图范围设置 t0 = 5/f1;

t = 0:1/f:t0; k=1; sr=k*cos(2*pi*f1*t).*cos(2*pi*f0*t);%实am信号 % figure(2) % plot(t,sr) s0=hilbert(sr);%复am信号 h=sin(fs*t)/(pi*t); s0=conv(s0,h); am=max(abs(s0)); % % -------加噪方案(由加噪后信噪比确定高斯白噪声)----- snr=10; %设定加入白噪声后的信噪比为10db(均值为0) Pv=(am/(10^(snr/20)))^2;%噪声方差 % % -------------------------------------------------- % % % ---------加噪声------------- v=rand(1,N); v=v*sqrt(Pv);%白噪声 s=s0+v;%信号加噪声 % % ----------信号画图------------- figure(1) subplot(2,1,1),plot(t,s0); axis([*10^(-4) *10^-4 -10 10]) title('原始信号') subplot(2,1,2),plot(t,s); title(['加噪信号信噪比= ',num2str(snr),' dB. 噪声方差= ',num2str(Pv)]) axis([*10^(-4) *10^-4 -10 10]) %%----------画功率谱--------------- s1=detrend(s);%去趋势 ffs=abs(fft(s1)); theta=angle(s1)-2*pi*f0*t; a=abs(s1); ffs=ffs.*conj(ffs)*2/N;%频谱 %ffs=ffs.^2;%功率谱 figure(2) plot(ffs(1:N/2)); title('加噪信号功率谱') axis([3500 4500 0 4*10^4]) xlabel('*10^4') %%------------画正交同相分量功率谱---------- ac=s.*cos(2*pi*f0*t)-j*(hilbert(s)-s).*sin(2*pi*f0*t); as=-s.*sin(2*pi*f0*t)-j*(hilbert(s)-s).*cos(2*pi*f0*t); as1=detrend(as); ffas=abs(fft(as1)); ffas=(abs(ffas)).^2*2/N; ac1=detrend(ac); ffac=abs(fft(ac1)); ffac=(abs(ffac)).^2*2/N;

汽车设计课程设计

西安交通大学 汽车设计课程设计说明书 载货汽车汽车动力总成匹配与总体设计 姓名: 班级: 学号: 专业名称: 指导老师: 日期:2104/12/1

题目: 设计一辆用于长途运输固体物料,载重质量20t 的重型货运汽车。 整车尺寸:11980mm×2465mm×3530mm 轴数:4;驱动型式:8×4;轴距:1950mm+4550mm+1350mm 额定载质量:20000kg 整备质量:11000kg 公路最高行驶速度:90km/h 最大爬坡度:大于30% 设计任务: 1) 查阅相关资料,根据题目特点,进行发动机、离合器、变速箱传动轴、 驱动桥、车轮匹配和选型; 2) 进行汽车动力性、经济性估算,实现整车的优化匹配; 3) 绘制车辆总体布置说明图; 4) 编写设计说明书。 本说明书将从整车主要目标参数的初步确定、传动系各总成的选型、整车性能计算、发动机与传动系部件的确定四部分来介绍本课程设计的设计过程。

1.整车主要目标参数的初步确定 1.1发动机的选择 1.1.1发动机的最大功率及转速的确定 汽车的动力性能在很大程度上取决于发动机的最大功率。设计要求该载货汽车的最高车速是90km/h ,那么发动机的最大功率应该大于等于以该车速行驶时的行驶阻力功率之和,即: )76140 3600(13max max max a D a a T e u A C u f g m P ?+??≥ η (1-1) 式中 max e P ——发动机最大功率,kW ; T η——传动系效率(包括变速器、传动轴万向节、主减速器的传动效率),参考传动部件传动效 率计算得:95%95%98%96%84.9%T η=???=,各传动部件的传动效率见表1-1; 表1-1传动系统各部件的传动效率 部 件 名 称 传动效率(%) 4-6档变速器 95 辅助变速器(副变速器或分动器) 95 单级减速主减速器 96 传动轴万向节 98 a m ——汽车总质量,a m =31 000kg (整备质量11 000kg,载重20 000kg ); g ——重力加速度,g =9.81m /s 2 ; f ——滚动阻力系数,由试验测得,在车速不大于100km/h 的情况下可认为是常数。轮胎结构、 充气压力对滚动阻力系数有较大影响,良好路面上常用轮胎滚动阻力系数见表1-2。取0.012f =。 表1-2良好路面上常用轮胎滚动阻力系数 轮胎种类 滚动阻力系数 中重型载货车用子午线轮胎 0.007-0.008 中重型载货车用斜交轮胎 0.010-0.012 轻型载货车用子午线轮胎 0.008-0.009 轻型载货车用斜交轮胎 0.010-0.012 轿车用子午线轮胎 0.012-0.017 轿车用斜交轮胎 0.015-0.025 D C ——空气阻力系数,取D C =0.9;一般中重型货车可取0.8~1.0;轻型货车或大客车0.6~0.8;

信号与系统课设

一、 1.正弦信号 A = input('input A=') ;% 给正弦信号的幅度A赋值 w = input('input w=') ; % 给正弦信号的频率w赋值 theta =input('input theta='); % 给正弦信号的初始相位theta 赋值disp(['这个信号是周期信号']) T=2*pi/w t = 0 : 0.01 : 3*T ; % 定义时间点 ft = A * sin( w * t + theta ) ; % th计算函数值 plot( t ,ft ) ; % 画图 title( '正弦信号' ) ; % 为图像加标题注释 grid on ; % 在图上画方格

2.复指数信号 j00 = sqrt( - 1 ) ; % 定义复数j a = input('input a='); % 复指数信号赋值w = input('input w='); K = input('input K='); if a==0 disp('这是一个周期信号') T=2*pi/w else if a>0 disp('这不是一个周期信号') else disp('这不是一个周期信号') end end t = -1.5*abs(a) : 0.01 : 1.5*abs(a) % 定义时间点 ft = K*exp( ( a + j00 * w ) * t ) ; subplot( 2 , 2 , 1 ) ; plot( t , real( ft ) ) ; title( '实部' ) ; %画图subplot( 2 , 2 , 2 ) ; plot( t , imag( ft ) ) ; title( '虚部' ) ; subplot( 2 , 2 , 3 ) ; plot( t , abs( ft ) ) ; title( '模' ) ; subplot( 2 , 2 , 4 ) ; plot( t , angle( ft ) ) ; title( '相角' ) ;

信号与系统课程设计报告 信号与系统课程设计题目

信号与系统课程设计报告信号与系统课程设计题目 信号与系统课程设计报告 ——频分复用通信系统的仿真设计 指导老师:XXX 小组成员: 摘要: 通过对信号与系统这门课程第八章通信系统学习,我们对频分复用(FDMA )技术产生了浓厚的兴趣,于是决定自己利用MATLAB 强大的仿真功能来对频分复用系统进行仿真。本文首先录制三段不同的语音信号。然后通过推导,确定合适的载波信号的频率,对信号进行调制,调制后整合到一个复用信号上。再在复用信号上加一个随机的高斯白噪声得到在信道中传输的信号。之后根据通过对复用信号的频谱分析,得出切比雪夫滤波器的各项参数,通过设计好的滤波器进行信号分离后分别根据载波信号进行解调,再通过一个低通滤波器,得到原始信号。通过此次对FDMA 的仿真,我们更清楚了解了频分复用的工作原理,以及AM 调制解调方法,和滤波器的设计方法。频分复用技术对与通信系统节省资源有着重要的意义。

关键词: 频分复用 MATLAB 高斯白噪声 引言: 在电话通信系统中,语音信号频谱在300—3400Hz 内,而一条干线的通信资源往往远大于传送一路语音信号所需的带宽。这时,如果用一条干线只传一路语音信号会使资源大大的浪费,所以常用的方法是“复用”,使一条干线上同时传输几路电话信号,提高资源利用率。 本文是基于MATLAB 的简单应用,首先录制三段不同的语音信号。然后选择合适的高频载波,对信号进行调制,调制后整合到一个复用信号上。确定合适的信噪比,在复用信号上加一个随机的高斯白噪声得到在信道中传输的信号。之后根据载波信号设计合适的带通滤波器将三种信号进行分离,信号分离后分别进行同步解调,再通过一个低通滤波器,得到通过频分复用系统传输后得到的各个信号,将得到的信号与原信号对比,要保证信号与原信号吻合较好。 正文:

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

课题信号与系统课程设计报告书

信号与系统课程设计 课程名称:信号与系统 题目名称:滤波器的设计与实现 学院:电气与电子工程学院 专业班级:电气工程及其自动化 学号:3 学生:宗喜 指导教师:黄劲 2015年12 月20 日

目录 一、设计要求 (2) 二、设计原理 (2) 三、设计思路 (3) 四、设计容 (3) A、一阶有源滤波电路 (3) B、二阶有源滤波电路 (5) 1、二阶低通滤波电路 (5) 2、二阶高通滤波电路 (6) 3、二阶带通滤波电路 (8) C、用仿真软件设计滤波器 (10) 1、给定性能参数设计滤波器 (10) a、二阶低通滤波器 (10) b、二阶高通滤波器 (11) c、二阶带通滤波器 (12) 2、不同阶数滤波器性能比较 (12) D、滤波器的Matlab设计仿真 (13) 1、二阶低通滤波器 (13) 2、二阶高通滤波器 (14) 五、参考文献 (16)

一、设计要求 自已设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或其他仿真软件进行仿真。 有源滤波器由是有源元件和无源元件(一般是R和C)共同组成的电滤波器。和无源滤波器相比,它的设计和调整过程较简便,此外还能提供增益。因此,本课程设计中选择了二阶有源滤波器作为主要研究对象。 1、自行设计电路图,确定前置放大电路,有源滤波电路,功率放大电路的方案, 并使用绘图软件(Electronics Worrkbench)画出设计电路,包括低通、高通和带通。 2、所设计的滤波器不仅有滤波功能,而且能起放大作用,负载能力要强。 3、根据给定要求和电路原理图计算和选取单元电路的元件参数。 4、用Matlab或其他仿真软件(FilterLab)对滤波器进行仿真,记录仿真结果。 二、设计原理 1、电容器C具有通高频阻低频的性能。 2、由源滤波器由放大电路部分和滤波电路部分组成。 3、仿真软件可以将滤波器的性能直观的表现出来。 4、各种滤波器的幅频特性:

信号课程设计

实验一 时域采样与频域采样定理的验证实验 1. (1) 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息; (2) 要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 2. 时域采样定理的要点是: ① 对模拟信号()a x t 以T 进行时域等间隔理想采样,形成的采样信号的频谱 会 以采样角频率Ωs (Ωs=2π/T )为周期进行周期延拓。公式为 ② 采样频率Ωs 必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便在计算机上进行实验。 理想采样信号 和模拟信号()a x t 之间的关系为: 对上式进行傅里叶变换,得到: 上式中,在数值上x a (nT)=x(n),再将ω=ΩT 代入,得到: 上式的右边就是序列的傅里叶变换,即 上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量ω用ΩT 代替即可。 频域采样定理的要点是: ① 对信号x(n)的频谱函数在[0,2π]上等间隔采样N 点,得到: ?(j )a X Ωa a a s 1??(j )FT[()](j j ) k X x t X k T ΩΩΩ∞ =-∞ ==-∑a ?()x t a a ?()()()n x t x t t nT δ∞ =-∞ =-∑j a a ?(j )[()()]e d t n X x t t nT t ΩΩδ∞ ∞--∞=-∞ =-∑?j a ()()e d t n x t t nT t Ωδ∞ ∞ --∞ =-∞ -∑?=j a a ?(j )()e nT n X x nT ΩΩ∞ -=-∞ =∑j a ?(j )(e )T X X ωωΩΩ==j 2π()(e ) , 0,1,2, ,1 N k N X k X k N ωω= ==-

相关文档
最新文档