一元二次方程及根的定义

一元二次方程及根的定义
一元二次方程及根的定义

一元二次方程及根的定

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义

1.已知关于的方程的一个根为2,求另一个根及

的值.

思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可.

解:将代入原方程,得

解方程,得

当时,原方程都可化为

解方程,得.

所以方程的另一个根为4,或-1.

总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口.

举一反三:

【变式1】已知一元二次方程的一个根是,求代数式

的值.

思路点拨:抓住为方程的一个根这一关键,运用根的概念解题.

解:因为是方程的一个根,

所以,

故,

,

所以.

.

总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验.

类型二、一元二次方程的解法

2.用直接开平方法解下列方程:

(1)3-27x2=0; (2)4(1-x)2-9=0.

解:(1)27x2=3

.

(2)4(1-x)2=9

3.用配方法解下列方程:

(1);(2).

解:(1)由,

得,

所以,

故.

(2)由,

得,

所以

4.用公式法解下列方程:

(1);(2);(3). 解:(1)这里

并且

所以,

所以,.

(2)将原方程变形为,

所以,

所以.

(3)将原方程展开并整理得,

这里,

并且,

所以.

所以.

总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材.

5.用因式分解法解下列方程:

(1);(2);

(3).

解:(1)将原方程变形为,

提取公因式,得,

因为,所以

所以或,

(2)直接提取公因式,得

所以或,(即

故.

(3)直接用平方差公式因式分解得

所以或

故.

举一反三:

【变式1】用适当方法解下列方程.

(1)2(x+3)2=x(x+3);(2)x2-2x+2=0;

(3)x2-8x=0; (4)x2+12x+32=0.

解:(1)2(x+3)2=x(x+3)

2(x+3)2-x(x+3)=0

(x+3)[2(x+3)-x]=0

(x+3)(x+6)=0

x1=-3,x2=-6.

(2)x2-2x+2=0

这里a=1,b=-2,c=2

b2-4ac=(-2)2-4×1×2=12>0

x==

x1=+,x2=-

(3)x(x-8)=0

x1=0,x2=8.

(4)配方,得

x2+12x+32+4=0+4

(x+6)2=4

x+6=2或x+6=-2

x1=-4,x2=-8.

点评:要根据方程的特点灵活选用方法解方程.

6.若,求的值.

思路点拨:观察,把握关键:换元,即把看成一个“整体”.解:由,

得,

所以,

故或(舍去),

所以.

总结升华:把某一“式子”看成一个“整体”,用换元的思想转化为方程求解,这种转化与化归的意识要建立起来.

类型三、一元二次方程根的判别式的应用

7.(武汉)一元二次方程4x2+3x-2=0的根的情况是( )

A.有两个相等的实数根;

B.有两个不相等的实数根

C.只有一个实数根;

D.没有实数根

解析:因为△=32-4×4×(-2)>0,所以该方程有两个不相等的实数根.

答案:B.

8.(重庆)若关于x的一元二次方程x2+x-3m=0有两个不相等的实数根,则m的取值范围是( )

><>-<-

思路点拨:因为该方程有两个不相等的实数根,所以应满足.

解:由题意,得△=12-4×1×(-3m)>0,

解得 m>-.

答案:C.

举一反三:

【变式1】当m为什么值时,关于x的方程有实根.

思路点拨:题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分和两种情形讨论.

解:当即时,,方程为一元一次方程,总有实根;

当即时,方程有根的条件是:

,解得

∴当且时,方程有实根.

综上所述:当时,方程有实根.

【变式2】若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).

思路点拨:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.

解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.

∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0

∴满足

∵ax+3>0即ax>-3

∴所求不等式的解集为.

类型四、根据与系数的关系,求与方程的根有关的代数式的值

9.(河北)若x 1,x2是一元二次方程2x2-3x+1=0的两个根,则x12+x22的值是( )

A. B. C.

思路点拨:本题解法不唯一,可先解方程求出两根,然后代入x12+x22,求得其值.但一般不解方程,只要将所求代数式转化成含有x1+x2和x1x2的代数式,再整体代入.

解:由根与系数关系可得x1+x2=,x1·x2=,x12+x22=(x1+x2)2-2x1·x2=()2-2×=.

答案:A.

总结升华:公式之间的恒等变换要熟练掌握.

类型五、一元二次方程的应用

考点讲解:

1.构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体

问题中的数量关系,是构建数学模型,解决实际问题的关键.

2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要

对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.

10.(陕西)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成

一幅矩形挂图.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )

+130x-1400=0 +65x-350=0

=0 =0

解析:在矩形挂图的四周镶一条宽为xcm的金边,那么挂图的长为(80+2x)cm,?宽为(50+2x)cm,由题意,可得(80+2x)(50+2x)=5400,整理得x2+65x-350=0.

答案:B.

11.(海口)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售

出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元

解:设每千克水果应涨价x元,依题意,得(500-20x)(10+x)=6000.

整理,得x2-15x+50=0.解这个方程,x1=5,x2=10.

要使顾客得到实惠,应取x=5.

答:每千克应涨价5元.

总结升华:应抓住“要使顾客得到实惠”这句话来取舍根的情况.

12.(深圳南山区)课外植物小组准备利用学校仓库旁的一块空地,开辟一个面积

为130平方米的花圃(如图),打算一面利用长为15米的仓库墙面,三面利用长为33米的旧围栏,求花圃的长和宽.

解:设与墙垂直的两边长都为米,则另一边长为米,依题意得

又∵当时,

当时,

∴不合题意,舍去.∴. 答:花圃的长为13米,宽为10米.

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次方程的概念

一元二次方程的概念 知识点: 一、一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2,这样的整式方程称为一元二次方程。 识别一元二次方程必须抓住三个方面: (1)整式方程 (2)含有一个未知数 (3)未知数的最高次数是2次 【例】下列方程中哪些是一元二次方程?哪些不是?说说你的理由. (1)16x 2= (2)0125x 2=--x (3)032x 2=-+y (4)03x 1 2=-+x (5)0x 2= (6)052x 24=--x 二、一元二次方程的一般形式:02 =++c bx ax (a ≠0) 一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下的形式:02=++c bx ax (a ≠0).这种形式叫做一元二次方程的一般形式。其中2ax 是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项. 【整理】2ax 是二次项,a 是二次项系数, bx 是一次项,b 是一次项系数, c 是常数项. 例1.把6)4)(3(-=-+x x 化成一元二次方程的一般形式,并写出它的二次项系数,一次 项系数和常数项。 例2.指出 mx 2-nx-mx+nx 2=p 二次项,一次项,二次项系数,一次项系数, . 练习:把下列方程化成一元二次方程的一般形式,并指出二次项系数,一次项,常数项。 ①()x x x x 3422 -=- ②()()2 21248-+=+x x x ③12132=+-x x ④ ()0p 2 2≠+-=++-n m q nx mx nx mx 小结:理解一元二次方程以下方面入手: (1)一元:只含有一个未知数,"元"的含义就是未知数 (2)二次:未知数的最高次数是2,注意二次系数不等于0. (3)方程:方程必须是整式方程,这是判断的前提。

一元二次方程根的情况试题练习题

一元二次方程根的情况练习题(含答案) 一.选择题 1.一元二次方程2x2﹣5x﹣2=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 2.一元二次方程3x2﹣4x+1=0的根的情况为() A.没有实数根 B.只有一个实数根 C.两个相等的实数根D.两个不相等的实数根 3.一元二次方程x2﹣7x﹣2=0的实数根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.无法确定 5.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.无实数根D.有一根为0 6.一元二次方程2x2﹣3x+1=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 7.一元二次方程2x2﹣3x+1=0根的情况是()

C.只有一个实数根D.没有实数根 8.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为() A.没有实数根 B.有一个实数根 C.有两个不相等的实数根D.有两个相等的实数根 9.一元二次方程x2+2x+1=0的根的情况() A.有一个实数根B.有两个相等的实数根 C.有两个不相等的实数根D.没有实数根 10.一元二次方程x2﹣x﹣1=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根 C.只有一个实数根D.没有实数根 11.一元二次方程x2﹣2x﹣1=0的根的情况为() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 12.一元二次方程4x2+1=4x的根的情况是() A.没有实数根 B.只有一个实数根 C.有两个相等的实数根D.有两个不相等的实数根 13.方程x2﹣2x+3=0的根的情况是() A.有两个相等的实数根B.只有一个实数根 C.没有实数根 D.有两个不相等的实数根 14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

一元二次方程定义及其解法

班级姓名课题一元二次方程定义及其解法(配方法) 一、目标导航 1.掌握一元二次方程的定义及a,b,c的含义; 2.掌握配方法解一元二次方程的方法. 二、教学重难点 重点:1.掌握一元二次方程的定义及a,b,c的含义; 2.掌握配方法解一元二次方程的方法. 难点:配方法解一元二次方程. 三、走进教材 知识点一:一元二次方程的定义 1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,并且未知数的最

高次数为2的方程叫做一元二次方程。 2. 一元二次方程的一般形式:()200ax bx c a ++=≠,其中2ax 叫做二次项,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。举例:2230x x +-= 3. 一元二次方程的解:能使一元二次方程的左右两边相等的未知数的值叫做一元二次方程的解,一元二次方程的解也可以叫做一元二次方程的根。 自主练习: 下列方程中,是一元二次方程的有 。(填序号) ①2 5x =; ②30x y +-=; ③253302x x +-=; ④2(5)2x x x x +=-; ⑤23580x x -+=; ⑥2 04y y -=。 知识点二:配方法解一元二次方程 1. 解一元二次方程的思路:降次,即把二次降为一次,把一元二次方程转化为一元一次方程,化未知为已知,化繁为简,这是转化思想的体现。

2. 配方法:利用配方法将一个一元二次方程的左边配成完全平方形式,而右边是 一个非负数,即把一个方程转化成()2 x n p +=(p≥0)的形式,这样解方程的方法叫做配方法。 3. 配方法具体操作: (1)对于一个二次三项式,当二次项系数为1时,配上一次项系数一半的平方就可以将其配成一个完全平方式,举 例:解方程2230 +-=, x x (2)当二次项系数不为1时,首先把二次项系数化为1,方程两边除以二次项系数,然后再利用(1)的步骤完成配 方。举例:解方程22230 +-=。 x x 4. ()2 += x n p x n p +=(p≥0)的解法:对于方程()2

一元二次方程的意义及解法

一元二次方程的解法探究 目标链接: 1、 掌握用直接开平方法、因式分解法、配方法、求根法等方法解一元二次方程。 2、 通过对一元二次方程的解法,体会数学中有简单到复杂,再由复杂到简单的转化思想。 知识要点: 知识点1:直接开方法 形式:形如(x+h )2=k 2(k 是常数)的方程 知识点2:配方法 配方法是一元二次方程的重要方法,熟练地掌握完全平方式是配方法解题的基础。对于二次项系数为1的方程,在方程两边同时加上一次项系数一半的平方即可配方。若二次项系数不为1,一般应先将二次项系数变为1,然后配方比较简便。 知识点3:一元二次方程的球根公式 形如ax 2+bx+c=0(a ≠0),当b 2 -4ac ≥0时,x=a ac b b 242-±- b 2-4ac <0时,原方程无解 知识点4:用公式法解一元二次方程的一般步骤 (1) 化为一般式(2)确定a 、b 、c 的值;(3)求出b 2-4ac 的值(4)代入公式求解。 知识点5:一元二次方程的根的判别式。 代数式b 2-4ac 叫做一元二次方程ax 2+bx+c=0的根的判别式,通常用“△”表示。 知识点6:因式分解法 这种方法的依据是,若a-b=0,则a=0或b=0其形式就是把已知方程通过因式分解把它们化成A-B=0的形式。例如(x-2)(x+1)=0可用此法解之,其步骤: (1)将方程右边化为零(2)将左边分解因式(3)令每个因式为零(4)解每一个一元一次方程,它的解就是原方程的解。 典型例题: 例1 用直接开平方法解下列方程 (1)x 2-9=0 (2)4(x-2)2-36=0 (3)2 1(x+3)2=4 例2 用配方法解下列方程 (1)x 2-4x-3=0 (2)x 2+3x-1=0 例3 用公式法解下列方程 (1)2x 2+7x=4 (2) 21x 2+ 2 1x=81 (3)x 2+3=22x 例4 不解方程,判别下列方程根的情况。

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元二次方程概念和解法测试题

一元二次方程概念与解法测试题 姓名: 得分: ⑤2 2230x x x +-=;⑥x x 322 +=;⑦231223x x -+= ;是一元二次方程的是 。 1. 把下列一元二次方程化成一般形式,并写出相应的二次项系数、一次项系数、常数项: 3.下列关于x 的方程中,一定是一元二次方程的是( ) A .2(2)210m x x ---= B .2530k x k ++= C 21203x --= D.22 340x x +-= 4、已知关于x 的一元二次方程5)12(2 =+--a x a x 的一个解为1,则a= 。 5.方程22(4)(2)310m x m x m -+-+-=,当m = 时,为一元一次方程; 当m 时,为一元二次方程。 6.已知关于x 的一元二次方程22(2)340m x x m -++-=有一个解是0,则m = 。 8、2 2 ___)(_____6+=++x x x ; 2 2 ____)(_____3-=+-x x x 9、方程0162 =-x 的根是 ; 方程 0)2)(1(=-+x x 的根是 ; 10、如果二次三项式16)122 ++-x m x ( 是一个完全平方式,那么m 的值是_______________. 11、下列方程是关于x 的一元二次方程的是( ); A 、02 =++c bx ax B 、 2112 =+x x C 、122 2-=+x x x D 、)1(2)1(32+=+x x 12、方程()()2 4330x x x -+-=的根为( ); (A )3x = (B )125x = (C )12123,5 x x =-= (D )1212 3,5x x == 13、解下面方程:(1)()2 25x -=(2)2 320x x --=(3)2 60x x +-=,较适当的方法分别为( ) (A )(1)直接开平法方(2)因式分解法(3)配方法(B )(1)因式分解法(2)公式法(3)直接开平方法 (C )(1)公式法(2)直接开平方法(3)因式分解法(D )(1)直接开平方法(2)公式法(3)因式分解法

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

一元二次方程的定义教案

第二章一元二次方程 1 认识一元二次方程 第1课时一元二次方程的定义 【知识与技能】 探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识. 【过程与方法】 在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系. 【情感态度】 通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用. 【教学重点】 一元二次方程的概念. 【教学难点】 如何把实际问题转化为数学方程. 一、情境导入,初步认识 问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形? 问题2:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米? 你能设出未知数,列出相应的方程吗? 【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫. 二、思考探究,获取新知

你能通过观察下列方程得到它们的共同特点吗? (1)(100-2x)(50-2x)=3600 (2)(x+6)2+72=102 【教学说明】 分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2. 【归纳结论】方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫作一元二次方程; 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a、b、c为常数,a≠0) 这种形式叫作一元二次方程的一般形式.其中ax2是二次项,a是二次项的系数;bx是一次项,b是一次项系数;c是常数项. 活动中教师应重点关注: (1) 引导学生观察所列出的两个方程的特点; (2)让学生类比前面复习过的一元一次方程定义得到一元二次方程定义; (3)强调定义中体现的3个特征: ①整式;②一元;③2次. 【教学说明】 让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的. 三、运用新知,深化理解 1.下列方程是一元二次方程的有. (1)x2+1/x-5=0(2)x2-3xy+7=0 (3)=4(4)m3-2m+3=0 x2-5=0(6)ax2-bx=4 (5) 2 解答:(5) 2.已知方程(m+2)x2+(m+1)x-m=0,当m满足_______时,它是一元一次方程;当m满足_______时,它是一元二次方程. 解析:当m+2=0,即m=-2时,方程是一元一次方程;当m+2≠0,即m≠

(完整版)一元二次方程知识点及其应用

一、相关知识点 1.理解并掌握一元二次方程的意义 未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2.正确识别一元二次方程中的各项及各项的系数 (1)明确只有当二次项系数0≠a 时,整式方程02 =++c bx ax 才是一元二次方程。 (2)各项的确定(包括各项的系数及各项的未知数). (3)熟练整理方程的过程 3.一元二次方程的解的定义与检验一元二次方程的解 4.列出实际问题的一元二次方程 二.解法 1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解; 2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程; 3.体会不同解法的相互的联系; 4.值得注意的几个问题: (1)开平方法:对于形如n x =2 或)0()(2 ≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未 知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如n x =2 的方程的解法: 当0>n 时,n x ±=; 当0=n 时,021==x x ; 当0-ac b 时,方程有两个实数根,且这两个实数根不相等; 当042 =-ac b 时,方程有两个实数根,且这两个实数根相等,写为a b x x 221- ==;

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程基本概念

一元二次方程基本概念 1、基本概念: 方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程(等式),叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 2、解方程常用方法: (1). 直接开平方法: 由应用直接开平方法解形如x2=p(p≥0),那么x=转化为应用直接开平方法解 形如(mx+n)2=p(p≥0),那么mx+n= (2).配方法: 左边不含有x的完全平方形式、左边是非负数的一元二次方程可化为左边是含有x的完全平方形式、右边是非负数、可以直接降次解方程得方程。 转化过程如下: x2-64x+768=0 移项→x2-64x=-768 两边加( 64 2 )2使左边配成x2+2bx+b2的形式→ x2-64x+322=-768+1024 左边写成平方形式→(x-32)2=?256 ? 降次→x-32=±16 即x-32=16或x-32=-16 解一次方程→x1=48,x2=16 可以验证:x1=48,x2=16都是方程的根 例1.解下列方程 (1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0 分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.

解:(1)移项,得:x 2+6x=-5 配方:x 2+6x+32=-5+32(x+3)2=4 由此可得:x+3=±2,即x 1=-1,x 2=-5 (2)移项,得:2x 2+6x=-2 二次项系数化为1,得:x 2+3x=-1 配方x 2+3x+(32)2=-1+(32)2(x+32)2=54 由此可得x+32=x 132,x 232 (3)去括号,整理得:x 2+4x-1=0 移项,得x 2+4x=1 配方,得(x+2)2=5 x+2=x 1,x 2 总结用配方法解一元二次方程的步骤. (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. (3)公式法: 一元二次方程ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,它的两个根 x 1=2b a -+, x 2=2b a - 解:移项,得:ax 2+bx=-c 二次项系数化为1,得x 2+ b a x=- c a 配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a )2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0 ∴2244b ac a -≥0 直接开平方,得:x+2b a =±2a

一元二次方程及其根的定义

一元二次方程及其根的定义——导学案 班级:姓名:日期: 一、问题情境: 问题(1) 要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,求雕像的下部应设计为高多少米? 问题(2)有一块矩形铁皮,长100㎝,宽50㎝,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形? 问题(3) 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛? 归纳:以上三个方程的特点是:① ② ③

二、探究新知: 1、只含有 个未知数,并且未知数的最高次数是 ,这样的 方程,叫做一元二次方程。 2、一元二次方程的一般形式: ,其中 二次项, 是一次项, 是常数项, 二次项系数 , 一次项系数。 例1、判断下列方程是否是一元二次方程; (1)02 33122=--x x ( )(2)0522=+-y x ( ) (3) 02=++c bx ax ( ) (4)07142=+-x x ( ) 例2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:x (1)232x x -=; (2)2732x x -=; (3)()()21320x x x ---= (4)()()21354x x x -=+-. 三、一元二次方程的根: 问题1.下面哪些数是方程2210120x x ++=的根? -4,-3,-2,-1,0,1,2,3,4. 问题 2.你能用以前所学的知识求出下列方程的根吗? (1)2640x -= (2)2360x -= (3)230x x -=

一元二次方程根的两个特性及简单运用

一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为1的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0) ax bx c a ++=≠的两根之和、两根之积与系数的关系。 例1、先阅读,再填空解题: (1)方程:x2-4x-12=0 的根是:x 1=6, x 2 =-2,则x 1 +x 2 =4,x 1 ·x 2 =-12; (2)方程2x2-7x+3=0的根是:x 1= 1 2 , x 2 =3,则x 1 +x 2 = 7 2 ,x 1 ·x 2 = 3 2 ; (3)方程3x2+6x-2=0的根是:x 1= , x 2 = .则x 1 +x 2 = , x 1·x 2 = ; 根据以上(1)(2)(3)你能否猜出:如果关于x的一元二次方程ax2+bx+c=0 (a≠0且a、b、c为常数)的两根为x 1、x 2 ,那么x 1 +x 2 、x 1 x 2 与系数a、b、c有 什么关系?请写出来你的猜想并说明理由。 解析:方程3x2+5x-2=0的根是:x 1= 1 3 x 2 =-2。则x 1 +x 2 = 5 3 -,x1·x2= 2 3 -。 能猜出:如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数) 的两根为x 1、x 2 ,那么x 1 +x 2 a b - =、x1x2 a c =。理由如下: 根据求根公式可知,关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c 为常数)的两根为: a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - = 所以x 1+x 2 = a ac b b 2 4 2- + - + a ac b b 2 4 2- - - a b - = x 1x 2 = a ac b b 2 4 2- + - · a ac b b 2 4 2- - - a c = 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商.

1、一元二次方程的定义及解法

第一讲一元二次方程的定义及解法 1.1 一元二次方程的定义 知识网络图 定义 直接开平方法 一元二次方程配方法 解法 公式法 因式分解法 知识概述 1.一元二次方程的概念: 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式: 一般地,任何一个关于x 的一元二次方程,都能化成形如ax2bx c 0(a 0),这种形式叫做一元二次方程的一般形式.其中ax2是二次项, a 是二次项系数;bx 是一次项, b 是一次项系数; c 是常数项. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根课堂小练1.(2018?马鞍山二模)已知 a 是方程x2﹣2x﹣1=0 的一个根,则代数式2a2﹣4a﹣1的值为() A . 1 B.﹣ 2 C.﹣ 2 或 1 D .2 2(.2018?岐山县二模)若关于x 的一元二次方程(m﹣1)x2+x+m2﹣5m+3=0 有一个根为1,则m 的值为( ) A .1 B.3 C.0 D.1 或3 3.(2017 秋?潮南区期末)一元二次方程(x+3)(x﹣3)=5x 的一次项系数是() A .﹣ 5 B.﹣9 C.0 D .5 课后练习 1.(2018?荆门二模)已知 2 是关于x 的方程x2﹣(5+m)x+5m=0 的一个根,并且这个方向的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为() A .9 B.12 C.9 或12 D. 6 或12 或15

2.(2018?河北模拟)若关于x 的一元二次方程ax2﹣bx+4=0 的解是x=2,则2020+2a﹣b 的值是() A .2016 B .2018 C.2020 D.2022 3.(2017 秋?武城县期末)若关于x 的一元二次方程(m﹣2)x2+3x+m 2﹣3m+2=0 的常数项为0,则m 等于

一元二次方程的概念及解法

题型切片(四个)对应题目 题 型 目 标 一元二次方程的概念例1;例2;演练1;例8 直接开平方法解一元二次方程例3;例4;演练2; 配方解一元二次方程例5;例6;演练3;演练4; 因式分解法解一元二次方程例7;演练5. 模块一一元二次方程的概念 知识互联网 一元二次方程的基本解法 题型切片

定 义 示例剖析 一元二次方程定义:只含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程. 判断一个方程是否是一元二次方程,必须符合以下四个标准: ⑴整式方程. ⑵方程中只含有一个未知数. ⑶化简后方程中未知数的最高次数是2. ⑷二次项的系数不为0 22210x x -+= 此方程满足: 整式方程; 只含有一个未知数x ; x 的最高次数是2,系数是2 所以这个方程是一个一元二次方程. 一元二次方程的一般式:20ax bx c ++=()0a ≠. 其中2ax 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项. 一元二次方程22210x x -+=, 其中221a b c ==-=,,. 一元二次方程的根: 如果0x 满足2000(0)ax bx c a ++=≠,则0x 就是方程 20(0)ax bx c a ++=≠的一个根. 1满足2110-=,则1是方程20x x -=的一个根.0满足2000-=,则0是方程20x x -=的另一个根.∴0,1是方程20x x -=的两个根,表示为12=0, =1x x 一元二次方程都可化成如下形式: 20ax bx c ++=(0a ≠) . 1.“可化成”是指对整式方程进行去分母,去括号,移项、合并同类项等变形. 2.一般形式中,b 、c 可以是任意实数,而二次项系数0a ≠,若0a =,方程就不是一元二次方程了,也未必是一次方程,要对b 进行讨论. 3.要确认一元二次方程的各项系数必须先将此方程化为一般形式,然后确定a 、b 、c 的值,不要漏掉..符号.. . 4.项及项的系数要区分开. 建议 强调掌握一元二次方程一般形式对学习一元二次方程很重要,这种从形式上认识数学概念的方法,在今 后学习基本初等函数时也要使用. 【例1】 1. 判断下列方程是不是一元二次方程. 【例2】 ⑴ 2210x kx --=(k 为常数) ⑵ 4 13 x =+ ⑶ 210x -=; 【例3】 ⑷ 250x = ⑸ 20x y += ⑹ ()()2 2 33x x +=-; 【例4】 夯实基础 知识导航

一元二次方程定义

一元二次方程 定义:只含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程. 判断一个方程是否是一元二次方程,必须符合以下四个标准: ⑴整式方程. ⑵方程中只含有一个未知数. ⑶化简后方程中未知数的最高次数是2 ⑷二次项的系数不为0 (2016~2017北京海淀区中学期中)用配方法解方程2420x x -+=,配方正确的是 A .()2 22x -= B .()2 22x += C .()222x -=- D .()2 26x -= (2016~2017北京海淀区中学期中)一元二次方程23610x x --=的二次项系数、一次项系数、常数项分别是 A .3,6,1 B .3,6,1- C .3,6-,1 D .3,6-,1- (2016~2017北京海淀区科迪实验中学期中)一元二次方程2320x x --=的二次项系数、一次项系数、常数项分别是 A .3,1-,2- B .3,1,2- C .3,1-,2 D .3,1,2 (2016~2017北京海淀区科迪实验中学期中)用配方法解方程2620x x ++=,配方正确的是 A .()2 39x += B .()2 39x -= C .()2 36x += D .()2 37x += (2016~2017北京海淀区科迪实验中学期中)已知2是关于x 的方程 230x ax a +-=的根,则a 的值为 A .4- B .4 C .2 D .45 (2016~2017北京海淀区科迪实验中学期中)方程02=-x x 的解为. (2016~2017北京海淀区科迪实验中学期中)若关于x 的方程220x x k --=有两个相等的实数根,则k 的值是. (2016~2017北京海淀区科迪实验中学期中)解方程:246x x +=. (2016~2017北京海淀区中学期中)解方程:2430x x -+=.

一元二次方程概念

《一元二次方程的概念》 一、教材分析: 1、教材的地位和作用 一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方 程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同 时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识 的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概 念。 2、教学目标 根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的 三维目标主要体现在: 知识与能力目标:要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。 过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织 学生讨论,让学生自己抽象出一元二次方程的概念。 情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做 数学的快乐,培养用数学的意识。 3、教学重点与难点 重点:由实际问题列出一元二次方程和一元二次方程的概念。 难点:由实际问题转化成数学方程。 二、教法、学法: 用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作

交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。 三、教学过程设计 1、创设情景,引入新课 以学生的实际生活背景为素材创设情景。通过微机演示课本中的实例,帮助学生从实 际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会 想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利 地进入新课。 2、启发探究,获取新知 通过上述情景分析,让学生小组合作,列出方程。并在课本的基础上,又补充2个实例, 而且,补充的例题所列出的方程正好是一个一次项为0,一个常数项为0 的特殊一元二次 方程,这为后面概括得出一元二次方程的一般形式作准备。在学生列出方程后,对所列方 程进行整理,并引导学生分析所列方程的特征,同时与一元一次方程相比较,找出两者的 区别与联系,并类比一元一次方程的概念来得出一元二次方程的概念。由于一元二次方程 的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自 我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。因为任何一个一元一次方程都可 以化为“ax+b=c(a≠0)”的形式,由此类比得出一元二次方程的一般形式为 “ax2+bx+c=0(a≠0)”;并由一元一次方程项及系数的概念联想得出一元二次方程的项 及系数的概念。 3、练习反馈,应用拓展 4、小结归纳,上升理性 引导学生从以下3个方面进行小结,(1)本节课我们学习了哪些知识?(2)学习过程中 用了哪些数学方法?(3)确定一元二次方程的项及系数时要注意什么?以培养学生的归纳、概括能力。 5、作业布置 考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,以 便同时兼顾到学有困难和学有余力的学生。 四、教学评价 根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的 态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。 五、板书设计

相关文档
最新文档