大学物理答案第三章

大学物理答案第三章
大学物理答案第三章

第三章 功和能

3-1 汽车在平直路面上行驶,若车与地面间的摩擦力恒定,而空气阻力与速度的平方成正比.设对于一辆质量为1500kg 的汽车总的阻力281300v .+=F (其中F 以N 为单位,v 以m/s 为单位),求当车速为60 km/h ,加速度为1.0m/s 2时,汽车引擎所损耗的瞬时功率.

分析 作用力的瞬时功率等于该力与物体获得的速度的乘积.

解 当汽车的加速度为a 时,引擎牵引力为F 1,应用牛顿第二定律,运动方程为

ma F F =-1

则 2181300v .++=-=ma F ma F

根据瞬时功率的定义,汽车引擎所损耗的瞬时功率为

W 103.83 W 3600

100060360010006081300011500 813004221?=????++?=++==])(..().(v

v v ma F P 3-2 如习题1-7所述,若海岸高h = 10 m ,而猛烈的大风使船受到与绳的牵引方向相反的恒定的作用力F = 5000 N ,如图3-2所示.当岸上的水手将缆绳由50 m 收到30 m 后,求缆绳中张力的改变量,以及在此过程中水手所作的功.

分析 水手拉缆绳的过程中,是通过缆绳将力作用在船上实现船体运动作的功.由于缆绳中的张力是变力,直接计算它的功比较困难.根据动能定理,合外力的功等于物体动能的增量,船在此过程中开始前和结束后都保持静止,船只在水平方向发生位移,水平方向只受缆绳张力水平分量和恒定阻力F 作用,则水手通过缆绳张力所作的功的量值

应等于恒力F 所作的负功.

解 缆绳长度由l 1=50 m 收到l 2=30 m 的过程中,位移为s ,水手作的功为

J 101.035J 103010505000 52222222221?=---?=---==()

(h l h l F Fs W

设此过程中开始前缆绳张力为F T1、结束后为F T2,它们的水平方向分量都应与恒力F 等大而反向,因此有

F l h l F =-1221T1 F l h l F =-2222T2

图3-2

N 200N 10505010

30305000 222222112222T1T2=???? ??---?=???

? ??---=-h l l h l l F F F 3-3 质点沿x 轴运动,由x 1 = 0处移动到x 2 = 4 m 的过程中,受到力)1(0

0-=x x F F 的作用,其中x 0 = 2 m ,F 0 = 8 N ,作出F -x 曲线,求在此期间力F 对质点所作的功. 分析 当质点沿x 轴作直线运动时,如果外力是质点位置坐标x 的函数)(x F F =,质点从位置x 1运动到x 2的过程中,根据功的定义,该力所作的功为?=21d x x x x F W )(,即为F -x 图像中x 1到x 2

区间曲线)(x F 与x 轴线包围面积的代数和.

解 根据题意,F -x 曲线如图3-3所示.按照功的定义,有

0J 42248 2d 1d 220

220002121

=-??=-=-==??)(

)()()(x x x F x x x F x x F W x x x x 由图3-3可见,x 1到x 2区间曲线)(x F 与x 轴线包围面积的代数和为零,与上面的计算结果一致.

3-4 在x 轴线上运动的物体速度为v = 4 t 2 + 6(其中v 以m/s 为单位,t 以s 为单位),作用力3-=t F (其中F 以N 为单位,t 以s 为单位)沿x 轴正向.试求在t 1 = 1 s 和t 2 = 5 s 期间,力F 对物体所作的功.

分析 当质点沿x 轴作直线运动时,如果外力是时间t 的函数)(t F F =,根据功的定义?=2

1d x x x x F W )(,无法直接积分计算,通常可利用微分关系式t t t

x x d d d d d v ==

,将积分变量转换为时间t 进行计算.积分变量代换后,积分的上下限也要作相应的代换.

解 根据功的定义 []J 921834d 186124 d 643d d 21212

121212

34232=-+-=-+-=+-===????t t t t t t t t x x t t t t t t t t t t t t t F x t F W )())(()()(v

图3-3

3-5 在光滑的水平桌面上固定有如图3-5(a)所示的半圆形屏障,质量为m 的滑块以初速v 0沿屏障一端的切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,(1)证明当滑块从屏障另一端滑出时,摩擦力对它所作的功为

)(1e 2

120-=

-μπv m W ;(2)说明上述结果为什么与圆弧半径无关. 分析 当外力无法表示成位移的函数时,功就不能直接由定义式积分进行计算.如果能确定物体初末状态的速度,可以应用动能定理,求出物体动能的增量就等于合外力对物体所作的功.

证 (1)首先应计算出滑块从屏障另一端滑出时的速度.设滑块在屏障中位于如图3-5(b)所示的位置,在竖直方向无运动,在水平面内受到屏障

压力F N 和摩擦力F f 作用,此时速度为v ,设屏障半径为R ,应用牛顿第二定律所得运动方程为

法向: R v 2m F =N 切向: t

m F d d f v =- 由于F f =μF N ,得 R

t 2

d d v v μ-= 利用关系式θ

θθd d d d d d d d v v v v R t t ==,上式可写为 v v μθ

-=d d (1) 由初末条件:当0=θ时,0v v =;当πθ=时,v v =,将上式分离变量并积分:

??-=πθμ0d d 0v

v v v (2)

得滑块从屏障另一端滑出时的速度为 μπ-=e 0v v (3)

则摩擦力在此期间所作的功为

)(1e 2

12121220202-=-=-μπv v v m m m W (2)由(1)和(2)式可以看出,当滑块发生角位移θd 时,速度的变化只与角位移θd 有关,与半径无关,因此(3)式给出的末速度也只与半圆的张角有关,这就导致最终结果与圆弧半径无关了.

3-6 一个质点在指向中心的平方反比力2r k F /=的作用下,作半径为r 的圆

v

(a ) (b )

图3-5

周运动,求质点运动的速率和总机械能.(提示:选取距力心无穷远点的势能为零.)

分析 与物体间距离平方成反比的力是自然界中普遍存在的一种力,例如万有引力和电荷间的库仑力.如果该力指向中心,计算势能时,从空间任意一点到势能零点(无穷远点)积分的路径方向与力的作用方向相反,积分表达式的矢量乘积变为标量乘积后要取负号.

解 质点只在指向中心的力2r k F /=的作用下作圆周运动,当速率为v 时,法向加速度为r /2v ,则质点的法向运动方程为

r

m r k 2

2v = 得 mr k =

v 选取距力心无穷远为势能零点,则势能为

r

k r r k E r r -=-=?=??∞∞d d 2p r F 总机械能为

r

k r k r k r k m E E E 22212p k -=-=-=+=v 3-7 在力)(j i F y x k +=的作用下,质点在xy 平面内运动,(1)分别计算质点由原点O 经路径OBA 和路径OA 移动到达A 点该力所作的功,其中AB 是以O 为圆心R 为半径的一段圆弧,如图3-7(a )所示;(2)计算沿任意路径由位置P (x 1 , y 1)到Q (x 2 , y 2)该力所作的功,并由此证明该力是保守力.

分析

解 (1)根据功的定义,经路径OBA 该力所作的功为

????+?=?=BA

OB OBA W s F s F s F d d d 1 由于力r j i F k y x k =+=)(,即沿原点指向质点所在位置的方向,所以有r F s F d d ?=?.从图3-7(a )可以看出,在路径OB 上,力的方向与位移方向相同x kx d d =?r F ;在路径BA 上,力的方向与位移方向垂直,0d d =?=?r F s F ,因此可得

y O B x x

(a ) (b )

图3-7

2012

1d d d d kR x kx x kx W R OB BA OB ===?+?=????s F s F 同理,经路径OA 该力所作的功为 20121d d d d kR r kr k W R

OA OA OA ==?=?=?=????r r r F s F (2)P 点的径矢大小为r 1,Q 点的径矢大小为r 2,则212121y x r +=,

22

2222y x r +=.取任意路径L 如图3-7(b )所示,则 )]()[()(2122212221222

121 d d d 2

1y y x x k r r k r kr W r r L L -+-=-==?=?=???r F s F 结果表明,沿任意路径力F 所作的功与路径无关,只与P 点和Q 点的位置有关,表明力F 为保守力.

3-8 沿x 轴运动的某粒子的势能是其位置x 的函数

x B x A x U -=2)( 据此所作的势能曲线如图3-8所示.(1)试求粒子势能最小值所对应的运动的平衡

位置;(2)当粒子的总能量A

B E 82-=时,粒子将被约束在一定范围内振动,求粒子往返运动的转折位置.

分析 n m x

B x A x U -=)(是粒子物理、固体物理和材料科学中描述粒子间相互作用经常出现的势能函数,对它的研究和讨论有十分重要的实际意义.这里仅就最简单的情况,即12==n m ,进行分析,获得粒子运动状态的初步印象.

当粒子的能量比较小时,将在平衡位置附近作简谐振动,因此平衡位置和往返运动的转折位置就有重要意义.

解 (1)由0d d =x x U )(可得势能函数最小值的位置,即 02d d 23=+-=x B x A x x U )( 解得 B A x 2= (2)在往返运动的转折点处,粒子的速度为零,即动能为零,总能量应等于粒子的势能,即

A

B x B x A x U 822-=-=)( 可得 088222=+-A ABx x B

图3-8

解得 B A x 1711.= B

A x 8362.= 3-9 马拉雪橇上坡,从坡底到坡顶是一段半径为R 弧长为6π的圆弧形山

坡.假设马的拉力始终沿圆弧的切线方向,雪橇的质量为m ,雪橇与雪地间的滑动摩擦系数为μ,求在这段路程中马所作的功.

分析 在物体运动过程中,有摩擦力等非保守力存在时,应用功能原理计算外力的功比较便捷,外力和非保守内力的功等于物体系机械能的增量. 解 以雪橇为研究对象,受力情况如图3-9所示,如果始末时刻雪橇为静止状态,在上坡过程中,马的拉力的功和摩擦阻力的负功之和等于雪橇重力势能的增量. 由于此过程雪橇高度的增加为)cos (6

1π-R ,因此重力势能的增量为)cos (61π

-mgR .当雪橇所在位置的法线方向与竖直方向夹角

为θ时,摩擦力θμμcos mg F F ==N f ,位移θd d R s =,应用功能原理,马的拉力的功为

)cos sin ()cos (cos 661 61d d 06

f ππμπθθμπ-+=-+=?=??m gR m gR m gR W s F

3-10 用m/s 200=v 的初速度将一质量为kg 50.=m 的物体竖直上抛,所达到的高度是m 16=h ,求空气对它的平均阻力.

分析 物体所受到的空气阻力是外力,重力是物体和地球组成的系统的内力,根据功能原理,空气阻力所作的功应等于系统机械能的增量.应在选取了势能零点后,确定系统的初末状态的机械能,计算出系统机械能的增量.

解 取物体抛出点为重力势能零点,则物体初始机械能为2012

1v m E =,达最高点时机械能为mgh E =2,设空气对它的平均阻力为F ,应用功能原理得

202

1v m mgh Fh -=- 则 N 1.35N 8916

2205022

20=-??=-=).(.)(g h m F v 3-11 质量分别为m 1、m 2的二物体与劲度系数为k 的弹簧连接成如图3-11(a )所示的系统,物体m 1放置在光滑桌面上,忽略绳与滑轮的质量及摩擦.当物体达到平衡后,将m 2往下拉h 距离后放手,求物体m 1、m 2运动的最大速率.

F f R

图3-9

分析 应用机械能守恒定律解力学问题时,系统的选取十分重要.选定系统后,要区分内力和外力、保守力和非保守力以及作功的力和不作功的力.仅当外力和非保守内力所作的功均为零时,才能应用机械能守恒定律.本题中m 1、m 2二物体连接在一起,位移大小、速率和加速度的大小都相同.忽略绳与滑轮的质量及摩擦的情况下,张力F T 和F ’T 为一对内力,大小相等,方向分别与物体运动方向相同和相反,因此系统运动过程中二力的功之和为零.

解 以弹簧与二物体组成的弹性系统以及物体与地球组成的重力系统为研究对象,二物体受力情况如图3-11(b )所示.在系统运动过程中,因张力F T 和F ’T 所作功之和为零,只有作用在m 2上的重力及作用在m 1上的弹簧弹性力作功,系统机械能守恒.

取竖直向下为x 轴正向,系统平衡时m 2的位置为坐标原点,设此时弹簧的伸长量为l 0,根据胡克定律,弹簧的弹性力大小为0kl F =.由于系统处于平衡

状态,应有0T

2='-F g m ,0T =-F F ,且因T T F F =',则 002=-kl g m (1)

取m 2的平衡位置为重力势能零点,初始时,m 2向下位移h ,重力势能为

gh m 2-,弹簧伸长量为)(h l +0,弹性势能为202

1)(h l k +,则系统机械能为 gh m h l k E 22012

1-+=)( (2) 当m 2处于x 位置时,设速率为v ,则系统总动能为2212

1v )(m m +,重力势能为gx m 2-,弹簧伸长量为)(x l +0,弹性势能为202

1)(x l k +,则系统机械能为 2212202

121v )()(m m gx m x l k E ++-+= (3) 应用机械能守恒定律,1E E =,由(1)、(2)和(3)式得

)(222

12x h m m k -+=v 显然0=x 时有最大值 212

m a x m m kh +=

v 3-12 用弹簧将质量分别为m 1和m 2的两块木板连接起来,必须加多大的力

’T

m 2 m 2g x

(a ) (b )

图3-11

F 压到上面的板m 1上,以便当突然撤去F 时,上面的板跳起来能使下面的板也刚好被提离地面.

分析 对于弹簧连接的两块木板组成的系统,初始时有外力作用,运动过程中m 2还受到地面的压力,弹簧的弹性力是变力,两块木板之间有相对运动,应用牛顿定律解这样的问题显得相当复杂.考虑到撤去外力F 后,作用于系统的力除作为保守力的重力和弹簧的弹性力外,只有地面的压力.根据题意,下面的板刚好被提离地面,表明其处于与地面接触的临界状态,实际并没有离开地面,也就是说没有发生位移,那么地面的压力就没有作功.于是,撤去外力F 后,只有重力和弹簧的弹性力作功,系统机械能守恒.

解 以如图3-12(a )所示的弹簧连接的两块木板组成的弹性系统、以及和地球组成的重力系统为研究对象,两块木板的处于始末状态和受力情况分别如图3-12(b )和(c )所示.

初刻,弹簧压缩形变量为x 1,弹性势能为212

1kx ,设此时系统重力势能为零,系统机械能为

2112

1kx E = 下面的板刚好被提离地面时,弹簧伸长形变量为x 2,弹性势能为222

1kx ,重力势能为)(211x x g m +,系统机械能为

2221122

1kx x x g m E ++=)( 机械能守恒21E E =,得

22211212

121kx x x g m kx ++=)( 即 )()(21122212

1x x g m x x k +=- 两边同除以21x x +,得 g m x x k 1212

1=-)( (1) 初始时,由图3-12(b )可见,m 1处于平衡状态,因11kx F =,则有

011=-+kx g m F (2)

1

2(a ) (b ) (c )

图3-12

m 2刚好被提离地面时,由图3-12(c )可见,地面压力为零,m 2处于平衡状态,因222kx F F ='=,则有

022=-kx g m (3)

(2)式减去(3)式得 )(2112x x k g m g m F -+-=

将(1)式代入上式,得

g m m F )(21+=

3-13 质量m 的小球从光滑的轨道下滑,然后进入半径为R 的圆形轨道,开始下滑时,小球的高度R H 2=,如图3-13(a )所示.求:(1)小球在什么位置脱离圆轨道;(2)小球脱离圆轨道之后,能达到的最大高度;(3)经过高度为R 的A 点时,小球对轨道的压力.

分析 当物体在光滑表面上运动时,支承面对物体的压力不作功,系统机械能守恒.在曲线形轨道上运动时,轨道的压力和重力的法向分量使物体产生法向加速度.物体脱离轨道的瞬间,轨道的压力为零,只有重力的法向分量使物体产生法向加速度.

解 (1)小球在轨道上某点C 受力情况如图3-13(b )所示,此时速度为C v ,则法向运动方程为

R m mg F 2

N C

v =+θsin (1)

如果就在C 点脱离圆轨道,0N =F ,由上式得

θsin gR =2C v (2)

小球运动过程中轨道压力方向始终与运动方向垂直,不作功,只有重力作功,机械能守恒.取轨道最低点为重力势能零点,初始时小球势能为R mg 2,到达C

点时高度为)sin (θ+=1R h ,势能为mgh ,动能为2C 2

1v m ,由机械能守恒定律得 2C 2

12v m mgh mgR += (3)

A

(a ) (b )

图3-13

由(2)和(3)式,且)sin (θ+=1R h ,解得

R h 3

5=

(4) (2)小球离开轨道后作抛体运动,水平方向速度不变,等于C 点速度的水

平分量θsin C v .最高点高度为max h ,重力势能为max mgh ,动能为θ22C 2

1sin v m ,应用机械能守恒定律,得

θ22C max 2

12sin v m mgh mgR += (5) 由(2)、(3)、(4)和(5)式,解得

R R h 85127

50max .== (3)位于A 点时,0=θ,由(1)式得 R

m F 2A N v = 应用机械能守恒定律,得

2A 2

12v m mgR mgR += 从以上两式得 mg F 2N =

3-14 劲度系数为N/m 10013?.的弹簧,水平放置,其一端固定在墙上,另一端被质量为8 kg 的物体压缩,当弹簧形变量为15 cm 时,将物体释放,在弹簧的作用下,物体水平射出,物体和平面间摩擦力为5 N ,(1)求弹簧恢复原长时,物体的速度;(2)若弹簧恢复原长后,物体和弹簧就脱离接触,求物体此后能跑多远.

分析 根据受力和各作用力作功的不同情况,将运动过程分阶段讨论,可以分别应用动能定理和功能原理求解.

解 (1)取物体与弹簧组成的弹性系统为研究对象,在弹簧恢复原长的过程中,重力和平面支承力不作功,摩擦力f F 作负功,弹簧的弹性力是保守力,根据功能原理,摩擦力所作的功应等于系统机械能的增量.

初始时,弹簧被压缩量m 150.=x ,弹性势能为22

1kx ;弹簧恢复原长时,速度为v ,动能为22

1v m ,则有 22f 2

121kx m x F -=-v 得

m/s 1.62m/s 15052150100181 2123f 2=??-???=-=

)...((x F kx m v

(2)物体和弹簧脱离后,在摩擦力作用下作减速运动,设此后位移为s ,应用动能定理,摩擦力所作的功应等于物体动能的增量,则

2f 2

10v m s F -=- 得 m 12m 5

2621822

f 2..=??==F m s v 3-15 如图3-15所示,自动卸料车重量为G 2,连同料重为G 1,它从静止开始沿着与水平方向成?30角的斜面下滑,滑到底端时与一呈自然长度的轻弹簧相碰,当弹簧压缩量达最大时,卸料车自动翻斗卸料,然后因弹簧的弹性力作用,料车反弹沿斜面回到原有高度.设车与斜面间的摩擦力为车重的0.25倍,求21G 的值. 分析 由于卸料车下滑与返回过程的受力情况不同,应分两阶段分析讨论.因为整个过程中除摩擦力外,没有其他的非保守力和外力作功,所以可以应用功能原理求解. 解 以卸料车与弹簧和地球组成的弹性和重力系统为研究对象.

在下滑阶段,料车载重,设料车行程的

高差为h ,弹簧最大压缩量为l ?,取斜面顶端为重力势能零点,则重力势能增量

为h G 1-,弹簧弹性势能增量为22

1)(l k ?,摩擦力1f 250G F .=作功为?

-302501sin .h G ,应用功能原理,得 2112

130250)(sin .l k h G h G ?+-=?- 在料车返回过程中,重力势能增量为h G 2,弹簧弹性势能增量为22

1)(l k ?-,摩擦力2f 250G F .=作功为?

-302501sin .h G ,应用功能原理,得 2222

130250)(sin .l k h G h G ?-=?- 由以上两式可得

325

0302503021=-?+?=.sin .sin G G 3-16 如图3-16所示,滑块置于一竖直轻弹簧上,弹簧原长为R ,用力使弹簧压缩到R/2时释放,则滑块恰好能通过上方光滑的1/4圆弧形轨道,并由A

图3-15

点抛出.(1)求弹簧的劲度系数;(2)求滑块落到地面时的水平位置.

分析 在滑块离开轨道之前,由于轨道光滑,除重力和弹簧的弹性力外无其他力作功,可以应用机械能守恒定律.滑块离开轨道后,作平抛运动,运用运动学中的公式求解.在竖直光滑圆形轨道上运动的物体,只受重力和轨道压力作用,当物体刚好能通过圆形轨道顶端,表明在顶点时轨道压力为零,物体圆周运动的法向加速度只由重力产生.

解 (1)取地面为重力势能零点,当弹簧被压缩时,弹性势能为2

221??

? ??R k ,重力势能为mgR 21,到达A 点时,重力势能为mgR 2,速度为v ,动能为221v m ,应用机械能守恒定律得

2221221221v m mgR mgR R k +=+??? ?? (1) 根据题意,在A 点的运动方程为 R

m m g 2

v = (2) 由以上两式得 R

mg k 16

= (2)滑块脱离A 点后作平抛运动,竖直方向下落距离为2R ,水平运动距离为s ,则有

R gt 22

12= t s v = 再利用(2)式,得 R s 2=

3-17 劲度系数为k 原长为R 的弹簧一端固定在竖立的半径为R 的大圆环的顶点A ,弹簧另一端连接一环形重物由位置B 释放,在重力的作用下重物向下滑移,如图所示,到达最低点C 时的速度刚好为零,如果忽略重物与大圆环之间的摩擦,求重物的质量以及运动中角加速度为零的位置.

分析 通常所讨论问题中的弹簧的长度方向与物体运动方向相同.如果弹簧的长度方向以及伸长或压缩方向与物体运动方向不同,只要弹簧的弹性形变量为x ,根据胡克定律,它作用于物体的弹性力大小就为kx ,系统的弹性势能就等于22

1kx . 解 由于不计摩擦,只有重力和弹簧的弹性力作功,系统机械能守恒. 初始时,设重力势能为零,弹性势能为

221221R k )(-,达最低点C 时,重力势能为mgR -,弹性势能为221kR ,应用 A

图3-16

B 图3-17

机械能守恒定律得

2222

11221kR mgR R k +-=-)( 则重物质量为 )(12-=g

kR m (1) (2)由图3-17可见,当弹簧与竖直方向夹角为θ时,重力在圆环切线方向的分量为)sin(θ2mg ;弹簧伸长量为)cos (R R -θ2,弹性力为)cos (R R k -θ2,在圆环切线方向的分量为θθsin )cos (R R k -2,则重物的切向运动方程为

R m R R k mg αθθθ=--sin )cos ()sin(22

令角加速度0=α,得

θθθθsin )cos (cos sin R R k mg -=22

利用(1)式,得 2

241-=θc o s 42312

241'?=-=arccos θ 3-18 在倾角为?30的光滑斜面上,质量为1.8 kg 的物体由静止开始下滑,到达底部时将一个沿斜面放置的劲度系数N/m 2000=k 的弹簧压缩了0.2 m 后,达瞬时静止,求:(1)物体达瞬时静止前在斜面上滑过的路程;(2)它与弹簧开始接触时的速率. 分析 只有重力和弹簧的弹性力作功,将物体和弹簧以及地球共同组成一个保守系统机械能守恒.由于实际问题所涉及的都是物体不同位置之间势能的差值,因此势能零点的选取不影响结果,只需考虑如何选取可以使表达式最简单. 解 (1)设物体在斜面上滑过的路程为s ,

物体达到的最低点为重力势能零点,弹簧压缩量为0x ,弹性势能为202

1kx .开始下滑时重力势能为?30sin mgs ,应用机械能守恒定律,得

202

130kx mgs =?sin m 544m 30898122020003022

20.sin ...sin =?

????=?=mg kx s (2)设物体与弹簧刚接触时,速度为v ,距最低点距离为0x ,此时重力势

图3-18

能为?300sin mgx ,应用机械能守恒定律,得

202

13030v m mgx mgs +?=?sin sin m/s 6.52m/s 3020544892 3020=??-??=?

=sin )..(.sin )(s-x g v

3-19 在气垫导轨上质量为m 的滑块被劲度系数分别为k 1、k 2的两弹簧连接到气轨的两端点A 、B 上.起初气轨水平放置,两弹簧均处于无形变状态,滑块位于O 点,如图3-19(a )所示.现迅速将气轨的B 端抬高,使其与水平面的夹角为α,如图3-19(b )所示,求滑块运动可能达到的最低点与O 点间的距离及滑块可能达到的最大速率.

分析 当重力势能和弹簧的弹性势能同时存在,应用机械能守恒定律时,应该注意势能零点的选取问题.可以按表达式最简单的原则选取重力势能零点,而弹性势能零点则通常应选取在弹簧无形变位置.

解 取气轨倾斜后O 点为重力势能和弹性势能零点,设最低点与O 点间的

距离为1x ,在最低点时,重力势能为αsin 1mgx -,弹性势能为21212

1x k k )(+,应用机械能守恒定律,得

02

121211=++-x k k mgx )(sin α 2

112k k mg x +=αsin 气轨倾斜后,在重力和弹性力作用下,O 点不再是平衡位置.设平衡位置为O ',与O 点距离为0x ,应用牛顿定律可得

0021=+-x k k mg )(sin α (1)

重力势能为αsin 0mgx -,弹性势能为20212

1x k k )(+,物体通过O '点时速率最大,设为m v ,动能为2m 2

1mv ,应用机械能守恒定律,得 02

1212m 20210=+++-v m x k k mgx )(sin α (2) 由(1)和(2)式得

(a ) (b )

图3-19

2

10m k k m g gx +=-=ααsin sin v 3-20 在一根光滑的半径很小的水平轴上,挂着一段均匀绳,长为l ,质量为

m ,如图3-20(a )所示,绳开始滑动时,d BC =.求当l BC 3

2=时的加速度,并证明此时速度为

)(229

22d ld l l g -+-=v 分析 挂在光滑细轴上的软绳,左右两段相互作用的张力大小相等,为内力,以整条软绳为研究对象,作用在左右两段上的重力相对于运动方向分别为同向和反向.轴的支承力始终垂直于绳的运动方向,不产生加速度,也不作功.与其他连接体问题类似,沿运动方向应用牛顿定律建立方程最为简捷. 解 当l BC 32=时,设软绳加速度为a ,沿运动方向应用牛顿定律得 ma mg mg =-3

132 g a 3

1= 取B 点为重力势能零点,竖直向下为x 轴正向,位于坐标x 的绳上小段d x 的势能为x l

mgx d -,则 初始时,d BC =,势能为 2021d d l

mg x l mgx d -=-? d l BA -=,势能为 2021d )(d l l

mg x l mgx d l --=-?- l d BC 32==时,势能为 2

3221??

? ??-l l mg l BA 31=,势能为 23121??? ??-l l mg 此时绳的速率为v ,动能为22

1v m ,应用机械能守恒定律,得 2

222231213221212121??

? ??-??? ??-=---l l mg l l mg m d l l mg d l mg v )( 解得 )(22922d ld l l g -+-=v

A x d - (a ) (b )

图3-20

3-21 假设地球可以看成是质量为m '、半径为R 的球体,试由(3-20)式推求以地面为重力势能零点时质量为m 的物体在距地面高度为h 处(R h <<)的重力势能的表达式,并将所得结果与(3-15)式作比较.

分析 物体与地球之间的作用力是万有引力,是物体质心间距离平方成反比的力,往往取无限远处为这类力的势能零点.但在地球表面附近,通常取地球表面为重力势能零点.由于计算势能时,一般都是计算两位置的势能差,因此选取不同的零点,所得最终结果都相同.

解 由(3-20)式得物体从高度为h 处移动到地面万有引力作的功为

)(h R R h m m G h R R m m G r r m m G W R

h R +'=??? ??+-'='-=?+0020 11d 根据势能定义,此功就等于重力势能.注意到在地球表面附近h R >>,则

20p R

h m m G W E '≈= 与(3-15)式作比较,得 20

R

m G g '=

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理实验课后习题答案

一牛顿环的各环是否等宽?密度是否均匀?解释原因? 因为环是由空气劈上下表面反射的两束光叠加干涉形成的。劈的上表面变化在横向是不均匀的,故光程差也不是均匀变化的。所以各环是不等宽的环的密度也不是均匀的。各环不等宽,半径小的环宽,越到外边越窄,密度是不均匀的,牛顿环的半径公式是:半径r等于根号下(m+1/2)λR,其中m为环的级数。从公式可以看出,半径和环数并不是线性关系,这样环自然不均匀。计算可以知道,越往外环越密。 二牛顿环的干涉圆环是由哪两束相干光干涉产生的? 半凸透镜下表面和下底面上表面的两束反射光 三电桥由哪几部分组成?电桥平衡的条件? 由电源、开关、检流计桥臂电阻组成。 平衡条件是Rx=(R1/R2)R3 四接通电源后,检流计指针始终向一边偏转,试分析出现这种情况的原因? 指针向一侧偏转就说明发生了电子的定向移动了,这个应该没问题。 指针不偏转,有2种情况吧,其1呢是整个电路发生了断路或其他故障,还1种情况则是流过的电流太小,不足于使电表发生偏转或其偏转的角度肉眼根本看不到。 无论如何调节,检流计指针都不动,电路中可能出现故障是调节臂电阻断路或短路。。无论如何调节,检流计指针始终像一边偏而无法平衡,电路中有可能出现故障是有一个臂(非调节臂)的电阻坏了。(断路或短路) 五什么叫铁磁材料的磁滞现象? 铁磁物质经外磁场磁化到饱和以后,把磁场去掉。这些物质仍保留有剩余磁化强度。需要反方向加磁场才能把这剩余磁化强度变为零。这种现象称为铁磁的磁滞现象。也是说,铁磁材料的磁状态,不仅要看它现在所处的磁场条件;而且还要看它过去的状态。 六如何判断铁磁材料属于软.硬材料? 软磁材料的特点是:磁导率大,矫顽力小,磁滞损耗小,磁滞回线呈长条状;硬磁材料的特点是:剩磁大,矫顽力也大 用光栅方程进行测量的条件是什么? 条件是一束平行光垂直射入光栅平面上,光波发生衍射,即可用光栅方程进行计算。如何实现:使用分光计,光线通过平行光管射入,当狭缝位于透镜的焦平面上时,就能使射在狭缝上的光经过透镜后成为平行光 用光栅方程进行测量,当狭缝太窄或者太宽会怎么样?为什么? 缝太窄,入射光的光强太弱,缝太宽,根据光的空间相干性可以知道,条纹的明暗对比度会下降! 区别是,太窄了,亮纹会越来越暗,暗纹不变,直到一片黑暗! 太宽,暗条纹会逐渐加强,明纹不变,直到一片光明!

(完整版)大学物理实验报告答案大全

大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理根据欧姆定律, I R = U ,如测得U 和I 则可计算出R。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一 只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第2 章中的第2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。对每一个电阻测量3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 测量次数1 2 3 U1 /V 5.4 6.9 8.5 I1 /mA 2.00 2.60 3.20 R1 / Ω 2700 2654 2656

测量次数1 2 3 U2 /V 2.08 2.22 2.50 I2 /mA 38.0 42.0 47.0 R2 / Ω 54.7 52.9 53.2 (1) 由. % max ΔU =U ×1 5 ,得到U 0.15V , 1 Δ = U 0 075V Δ 2 = . ; (2) 由. % max ΔI = I ×1 5 ,得到I 0.075mA, 1 Δ = I 0 75mA Δ 2 = . ; (3) 再由2 2 3 3 ( ) ( ) I I V u R U R Δ Δ = + ,求得9 10 Ω 1Ω 2 1 1 = × = R R u , u ; (4) 结果表示= (2.92 ± 0.09)×10 Ω, = (44 ±1)Ω 2 3 1 R R 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长

关于大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 故 q q 3 3 - =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=, dq 在带电圆环轴线上x 处产生的场强大小为 ) (42 20R x dq dE += πε 根据电荷分布的对称性知,0==z y E E z

式中:θ为dq 到场点的连线与x 轴负向的夹角。 下面求直线段受到的电场力。在直线段上取dx dq 2λ=,dq 受到的电场力大小为 方向沿x 轴正方向。 直线段受到的电场力大小为 方向沿x 轴正方向。 4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。求: (1)圆心处O 点的场强; (2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。 解:(1)在半圆环上取?λλRd l dq ==d ,它在O 点产生场强大小为 20π4R dq dE ε= ?ελ d R 0π4= ,方向沿半径向 外 根据电荷分布的对称性知,0=y E 故 R E E x 0π2ελ = =,方向沿x 轴正向。 (2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。 5.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度。 解:建立图示坐标系。在均匀带电细直杆上取dx L q dx dq ==λ,dq 在P 点产生的场强大小为 2 02044x dx x dq dE πελπε== ,方向沿x 轴负方向。

大学物理期末考试经典题型(带详细答案的)

例1:1 mol 氦气经如图所示的循环,其中p 2= 2 p 1,V 4= 2 V 1,求在1~2、2~3、3~4、4~1等过程中气体与环境的热量交换以及循环效率(可将氦气视为理想气体)。O p V V 1 V 4 p 1p 2解:p 2= 2 p 1 V 2= V 11234T 2= 2 T 1p 3= 2 p 1V 3= 2 V 1T 3= 4 T 1p 4= p 1V 4= 2 V 1 T 4= 2 T 1 (1)O p V V 1 V 4 p 1p 21234)(1212T T C M m Q V -=1→2 为等体过程, 2→3 为等压过程, )(2323T T C M m Q p -=1 1123)2(23RT T T R =-=1 115)24(2 5RT T T R =-=3→4 为等体过程, )(3434T T C M m Q V -=1 113)42(2 3 RT T T R -=-=4→1 为等压过程, )(4141T T C M m Q p -=1 112 5)2(25RT T T R -=-= O p V V 1 V 4 p 1p 21234(2)经历一个循环,系统吸收的总热量 23121Q Q Q +=1 112 13 523RT RT RT =+=系统放出的总热量1 41342211 RT Q Q Q =+=% 1.1513 2 112≈=-=Q Q η三、卡诺循环 A → B :等温膨胀B → C :绝热膨胀C → D :等温压缩D →A :绝热压缩 ab 为等温膨胀过程:0ln 1>=a b ab V V RT M m Q bc 为绝热膨胀过程:0=bc Q cd 为等温压缩过程:0ln 1<= c d cd V V RT M m Q da 为绝热压缩过程:0 =da Q p V O a b c d V a V d V b V c T 1T 2 a b ab V V RT M m Q Q ln 11= =d c c d V V RT M m Q Q ln 12= =, 卡诺热机的循环效率: p V O a b c d V a V d V b V c ) )(1 212a b d c V V V V T T Q Q (ln ln 11-=- =ηT 1T 2 bc 、ab 过程均为绝热过程,由绝热方程: 11--=γγc c b b V T V T 1 1--=γγd d a a V T V T (T b = T 1, T c = T 2)(T a = T 1, T d = T 2) d c a b V V V V =1 212T T Q Q -=- =11η p V O a b c d V a V d V b V c T 1T 2 卡诺制冷机的制冷系数: 1 2 1212))(T T V V V V T T Q Q a b d c ==(ln ln 2 122122T T T Q Q Q A Q -= -== 卡ω

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

关于大学物理答案第章

17-3 有一单缝,缝宽为,在缝后放一焦距为50cm 的汇聚透镜,用波长为的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 代入数据得 17-4 用波长为的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 依题意有 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 依题意有 0115.234.0sin 5 2sin 20sin 50===→=--θθ 中央波束的角宽为00475.2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 依题意有 2 )122(2)132(21λλ+?=+? 代入数据得 nm 6.428760057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径)中的柱状感光细胞每平方毫米约×105个。星体的像照亮了几个这样的细胞? 解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为 (2)视网膜上星体的像的直径为 (3)细胞数目应为3.2105.14)104.4(52 3=????=-πn 个 17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。试问汽车离人多远的地方,眼睛恰能分辨这两盏前灯?设夜间人眼瞳孔直径为,入射光波长为550nm.。 解: 17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大? (2)此照相机的孔径需多大?光的波长按500nm 计算。 解:装置的光路如图所示。 17-10 一光栅每厘米刻有4000 位)已知?和?谱线的波长分别为656nm 和解: S 1S 2

2018大学物理模拟考试题和答案

答案在试题后面显示 模拟试题 注意事项: 1.本试卷共三大题,满分100分,考试时间120分钟,闭卷; 2.考前请将密封线内各项信息填写清楚; 3.所有答案直接做在试卷上,做在草稿纸上无效; 4.考试结束,试卷、草稿纸一并交回。 一、选择题 1、一质点在平面上作一般曲线运动,其瞬时速度为,瞬时速率为,某一时间内的平均速度为,平均速率为,它们之间的关系必定有:() (A)(B) (C)(D) 2、如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A至C的下滑过程中,下面 哪个说法是正确的?() (A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心.

(D) 它的合外力大小不变. (E) 轨道支持力的大小不断增加. 3、如图所示,一个小球先后两次从P点由静止开始,分别沿着光滑的固定斜面l1和圆弧面l2下滑.则小 球滑到两面的底端Q时的() (A) 动量相同,动能也相同.(B) 动量相同,动能不同. (C) 动量不同,动能也不同.(D) 动量不同,动能相同. 4、置于水平光滑桌面上质量分别为m1和m2的物体A和B之间夹有一轻弹簧.首先用双手挤压A和B 使弹簧处于压缩状态,然后撤掉外力,则在A和B被弹开的过程中( ) (A) 系统的动量守恒,机械能不守恒.(B) 系统的动量守恒,机械能守恒.(C) 系统的动量不守恒,机械能守恒.(D) 系统的动量与机械能都不守恒. 5、一质量为m的小球A,在距离地面某一高度处以速度水平抛出,触地后反跳.在抛出t秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.

大学物理实验课后答案

(1)利用f=(D+d)(D-d)/4D 测量凸透镜焦距有什么优点? 答这种方法可以避免透镜光心位置得不确定而带来得测量物距与像距得误差。 (2)为什么在本实验中利用1/u+1/v=1/f 测焦距时,测量u与v都用毫米刻度得米尺就可以满足要求?设透镜由于色差与非近轴光线引起得误差就是1%。 答设物距为20cm,毫米刻度尺带来得最大误差为0、5mm,其相对误差为 0、25%,故没必要用更高精度得仪器。 (3)如果测得多组u,v值,然后以u+v为纵轴,以uv为横轴,作出实验得曲线属于什么类型,如何利用曲线求出透镜得焦距f。 答直线;1/f为直线得斜率。 (4)试证:在位移法中,为什么物屏与像屏得间距D要略大于4f? 由f=(D+d)(D-d)/4D →D2-4Df=d2→D(D-4f)=d2 因为d>0 and D>0 故 D>4f 1、避免测量u、ν得值时,难于找准透镜光心位置所造成得误差。 2、因为实验中,侧得值u、ν、f都相对较大,为十几厘米到几十厘米左右,而误差为1%,即一毫米到几毫米之间,所以可以满足要求。 3、曲线为曲线型曲线。透镜得焦距为基斜率得倒数。 ①当缝宽增加一倍时,衍射光样得光强与条纹宽度将会怎样变化?如缝宽减半,又怎样改变? 答: a增大一倍时, 光强度↑;由a=Lλ/b ,b减小一半 a减小一半时, 光强度↓;由a=Lλ/b ,b增大一倍。 ②激光输出得光强如有变动,对单缝衍射图象与光强分布曲线有无影响?有何影响? 答:由b=Lλ/a、无论光强如何变化,只要缝宽不变,L不变,则衍射图象得光强分布曲线不变(条纹间距b不变);整体光强度↑或者↓。

③用实验中所应用得方法就是否可测量细丝直径?其原理与方法如何? 答:可以,原理与方法与测单狭缝同。 ④本实验中,λ=632。8nm ,缝宽约为5*10^-3㎝,屏距L 为50㎝。试验证: 就是否满足夫朗与费衍射条件? 答:依题意: L λ=(50*10^-2)*(632、8*10^-9)=3、164*10^-7 a^2/8=(5*10^-5)^2/8=3、1*10^-10 所以L λ<20θ,(10θ人为控制在mv )03.050.3(±); 2)测量散热板在20θ附近得冷却速率。 4、试述稳态法测不良导体导热系数得基本原理。

(完整版)大学物理实验理论考试题及答案汇总

一、 选择题(每题4分,打“ * ”者为必做,再另选做4题,并标出选做记号“ * ”,多做不给分,共40分) 1* 某间接测量量的测量公式为4 3 23y x N -=,直接测量量x 和y 的标准误差为x ?和y ?,则间接测 量量N 的标准误差为?B N ?=; 4322 (2)3339N x x y x x x ??-==?=??, 3334(3)2248y N y y y y x ??==-?=-??- ()()[]21 23 2 289y x N y x ?+?=? 2* 。 用螺旋测微计测量长度时,测量值=末读数—初读数(零读数),初读数是为了消除 ( A ) (A )系统误差 (B )偶然误差 (C )过失误差 (D )其他误差 3* 在计算铜块的密度ρ和不确定度ρ?时,计算器上分别显示为“8.35256”和“ 0.06532” 则结果表示为:( C ) (A) ρ=(8.35256 ± 0.0653) (gcm – 3 ), (B) ρ=(8.352 ± 0.065) (gcm – 3 ), (C) ρ=(8.35 ± 0.07) (gcm – 3 ), (D) ρ=(8.35256 ± 0.06532) (gcm – 3 ) (E) ρ=(2 0.083510? ± 0.07) (gcm – 3 ), (F) ρ=(8.35 ± 0.06) (gcm – 3 ), 4* 以下哪一点不符合随机误差统计规律分布特点 ( C ) (A ) 单峰性 (B ) 对称性 (C ) 无界性有界性 (D ) 抵偿性 5* 某螺旋测微计的示值误差为mm 004.0±,选出下列测量结果中正确的答案:( B ) A . 用它进行多次测量,其偶然误差为mm 004.0; B . 用它作单次测量,可用mm 004.0±估算其误差; B =?==? C. 用它测量时的相对误差为mm 004.0±。 100%E X δ = ?相对误差:无单位;=x X δ-绝对误差:有单位。

中国石油大学华东大学物理2-2第十六章课后习题答案

习题16 16-6在均匀密绕的螺绕环导线内通有电流20A ,环上线圈 400匝,细环的平均周长是40cm ,测得环内磁感应强度是1.0T 。求: (1)磁场强度; (2)磁化强度; (3)磁化率; (4)磁化面电流的大小和相对磁导率。 [解] (1) 螺绕环内磁场强度 由nI d L =??l H 得 1 -42 m 100.2104020400??=??== -A L nI H (2) 螺绕环内介质的磁化强度 由M B H -= μ得 1-547 m 1076.710210 40 .1??=?-?= -= --A H B M πμ (3) 磁介质的磁化率 由H M m χ=得 8.381021076.74 5 m =??==H M χ (4)环状磁介质表面磁化面电流密度 -15m 1076.7??==A M j 总磁化面电流 A L j dL M I L 55101.34.01076.7?=??=?=?='? 相对磁导率 8.398.3811m 0r =+=+== χμμH B

16-7.一绝对磁导率为μ1的无限长圆柱形直导线,半径为R 1,其中均匀地通有电流I 。导线外包一层绝对磁导率为μ2的圆筒形不导电磁介质,外半径为R 2,如习题16-7图所示。试求磁场强度和磁感应强度的分布,并画出H -r ,B-r 曲线。 [解] 将安培环路定理∑?=?I d L l H 应用于半径为r 的同心圆周 当0≤r ≤1R 时,有 2 2 1 12r R I r H πππ?= ? 所以 2 112R Ir H π= 2111 112R Ir H B πμμ== 当r ≥1R 时,有I r H =?π22 所以r I H π22= 在磁介质内部1R ≤r ≤2R 时,r I H B πμμ22222== 在磁介质外部r ≥2R 时,r I H B πμμ20202 ==' 各区域中磁场强度与磁感应强度的方向均与导体圆柱中电流的方向成右手螺旋关系。 H -r 曲线 B-r 曲线 习题16-7图 R 1 R 2 本图中假设 B 2 12 1μμ>r r 1

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理实验答案完整版

大学物理实验答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

实验一 物体密度的测定 【预习题】 1.简述游标卡尺、螺旋测微器的测量原理及使用时的注意事项。 答:(1)游标卡尺的测量原理及使用时的注意事项: 游标卡尺是一种利用游标提高精度的长度测量仪器,它由主尺和游标组成。设主 尺上的刻度间距为y ,游标上的刻度间距为x ,x 比y 略小一点。一般游标上的n 个刻度间距等于主尺上(n -1)个刻度间距,即y n nx )1(-=。由此可知,游标上的刻度间距与主尺上刻度间距相差n 1,这就是游标的精度。 教材P33图1-2所示的游标卡尺精度为 mm 501,即主尺上49mm 与游标上50格同长,如教材图1-3所示。这样,游标上50格比主尺上50格(50mm )少一格(1mm ),即游标上每格长度比主尺每格少1÷50 = 0.02(mm), 所以该游标卡尺的精度为0.02mm 。 使用游标卡尺时应注意:①一手拿待测物体,一手持主尺,将物体轻轻卡住,才 可读数。②注意保护量爪不被磨损,决不允许被量物体在量爪中挪动。③游标卡尺的外量爪用来测量厚度或外径,内量爪用来测量内径,深度尺用来测量槽或筒的深度,紧固螺丝用来固定读数。 (2)螺旋测微器的测量原理及使用时的注意事项: 螺旋测微器又称千分尺,它是把测微螺杆的角位移转变为直线位移来测量微小长 度的长度测量仪器。螺旋测微器主要由固定套筒、测量轴、活动套筒(即微分筒)组成。

如教材P24图1-4所示,固定套管D上套有一个活动套筒C(微分筒),两者由高精度螺纹紧密咬合,活动套筒与测量轴A相联,转动活动套筒可带动测量轴伸出与缩进,活动套筒转动一周( 360),测量轴伸出或缩进1个螺距。因此,可根据活动套筒转动的角度求得测量轴移动的距离。对于螺距是0.5mm螺旋测微器,活动套筒C的周界被等分为50格,故活动套筒转动1 格,测量轴相应地移动0.5/50=0.01mm,再加上估读,其测量精度可达到0.001 mm。 使用螺旋测微器时应注意:①测量轴向砧台靠近快夹住待测物时,必须使用棘轮而不能直接转动活动套筒,听到“咯、咯”即表示已经夹住待测物体,棘轮在空转,这时应停止转动棘轮,进行读数,不要将被测物拉出,以免磨损砧台和测量轴。②应作零点校正。 2.为什么胶片长度可只测量一次? 答:单次测量时大体有三种情况:(1)仪器精度较低,偶然误差很小,多次测量读数相同,不必多次测量。(2)对测量的准确程度要求不高,只测一次就够了。(3)因测量条件的限制,不可能多次重复测量。本实验由对胶片长度的测量属于情况(1),所以只测量1次。

大学物理习题答案--第一章

第一章作业解 1-7液滴法是测定液体表面张力系数的一种简易方法。将质量为m 的待测液体吸入移液管,然后让液体缓缓从移液管下端滴出。可以证明 d n mg πγ= 其中,n 为移液管中液体全部滴尽时的总滴数,d 为液滴从管口落下时断口的直径。请证明这个关系。 证:当液滴即将滴下的一刻,其受到的重力与其颈部上方液体给予的张力平衡 F g m =' d r L F πγπγγ===2 n m m = ', d n m πγ= 得证:d n mg πγ= 1-8 在20 km 2的湖面上下了一场50 mm 的大雨,雨滴半径为1.0 mm 。设温度不变,雨水在此温度下的表面张力系数为7.3?10-2N ?m -1。求释放的能量。 解:由 S E ?=?γ 雨滴落在湖面上形成厚为50 mm 的水层,表面积就为湖面面积,比所有落下雨滴的表面积和小,则释放的表面能为: )4(2 S r n E -?=?πγ 其中,3 43 r Sh n π= 为落下的雨滴数,r 为雨滴半径 J r h S E 8 3 3 6 2 1018.2)110 0.110503( 102010 3.7)13( ?=-???????=-=?---γ 1-9假定树木的木质部导管为均匀的圆柱形导管,树液完全依靠毛细现象在导管内上升,接触角为45°,树液的表面张力系数1 2 10 0.5--??=m N γ。问要使树液到达树木的顶部,高 为20 m 的树木所需木质部导管的最大半径为多少? 解:由朱伦公式:gr h ρθ γcos 2= 则:cm gh r 5 3 2 10 6.320 8.91012 /210 0.52cos 2--?=??????= = ρθ γ 1-10图1-62是应用虹吸现象从水库引水的示意图。已知虹吸管粗细均匀,其最高点B 比水库水面高出m h 0.31=,管口C又比水库水面低m h 0.52=,求虹吸管内的流速及B点处的

大学物理实验课后答案

大学物理实验课后答案 Final revision by standardization team on December 10, 2020.

(1)利用f=(D+d)(D-d)/4D 测量凸透镜焦距有什么优点 答这种方法可以避免透镜光心位置的不确定而带来的测量物距和像距的误差。(2)为什么在本实验中利用1/u+1/v=1/f 测焦距时,测量u和v都用毫米刻度的米尺就可以满足要求设透镜由于色差和非近轴光线引起的误差是1%。 答设物距为20cm,毫米刻度尺带来的最大误差为,其相对误差为%,故没必要用更高精度的仪器。 (3)如果测得多组u,v值,然后以u+v为纵轴,以uv为横轴,作出实验的曲线属于什么类型,如何利用曲线求出透镜的焦距f。 答直线;1/f为直线的斜率。 (4)试证:在位移法中,为什么物屏与像屏的间距D要略大于4f 由f=(D+d)(D-d)/4D → D2-4Df=d2→ D(D-4f)=d2 因为d>0 and D>0 故D>4f 1.避免测量u、ν的值时,难于找准透镜光心位置所造成的误差。 2.因为实验中,侧的值u、ν、f都相对较大,为十几厘米到几十厘米左右,而误差为1%,即一毫米到几毫米之间,所以可以满足要求。 3.曲线为曲线型曲线。透镜的焦距为基斜率的倒数。 ①当缝宽增加一倍时,衍射光样的光强和条纹宽度将会怎样变化如缝宽减半,又怎样改变 答: a增大一倍时, 光强度↑;由a=Lλ/b ,b减小一半 a减小一半时, 光强度↓;由a=Lλ/b ,b增大一倍。 ②激光输出的光强如有变动,对单缝衍射图象和光强分布曲线有无影响有何影响 答:由b=Lλ/a.无论光强如何变化,只要缝宽不变,L不变,则衍射图象的光强分布曲线不变 (条纹间距b不变);整体光强度↑或者↓。 ③用实验中所应用的方法是否可测量细丝直径其原理和方法如何 答:可以,原理和方法与测单狭缝同。 ④本实验中,λ=632。8nm,缝宽约为5*10^-3㎝,屏距L为50㎝。试验证: 是否满足夫朗和费衍射条件 答:依题意: Lλ=(50*10^-2)*(*10^-9)=*10^-7 a^2/8=(5*10^-5)^2/8=*10^-10 所以Lλ<

大学物理实验及答案

大学物理实验试题(一) 一、单项选择题(每小题3分,共10小题) (1).在光栅测量波长的实验中,所用的实验方法是[ ] (A)模拟法(B)干涉法(C)稳态法(D)补偿法 (2).用箱式惠斯登电桥测电阻时,若被测电阻值约为4700欧姆,则倍率选[ ](A)(B)(C)10 (D)1 $ (3).用某尺子对一物体的长度进行15次重复测量,计算得A类不确定度为0.01mm,B类不确定度是0.6mm,如果用该尺子测量类似长度,应选择的合理测量次数为 (A)1次(B)6次(C)15次(D)30次 (4).用惠斯登电桥测电阻时,如果出现下列情况,试选择出仍能正常测 量的情况[ ] (A)有一个桥臂电阻恒为零(B)有一个桥臂电阻恒为无穷大 (C)检流计支路不通(断线)(D)电源与检流计位置互换 (5).研究二极管伏安特性曲线时,正确的接线方法是[ ] (A)测量正向伏安特性曲线时用外接法;测量反向伏安特性曲线时用内接法(B)测量正向伏安特性曲线时用内接法;测量反向伏安特性曲线时用外接法(C)测量正向伏安特性曲线时用内接法;测量反向伏安特性曲线时用内接法 ) (D)测量正向伏安特性曲线时用外接法;测量反向伏安特性曲线时用外接法 (6).在测量钢丝的杨氏模量实验中,预加1Kg砝码的目的是[ ] (A)消除摩擦力(B)使系统稳定 (C)拉直钢丝(D)增大钢丝伸长量 (7).调节气垫导轨水平时发现在滑块运动方向上不水平,应该[ ] (A)只调节单脚螺钉(B)先调节单脚螺钉再调节双脚螺钉(C)只调节双脚螺钉(D)先调节双脚螺钉再调节单脚螺钉(8).示波管的主要组成部分包括[ ]

(A)磁聚集系统、偏转系统、显示屏(B)电子枪、偏转系统、显示屏(C)电聚集系统、偏转系统、显示屏(D)控制极、偏转系统、显示屏 @ (9).分光计设计了两个角游标是为了消除[ ] (A)视差(B)螺距差(C)偏心差(D)色差 (10).用稳恒电流场模拟静电场实验中,在内电极接电源负极情况下,用电压表找等位点与用零示法找等位点相比,等位线半径[ ] (A)增大(B)减小(C)不变(D)无法判定是否变化 二、判断题(每小题3分,共10小题) (1)、准确度是指测量值或实验所得结果与真值符合的程度,描述的是测量值接 近真值程度的程度,反映的是系统误差大小的程度。() (2)、精确度指精密度与准确度的综合,既描述数据的重复性程度,又表示与真 值的接近程度,反映了综合误差的大小程度。() (3)、系统误差的特征是它的有规律性,而随机的特怔是它的无规律性。()(4)、算术平均值代替真值是最佳值,平均值代替真值可靠性可用算术平均偏差、标准偏差和不确定度方法进行估算和评定。() (5)、测量结果不确定度按评定方法可分为A类分量和B类分量,不确定度A 类分量与随机误差相对应,B类分量与系统误差相对应。() ) (6)、用1/50游标卡尺单次测量某一个工件长度,测量值N=10.00mm,用不确 定度评定结果为N =(±)mm。() (7)、在测量钢丝的杨氏弹性模量实验中,预加1Kg砝码的目的是增大钢丝伸长量。() (8)、利用逐差法处理实验数据的优点是充分利用数据和减少随机误差。()(9)、模拟法可以分为物理模拟和数学模拟,因为稳恒电流场和静电场的物理本 质相同,所以用稳恒电流场模拟静电场属于物理模拟。() (10)、系统误差在测量条件不变时有确定的大小和正负号,因此在同一测量条 件下多次测量求平均值能够减少或消除系统误差。() 三、填空题(每空3分,共10空) (1).凡可用仪器或量具直接测出某物理量值的测量,称 1 测量; 凡需测量后通过数学运算后方能得到某物理量的测量,称 2 测量。(2).有效数字的位数越多,说明测量的精度越 3 ;换算单位时, 有效数字的 4 保持不变。 (3).由 5 决定测量结果的有效数字是处理一切有效数字问题的总的根据和原则。 (4).迈克尔逊干涉仪实验中,在测量过程中,读数轮只能朝一个方向旋转,不能

大学物理答案第17章

大学物理答案第17章

17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 =?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 λθk a =sin

依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475 .2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞?

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ= . (C) 204r Q E επ= ,r Q U 04επ= . (D) 204r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ]

3.在磁感强度为B ?的均匀磁场中作一半径为r 的半球面S ,S 边线所在 平面的法线方向单位矢量n ?与B ? 的夹角为? ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) ?r 2B . . (B) 2??r 2B . (C) -?r 2B sin ?. (D) -?r 2B cos ?. [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势 ? y z x I 1 I 2

相关文档
最新文档