基因工程的发展历程

基因工程的发展历程
基因工程的发展历程

基因技术的发展历程

2011级初等教育理科代林宏

[摘要]基因技术作为21世纪生物科技的核心技术之一,通过操纵、改变DNA上基因的容易来改变生物属性和特点,包括胰岛素生物工程、干细胞技术、克隆技术等。基因科技术的每一次突破和发展对人类的生产生活都有着重要的影响。

[关键词] 基因技术;成就;发展历程;

基因技术是指通过操纵、改变(增加或减少)DNA上基因的容易来改变生物属性和特点,以达到有利于人类目的的生物科学技术。如把胰岛素基因置入大肠杆菌产生人类稀缺的胰岛素生物工程;干细胞技术,克隆技术等。这一系列的技术由基因到伟大的人类基因组计划以及后来的一系列生物高科技的发展有一个漫长的历程。

19世纪60-80年代间确定了细胞中的两种核算,脱氧核糖核算及核糖核酸;染色质,染色体等物质,对细胞结构有了基本的认识。

1909年,丹麦的约翰逊把遗传因子命名为“基因”。随后美国人摩尔根和他的学生发表了《遗传的物质基础》和《基因论》。证明了基因是染色体上的遗传单位。

1944年美国的艾弗里证明了遗传基因就在DNA上。剑桥大学的卡文迪许实验室里,沃森和克里克研究发现了DNA分子双螺旋结构,并在科学期刊《自然》上面发表了论文,这位之后的基因技术发展奠定了基础。

1956年,美国的肯恩伯格从大肠杆菌里分离出了一种催化核苷酸形成DNA 的酶-DNA聚合酶,作为DNA体外复制技术的起始。随后提出了中心法则、操纵子学说,并成功的破译了遗传密码,使生物学的发展进入了另一个阶段。

所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入了人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的豆和四分之一的玉米都是转基因的。

运用胚胎遗传病筛查技术可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。[1]

基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,二是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新性状,如抗虫西红柿,生长迅速的鲫鱼,转基因烟草等。1997

年世界十大科技突破之首就是克隆羊的诞生。通过无性繁殖产生了第一只哺乳动物绵羊“多利”,它完全秉承了给与它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。

1990年10月,阿波罗登月计划-人类基因组计划正式启动。[2]1999年12月1日,国际人类基因组计划联合小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类成功的完成人类染色体完整基因序列的测定。2000年6月26日科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要的一步。

综上所述,基因技术的不断发展创新突破给人类的生产生活带来了很大的便利,特别是人类基因组计划的实现使人类重新认识了自己,使科学技术得发展变得无可限量。

参考文献:

[1] 黄国琼;秦宇彤;罗长坤.生命科学的发展对医学的影响[J].人文社会医学版,

2011-02-08,32(2)

[2] 殷实.培养创新素质,迎接未来挑战[J].自然科学版,2009-11-10,23(1)

基因工程知识点总结归纳(更新版)

基因工程 绪论 1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。作动词:基因的分离和重组的过程。 2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。供体、受体和载体是基因工程的三大要素。 3、基因工程诞生的基础 三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。 三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现 3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶 1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。 2、限制酶的命名:属名(斜体)+种名+株系+序数 3、II型限制性内切酶识别特定序列并在特定位点切割 4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。 5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。 6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。 7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。 8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。 9、S1核酸酶:特异性降解单链DNA或RNA。

基因工程原理

基因工程原理 内容提要 1.基因工程又称基因操作、重组DNA技术, 是P. Berg等于1972年创建的。基因工程技术涉及的基本过程包括 “切、连、转、选”。该技术有两个基本的特点∶分子水平上的操作和细胞水平上的表达。 2.基因工程中使用多种工具酶,包括限制性内切核酸酶、DNA连接酶和其他一些参与DNA合成与修饰的酶类。 3.限制性内切核酸酶是基因工程中最重要的工具酶,属于水解酶类。根据限制性内切核酸酶的作用特点,被分为 三大类。Ⅱ类限制性内切核酸酶是基因工程中最常用的酶,该类酶的分子量小,专一性强,切割的方式有平切和交错切, 作用时需要Mg++作辅助因子, 但不需要ATP和SAM。第一个被分离的Ⅱ类酶是Hind Ⅱ。 4.连接酶是一类用于核酸分子连接形成磷酸二酯键的核酸酶,有DNA连接酶和RNA连接酶之分。基因工程中 使用的连接酶来自于原核生物,有两种类型的DNA连接酶∶E.coliDNA连接酶和T4-DNA连接酶。基因工程中使用的主要是T4DNA连接酶,它是从T4噬菌体感染的E.coli中分离的一种单链多肽酶,既能进行粘性末端连接又能进行平末端连接。 5.载体是能将分离或合成的基因导入细胞的DNA分子,有三种主要类型∶质粒DNA、病毒DNA、科斯质粒, 在这三种类型的基础上,根据不同的目的,出现了各种类型的改造载体。 6.DNA重组连接的方法大致分为四种: 粘性末端连接、平末端连接、同聚物接尾连接、接头连接法。粘性末端 连接法是最常用的DNA连接方法,是指具有相同粘性末端的两个双链DNA分子在DNA连接酶的作用下, 连接成为一个杂合双链DNA。平末端连接是指在T4 DNA连接酶的作用下, 将两个具有平末端的双链DNA分子连接成杂种DNA分子。同聚物加尾连接就是利用末端转移酶在载体及外源双链DNA的3'端各加上一段寡聚核苷酸, 制成人工粘性末端, 外源DNA和载体DNA分子要分别加上不同的寡聚核苷酸,如dA(dG)和dT(dC), 然后在DNA连接酶的作用下, 连接成为重组的DNA。这种方法可适用于任何来源的DNA片段, 但方法较繁, 需要λ核酸外切酶、S1核酶、末端转移酶等协同作用。将人工合成的或来源于现有质粒的一小段DNA分子(在这一小段DNA分子上有某种限制性内切酶的识别序列), 加到载体或外源DNA的分子上, 然后通过酶切制造黏性末端的方法称为接头连接法。 7.基因文库分为基因组文库、cDNA文库等,是指在一种载体群体中, 随机地收集着某一生物DNA的各种克隆 片段, 理想地包含着该物种的全部遗传信息。 8.DNA重组分子在体外构建完成后,必须导入特定的受体细胞,使之无性繁殖并高效表达外源基因或直接改变 其遗传性状,这个导入过程及操作统称为重组DNA分子的转化。目前常用的诱导感受态转化的方法是CaCl2 法(图3-20),此外也可以用基因枪等方法转化外源DNA。 9.重组体筛选有遗传学方法、核酸杂交筛选法等。 10.基因工程技术是现代生物技术的核心,目前在工业、农业和医疗中已经显示了巨大的应用前景,并形成了一大 批生物技术产业。 基因工程是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性,获得新品种,生产新产品;或是研究基因的结构和功能,揭示生命活动规律。基因工程技术诞生于20世纪70年代初,它是一门崭新的生物技术科学,它的创立和发展使生命科学产生了一次重大飞跃,证明并实现了基因的可操作性,使人类从简单地利用天然生物资源走向定向改造和创造具有新品质的生物资源的时代。基因工程技术诞生至今已经取得了辉煌的成就,成为当今生命科学研究领域中最有生命力和最引人注目的前沿学科之一,基因工程也是当今新的产业革命的一个重要组成部分。

基因工程简答题总结

基因工程原理复习题思考题 5、简单叙述同尾酶和同裂酶的差别。 同尾酶:来源不同,识别的序列不同,但能切出相同的粘性末端,连接后不能被相关的酶同时切割。 同裂酶:识别序列相同,切割位点有些相同,有些不同。分完全同裂酶和不完全同裂酶(PS:完全同裂酶:识别位点和切点完全相同。 不完全同裂酶:识别位点相同,但切点不同。) 6、连接酶主要有哪些类型?有何异同点?影响连接酶连接效果的因素主要有哪些? 类型:DNA连接酶和RNA连接酶 异同点: 相同点:都能以DNA为模板,从5'向3'进行核苷酸或脱氧核苷酸的聚合反应。 不同点:DNA聚合酶识别脱氧核糖核苷酸,在DNA复制中起作用;而RNA聚合酶聚合的是核糖核苷酸,在转录中起作用。 7、试分析提高平端DNA连接效率的可能方法。(传说中的网上答案) 1、低温下长时间的连接效率比室温下短时间连接的好。 2、在体系中加一点切载体的酶,只要连接后原来的酶切位点消失。这样可避免载体自连,应该可以大大提高平端连接的效率。 3、足够多的载体和插入片段是最重要的。 4、平端的连接对于离子浓度很敏感 5、尽可能缩小连接反应的体积 6、建议放在四度冰箱连接两天效率更高比14度好 8、基因工程中常用的DNA聚合酶主要有哪些? 1)大肠杆菌DNA聚合酶 2)Klenow fragment 3)T7 DNA聚合酶 4)T4 DNA聚合酶 5)修饰过的T7 DNA聚合酶 6)逆转录酶 7)Taq DNA聚合酶 第四章基因克隆的载体系统 1、作为基因工程载体,其应具备哪些条件? 具有针对受体细胞的亲缘性或亲和性(可转移性); 具有合适的筛选标记; 具有较高的外源DNA的载装能力; 具有多克隆位点(MCS); 具有与特定受体细胞相适应的复制位点或整合位点。 3、载体的类型主要有哪些?在基因工程操作中如何选择载体? 基因工程中常用的载体(vector)主要包括质粒(plasmid)、噬菌体(phage)和病毒(virus)三大类。这些载体均需经人工构建,除去致病基因,并赋予一些新的功能,如有利于进行筛选的标志基因、单一的限制酶切点等。 4、质粒转化原理,影响转化率的因素有哪些?

专题一、基因工程知识点归纳

专题一基因工程 一【高考目标定位】 1、专题重点:DNA重组技术所需的三种基本工具;基因工程的基本操作 程序四个步骤;基因工程在农业和医疗等面的应用;蛋白质工程的原理。 2、专题难点:基因工程载体需要具备的条件;从基因文库中获取目的基 因;利用PCR技术扩增目的基因;基因治疗;蛋白质工程的原理。 二【课时安排】2课时 三【考纲知识梳理】 第1节DNA重组技术的基本工具 教材梳理: 知识点一基因工程的概念:基因工程是指按照人们的愿望,进行格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在DNA分子水平上进行设计和施工的,因此又叫做DNA重组技术。 注意:对本概念应从以下几个面理解: 知识点二基因工程的基本工具 1.限制性核酸切酶——“分子手术刀” (1)限制性切酶的来源:主要是从原核生物中分离纯化来的。 (2)限制性切酶的作用:能够识别双链DNA分子的某种特定的核苷酸序列,并能将每一条链上特定部位的两个核苷酸之间的磷酸二酯键切开。(3)限制性切酶的切割式及结果:①在中心轴线两侧将DNA切开,切口是黏性末端。②沿着中心轴线切开DNA,切口是平末端。 2.DNA连接酶——“分子缝合针” (1)来源:大肠杆菌、T4噬菌体 (2)DNA连接酶的种类:E.coliDNA连接酶和T4DNA连接酶。 (3)作用及作用部位:E.coliDNA连接酶作用于黏性末端被切开的磷酸

二酯键,T4DNA连接酶作用于黏性末端和平末端被切开的磷酸二酯键。注意:比较有关的DNA酶 (1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基 (2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。注意:使DNA解成两条长链的法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA 解旋。 (3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。(4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。注意比较DNA聚合酶和DNA连接酶的异同点。 3.基因进入受体细胞的载体——“分子运输车” (1)分子运载车的种类:①质粒:常存在于原核细胞和酵母菌中,是一种分子质量较小的环状的裸露的DNA分子,独立于拟核之外。②病毒:常用的病毒有噬菌体、动植物病毒等。 (2)运载体作用:①是用它做运载工具,将目的基因转运到宿主细胞中去。②是利用它在受体细胞对目的基因进行大量复制。 (3)作为运载体必须具备的条件:①在宿主细胞中保存下来并大量复制②有多个限制性切酶切点③有一定的标记基因,便于筛选。 思维探究:知识点3、4、5主要是介绍DNA重组技术的三种基本工具及其作用。限制酶──“分子手术刀”,主要是介绍限制酶的作用,切割后产生的结果。在这部分容学习时,应关心的问题之一是:限制酶从哪里寻找?我们可以联想从前学过的容──噬菌体侵染细菌的实验,进而认识细菌等单细胞生物容易受到自然界外源DNA的入侵。那么这类原核生物之所以长期进化而不绝灭,有保护机制?进而联想到可能是有什么酶来切割外源DNA,而使之失效,达到保护自身的目的”。这样就对“限制酶主要是从原核生物中分离纯化出来”的认识提高了一个层次。 基因进入受体细胞的载体──“分子运 输车”的学习容,不能仅仅着眼于记住这几个 条件,而应该深入思考每一个条件的涵,通过 深思熟虑,才能真正明确为什么要有这些条件 才能充当载体。 教材拓展: 拓展点一限制酶所识别序列的特点 限制酶所识别的序列的特点是:呈现碱基互补对称,无论是奇数个碱

基因工程原理练习题及答案

基因工程原理练习题及其答案 一、填空题 1.基因工程是_________年代发展起来的遗传学的一个分支学科。 2.基因工程的两个基本特点是:(1)____________,(2)___________。 3.基因克隆中三个基本要点是:___________;_________和__________。 4.通过比较用不同组合的限制性内切核酸酶处理某一特定基因区域所得到的不同大小的片段,可以构建显示该区域各限制性内切核酸酶切点相互位置的___________。 5.限制性内切核酸酶是按属名和种名相结合的原则命名的,第一个大写字母取自_______,第二、三两个字母取自_________,第四个字母则用___________表示。 6.部分酶切可采取的措施有:(1)____________(2)___________ (3)___________等。 7.第一个分离的限制性内切核酸酶是___________;而第一个用于构建重组体的限制性内切核酸酶是_____________。8.限制性内切核酸酶BsuRI和HaeⅢ的来源不同,但识别的序列都是_________,它们属于_____________。 9.DNA聚合酶I的Klenow大片段是用_____________切割DNA聚合酶I得到的分子量为76kDa的大片段,具有两种酶活性:(1)____________;(2)________________的活性。 10.为了防止DNA的自身环化,可用_____________去双链DNA__________________。 11.EDTA是____________离子螯合剂。 12.测序酶是修饰了的T7 DNA聚合酶,它只有_____________酶的活性,而没有_______酶的活性。 13.切口移位(nick translation)法标记DNA的基本原理在于利用_________的_______和______的作用。 14.欲将某一具有突出单链末端的双链DNA分子转变成平末端的双链形式,通常可采用_________或_______________。15.反转录酶除了催化DNA的合成外,还具有____________的作用,可以将DNA- RNA杂种双链中的___________水解掉。 16.基因工程中有3种主要类型的载体:_______________、_____________、______________。 17.就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分:_______________、_____________、______________。另外,一个理想的质粒载体必须具有低分子量。 18.一个带有质粒的细菌在有EB的培养液中培养一段时间后,一部分细胞中已测 不出质粒,这种现象叫。 19.pBR322是一种改造型的质粒,它的复制子来源于,它的四环素抗性基因来自于,它的氨苄青霉素抗性基因来自于。 20.Y AC的最大容载能力是,BAC载体的最大容载能力是。 21.pSCl01是一种复制的质粒。 22.pUCl8质粒是目前使用较为广泛的载体。pUC系列的载体是通过 和两种质粒改造而来。它的复制子来自,Amp 抗性基因则是来自。 23.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。 24.野生型的M13不适合用作基因工程载体,主要原因是 和。 25.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS位点序列来自,最大的克隆片段达到kb。 26.野生型的λ噬菌体DNA不宜作为基因工程载体,原因是:(1) (2) (3) 。 27.噬菌粒是由质粒和噬菌体DNA共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。 28.λ噬菌体载体由于受到包装的限制,插入外源DNA片段后,总的长度应在噬菌体基 因组的的范围内。 29.在分离DNA时要使用金属离子螯合剂,如EDTA和柠檬酸钠等,其目的是 。 30.用乙醇沉淀DNA时,通常要在DNA溶液中加人单价的阳离子,如NaCl和NaAc, 其目的是。 31.引物在基因工程中至少有4个方面的用途:(1) (2) (3) (4) 。 32.Clark发现用Taq DNA聚合酶得到的PCR反应产物不是平末端,而是有一个突出 碱基末端的双链DNA分子。根据这一发现设计了克隆PCR产物的。 33.在cDNA的合成中要用到S1核酸酶,其作用是切除在 。 34.乙醇沉淀DNA的原理是。 35.假定克隆一个编码某种蛋白质的基因,必须考虑其表达的三个基本条件:

基因工程原理

基因工程原理 内容提要 1. 基因工程又称基因操作、重组DNA技术,是P. Berg等于1972年创建的。基因工程技术涉及的基本过程包括 “切、连、转、选”。该技术有两个基本的特点:分子水平上的操作和细胞水平上的表达。 2. 基因工程中使用多种工具酶,包括限制性内切核酸酶、DNA 连接酶和其他一些参与DNA 合成与修饰的酶类。 3. 限制性内切核酸酶是基因工程中最重要的工具酶,属于水解酶类。根据限制性内切核酸酶的作用特点,被分为 三大类。n类限制性内切核酸酶是基因工程中最常用的酶,该类酶的分子量小,专一性强,切割的方式有平切和交错切,作用时需要Mg++作辅助因子,但不需要ATP和SAM。第一个被分离的n类酶是Hi nd n。 4. 连接酶是一类用于核酸分子连接形成磷酸二酯键的核酸酶,有DNA 连接酶和RNA 连接酶之分。基因工程中 使用的连接酶来自于原核生物,有两种类型的DNA 连接酶: E.coliDNA 连接酶和T4-DNA 连接酶。基因工程中使用的主要是T4DNA 连接酶,它是从T4 噬菌体感染的 E.coli 中分离的一种单链多肽酶,既能进行粘性末端连接又能进行平末端连接。 5. 载体是能将分离或合成的基因导入细胞的DNA分子,有三种主要类型:质粒DNA、病毒DNA、科斯质粒, 在这三种类型的基础上,根据不同的目的,出现了各种类型的改造载体。 6. DNA 重组连接的方法大致分为四种: 粘性末端连接、平末端连接、同聚物接尾连接、接头连接法。粘性末端 连接法是最常用的DNA 连接方法,是指具有相同粘性末端的两个双链DNA 分子在DNA 连接酶的作用下,连接成为一个杂合双链DNA 。平末端连接是指在T4 DNA 连接酶的作用下,将两个具有平末端的双链DNA 分子连接成杂种DNA 分子。同聚物加尾连接就是利用末端转移酶在载体及外源双链DNA 的3'端各加上一段寡聚核苷酸,制成人工粘性末端,外源DNA和载体DNA分子要分别加上不同的寡聚核苷酸,如dA(dG)和dT (dC),然 后在DNA连接酶的作用下,连接成为重组的DNA。这种方法可适用于任何来源的DNA片段,但方法较繁,需要入核酸外切酶、S1核酶、末端转移酶等协同作用。将人工合成的或来源于现有质粒的一小段DNA分子(在这一小段DNA 分子上有某种限制性内切酶的识别序列),加到载体或外源DNA 的分子上,然后通过酶切制造黏性末端的方法称为接头连接法。 7. 基因文库分为基因组文库、cDNA 文库等,是指在一种载体群体中,随机地收集着某一生物DNA 的各种克隆片段, 理想地包含着该物种的全部遗传信息。 8. DNA 重组分子在体外构建完成后,必须导入特定的受体细胞,使之无性繁殖并高效表达外源基因或直接改变 其遗传性状,这个导入过程及操作统称为重组DNA 分子的转化。目前常用的诱导感受态转化的方法是CaCl2 法(图3-20),此外也可以用基因枪等方法转化外源DNA。 9. 重组体筛选有遗传学方法、核酸杂交筛选法等。 10. 基因工程技术是现代生物技术的核心,目前在工业、农业和医疗中已经显示了巨大的应用前景,并形成了一大批生物技术 产业。 基因工程是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性,获得新品种,生产新产品;或是研究基因的结构和功能,揭示生命活动规律。基因工程技术诞生于20世纪70年代初,它是一门崭新的生物技术科学,它的创立和发展使生命科学产生了一次重大飞跃,证明并实现了基因的可操作性,使人类从简单地利用天然生物资源走向定向改造和创造具有新品质的生物资源的时代。基因工程技术诞生至今已经取得了辉煌的成就,成为当今生命科学研究领域中最有生命力和最引人注目的前沿学科之一,基因工程也是当今新的产业革命的一个重要组成部分。

《基因工程原理》期末复习思考题教案资料

《医用基因工程》复习思考题 第一章基因和基因组及基因工程的概念 一、名词概念 ①移动基因(插入序列;转位子);②断裂基因;③RNA剪辑; ④内含子(间隔序列)与表达子;⑤重叠基因;⑥重复序列;⑦假基因;⑧启动子与终止子;⑨起始位点、终止位点。 二、讨论题 1.什么叫基因?何谓基因的新概念?基因的主要功能是什么? 2.一种基因一种酶的提法妥否? 3.基因密码子三联体间是否存在着逗号? 4.基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 5.何谓转位子和转位作用?转位的后果如何? 6.基因中最小的突变单位和重组单位是什么? 7.基因工程应包括哪些内容?何谓基因工程的四大里程碑和三大技术发明? 8.真核细胞基因组中常有内含子存在,能否在原核细胞获得表达?能,为什么?不能,为什么? 第二章基因工程中常用的工具酶 1.什么是限制性核酸内切酶? 2.什么是R/M现象?如何解释? 3.II型核酸内切酶的基本特点有哪些? 4.影响II型核酸内切酶活性的因素有哪些?如何克服和避免这

些不利因素? 5.DNA连接酶有哪两类?有何不同? 6.甲基化酶有哪两类?有何应用价值? 7.什么叫同尾酶、同裂酶?在基因工程中有何应用价值? 8.平末端连接的方法有哪些?(图示) 9.Klenow酶的特性和用途有哪些?举例说明。 10.反转录酶的特性有哪些?有何应用价值? 11.列举碱性磷酸酶BAP/CAP的应用之一。 12.列举末端核苷酸序列转移酶的应用之一。 13.质粒单酶切点的基因连接如何降低本底和防止自我环化和提高连接效率? 14.基因片段与载体的平末端连接的方法有哪些? 15.用寡核苷酸和衔接物DNA的短片段连接时为使基因内部的切点保护,常用何种办法解决? 第三章基因克隆载体 1.基因工程常用的载体有哪5种?其共同特性如何? 2.什么是质粒?质粒分哪几种?有哪两种复制类型,质粒的分子生物学特性有哪些? 3.质粒存在的三种形式是什么? 4.分离质粒的基本步骤有哪些? 5.分离纯化质粒的方法有哪几种?简述CsCl密度梯度(浮密度)分离法、碱变性法的原理,如何选择合适的分离方法? 6.作为理想质粒载体的基本条件有哪些? 7.什么叫插入失活,举例说明之。 8.构建pBR322质粒载体的亲本质粒有哪些? 9.什么叫插入型和替换型噬菌体载体?插入型和替换型入噬菌体

专题1基因工程知识点梳理(含教材答案)

专题1 基因工程 ※基因工程的概念: 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 ﹡原理:基因重组 ﹡目的:创造出更符合人们需要的新的生物类型和生物产品。 ﹡意义:能够打破生物种属的界限(即打破生殖隔离,克服远源杂交不亲和的障碍),在分子水平上定向改变生物的遗传特性。 ﹡操作水平:DNA分子水平 【思考】: (1)基因工程的物质基础是:所有生物的DNA均由四种脱氧核苷酸组成。 (2)基因工程的结构基础是:所有生物的DNA均为双螺旋结构。 (3)一种生物的DNA上的基因之所以能在其他生物体内得以进行相同的表达,是因为它们共用一套遗传密码子。 一、基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端(回文结构特点)。 ①在中心轴线两侧将DNA切开,切口是黏性末端。 ②沿着中心轴线切开DNA,切口是平末端。 2.“分子缝合针”——DNA连接酶

(1)分类:根据酶的来源不同,可分为E·coliDNA连接酶和T4DNA连接酶两类 (2)功能:恢复被限制酶切开了的两个核苷酸之间的磷酸二酯键。 ★两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键 ②区别:E.coIiDNA连接酶来源于大肠杆菌,只能使黏性末端之间连接; T4DNA连接酶能缝合两种末端,但连接平末端之间的效率较低。 (3)与DNA聚合酶作用的异同: DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 (4)与DNA分子相关的酶

《基因工程原理与技术》标准答案及评分标准.0001

精品文档 《基因工程原理与技术》标准答案及评分标准 一、名词解释(本大题共5小题,每题2分,总计10分) 限制性内切酶的Star活性:限制性内切酶的识别和酶切活性一般在一定的温度、离子强度、pH 等条件下才表现最佳切割能力和位点的专一性。如果改变反应条件就会影响酶的专一性和切割效率,称为星号(*)活性。 受体细胞:又称为宿主细胞或寄主细胞等,从试验技术上讲是能摄取外源DNA并使其稳定维持的细胞;从试验目的讲是有应用价值和理论研究价值的细胞 T-DNA是农杆菌侵染植物细胞时,从Ti质粒上切割下来转移到植物细胞的一段DNA 该DNA片段上的基因与肿瘤的形成有关。 克隆基因的表达:指储存遗传信息的基因经过一系列步骤表现出其生物功能的整个过 程。典型的基因表达是基因经过转录、翻译,产生有生物活性的蛋白质的过程。 a -互补:3 -半乳糖苷酶(B -gal)是大肠杆菌lacZ基因的产物,当培养基中的一种色素元(X-gal )被3 -gal切割后,即产生兰色。大肠杆菌的3一半乳糖苷酶由1021个氨基酸构成,只有在四聚体状态下才有活性。大肠杆菌lacZ基因由于a区域缺失,只能编码一种在氨基端截短的多肽,形成无活性的不完全酶,称为a受体;如果载体的lacZ 基因在相反方向缺失,产生在羧基端截短的多肽,这种部分3 -半乳乳糖苷酶也无活性。 但是这种蛋白质可作为a供体。受体一旦接受了供体(在体内或体外),即可恢复3 -半乳糖苷酶的活性,这种现象称为a互补. 由载体产生的a供体能够与寄主细胞产生 的无活性的a受体互作形成一种八聚体,从而恢复3 -半乳糖苷酶的活性。如果培养基 中含有X-gal的诱导物IPTG时,凡是包含有3 -半乳糖苷酶活性的细胞将转变为蓝色,反之不含有这种酶活性的细胞将保持白色。 、填空题(本大题共7小题,每空1分,总计20 分) 1、质粒按自我转移的能力可分为—接合型—质粒和—非接合型—质粒;按复制类型可分为松 弛性质粒和严紧型质粒。 2、为了防止DNA的自身环化,可用碱性磷酸酶除去双链DNA 5'—端的磷酸基团 。 3、人工感受态的大肠杆菌细胞在温度为_0匸—时吸附DNA在温度为_42乜__ 时摄人 DNA 4、仅克隆基因(DNA片段)用途而言,最简单的质粒载体也必需包括三个组成部分: 复制区:含有复制起点__、选择标记:主要是抗性基因 ________ 、__克隆位点:便于外源_ DNA的插入_。另外,一个理想的质粒载体必须具有低分子量。 5、Southern blotting 杂交能够检测外源基因是否整合进受体细胞基因组;外源基 因的转录表达需要通过—northern_杂交或_ RT-PCR_来揭示;而外源基因_____ 翻 译—水平的表达则需通过免疫学检测或Western杂交才能揭示,其使用的探针是 —蛋白质____ 。 6、外源蛋白在大肠杆菌中的表达部位有—细胞质_、_ —周质_、一细胞外 _。 7、Vir区基因的激活信号有三类,它们是—酚类化合物_、_中性糖和酸性糖_、— _ pH 值_。 简答题(本大题共7 小题,总计50 分) 1欢迎下载

基因工程知识点超全

基因工程 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在 二、基因工程的基本工具 1、限制性核酸内切酶-----“分子手术刀” 2、DNA连接酶-----“分子缝合针” 3、基因进入受体细胞的载体-----“分子运输车” 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)存在:主要存在于原核生物中。 (2)特性:特异性,一种限制酶只能 识别一种特定的核苷酸序列,并且能在 特定的切点上切割DNA分子。 (3)切割部位:磷酸二酯键 (4)作用:能够识别双链DNA分子的 某种特定核苷酸序列,并且使每一条链 中特定部位的两个核苷酸之间的磷酸 二酯键断开。

(5)识别序列的特点: (6)切割后末端的种类:DNA 分子经限制酶切割产生的DNA 片段末端通常有两种形式——黏性末端和平末端。当限制酶在它识别序列的中轴线两侧将DNA 的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中轴线处切开时,产生的则是平末端。

2.“分子缝合针”——DNA连接酶 (1)作用:将限制酶切割下来的DNA片段拼接成DNA分子。 (2)类型 相同点:都连接磷酸二酯键 3.“分子运输车”——载体 (1)载体具备的条件: ①能在受体细胞中复制并稳定保存。 ②具有一个至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的双链环状DNA分子。 (3)其他载体:λ噬菌体的衍生物、动植物病毒。 (4)载体的作用: ①作为运载工具,将目的基因送入受体细胞。 ②在受体细胞内对目的基因进行大量复制。 【解题技巧】 (1)限制酶是一类酶,而不是一种酶。 (2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 (3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。 (4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。 (5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。 (6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 (7)基因工程中的载体与细胞膜上物质运输的载体不同。基因工程中的载体是DNA分子,能将目的

基因工程的基本操作程序》教案

专题一基因工程的基本操作程序 一、教材分析 《基因工程的基本操作程序》是专题1《基因工程》的第二节,也是《基因工程》的核心,上承《DNA重组技术的基本工具》,下接《基因工程的应用》。本节课主要介绍了基因工程的基本操作程序的四个步骤,教学内容多,难点多,最好化整为零、各个击破。 二、教学目标 1.知识目标: 简述基因工程原理及基本操作程序。 2.能力目标: 尝试设计某一转基因生物的研制过程。 3.情感、态度和价值观目标: (1)关注基因工程的发展。 (2)认同基因工程的诞生和发展离不开理论研究和技术创新。 三、教学重点和难点 1、教学重点 基因工程基本操作程序的四个步骤。 2、教学难点 (1)从基因文库中获取目的基因 (2)利用PCR技术扩增目的基因 四、学情分析

本节课内容较多,难点较多,学生学习起来有一定困难,所以之前应该要求学生做好预习,尽量采用化整为零、各个击破的教学策略。 五、教学方法 1、学案导学:见学案。 2、新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习《基因工程的基本操作程序》,初步把握基因工程原理及基本操作程序。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:2课时 八、教学过程 (一)预习检查、总结疑惑 检查学生落实预习的情况并了解学生的疑惑,使教学具有针对性。 (二)情境导入、展示目标 教师首先提问: (1)什么是基因工程(基因工程的概念) (2)DNA重组技术的基本工具有哪些(限制酶、DNA连接酶、载体)

最新基因工程细胞工程知识点汇总

基因工程细胞工程知识点汇总 一、基因工程 (一)基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同: DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。②具有一至多个限制酶切点,

供外源DNA片段插入。③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是 质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体: 噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。第二步:基因表达载体的构建 1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 2.组成:目的基因+启动子+终止子+标记基因 (1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。 (2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。 (3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。

基因工程主要内容及流程

基因工程制药 姓名:惠霞 学号:2011506024 班级:2011级生技1 班

基因工程制药 一.基因工程制药常用的工具酶: 基因工程的重要特点之—是在体外实行DNA分子的切割和重新连接。例如要取得所需药物之目的基因并要将此特定目的基因与载体DNA连接在—起,在很大程度上要依赖于某些工具酶。 (一) 限制酶(Restriction enzymes) 限制酶即限制性核酸切酶的简称,是一类专一性很强的核酸切酶。与一般的DNA水解酶不同之处在于它们对碱基作用的专一性上及对磷酸二酯键的断裂方式上具有一些特殊的性质。限制酶的种类 Ⅰ型酶:早期提取的酶类,是一类复杂的多功能酶,在基因工程上的应用价值不大。 Ⅱ型酶:相对分子质量较小,为20000~100000,是简单的单功能酶,作用时无需辅助因子或只需Mg2+。能识别双链DNA上特异的核苷酸序列,底物作用的专一性强,而且其识别序列与切断序列相一致。这类酶对基因工程中的生化操作特别重要。 (二) DNA聚合酶(DNA polymerase) DNA聚合酶是能够催化DNA复制和修复DNA分子损伤的一类酶,这类酶作用时大多数需要DNA模板并且优先作用于DNA模板,也可作用于RNA模板,但效率较低。 1.大肠杆菌DNA聚合酶Ⅰ 2. 大肠杆菌DNA聚合酶Ⅰ大片断Klenow 片断 3. T4噬菌体DNA聚合酶 4. 经修饰的T7噬菌体DNA聚合酶(测序酶) 5. T aqDNA聚合酶及AmpiTaqTMDNA聚合酶 6. 反转录酶

(三)DNA连接酶(DNA ligase):能将两段DNA拼接起来的酶。 1. T4噬菌体DNA连接酶:催化DNA的5'羟基之间形成磷酸二酯键。 2. 大肠杆菌DNA连接酶:用途较窄,不常用。 (四)基因工程中常用的其他酶 1. 末端脱氧核苷酸转移酶(末端转移酶或TDT酶) 2. T4噬菌体多核苷酸酶 3. 核酸酶(Nuclease) 4. 碱性磷酸酯酶(Alkaline phosphodiesterase):能催化去除单链或双链DNA和RNA 分子中的5' 磷酸基(脱磷酸作用)。分为细菌碱性磷酸酯酶(BAP),牛小肠碱性磷酸酯酶(CIP)。 二.基因工程制药中常用的克隆载体 载体:能在细胞进行自我复制的DNA分子就是外源DNA片段(基因)的运载体(Vector),又可称为分子载体或无性繁殖载体。基因工程制药中常用的目的基因克隆载体主要有:质粒、λ噬菌体、M13噬菌体和粘粒。 (一)质粒 1.质粒(Plasmid)是一些存在于微生物细胞染色体外的闭合环状双链的小型DNA分子,是能进行独立复制并保持恒定遗传的辅助性遗传单位。 2 常用的几种质粒载体 (1)pBR322及其衍生载体 pBR322 最早构建成功的较理想载体,分子质量2.6×106u,4.36kb,属松弛型复制,含有两个抗性基因(Tetr和Ampr),已确定32个限制酶切割位点的相对位置。BamH I

高中生物基因工程核心知识点

高中生物基因工程核心知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

基因工程的基本内容

基因工程的基本内容 基因工程的基本内容一.本周教学内容:基因工程的基本内容二.学习内容:本周学习基因工程的操作过程,指导进行基因工程操作时需要的基本工具:限制酶、连接酶、运载体,了解他们的特点,及其在基因工程中的应用。理解基因工程操作的基本步骤,理解如何提取目的基因,怎样将目的基因导入受体细胞,怎样鉴定试验的成果等等。基因工程的基本内容 一. 本周教学内容: 基因工程的基本内容 二.学习内容: 本周学习基因工程的操作过程,指导进行基因工程操作时需要的基本工具:限制酶、连接酶、运载体,了解他们的特点,及其在基因工程中的应用。理解基因工程操作的基本步骤,理解如何提取目的基因,怎样将目的基因导入受体细胞,怎样鉴定试验的成果等等。了解基因工程对现代社会的贡献及基因工程应用的发展。 三. 学习重点: 1. 基因工程的概念 2. 基因工程的操作工具 3. 运载体的基本条件 4. 基因工程的基本操作步骤

5. 基因工程的应用和发展 四. 学习难点: 1. 基因工程工具:限制酶、运载体 2. 运载体的基本要求 3. 基因工程的操作步骤 4. 如何检测基因操作 5. 基因工程应用的两面性 五. 学习过程: (一)概念:基因工程——又叫基因拼接技术或DNA重组技术。 是指在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出人类所需要的基因产物。 概念要点: 1. 在DNA分子水平上进行设计操作的 2. 在生物体外实现的基因改造 3. 对受体细胞进行无性繁殖 4. 重组基因最终表达获得性状 (二)基因操作的工具 1. 抗虫棉的培育:将抗虫的基因从某种生物(如苏云金芽孢杆菌)中提取出来,“插入”到棉花的细胞中,与棉细胞

基因工程原理

基因工程原理 1、典型的DNA重组实验通常包括哪些步骤?(20分) 重组DNA技术一般包括四步:①获得目的基因;②与克隆载体连接,形成新的重组DNA分子;③用重组DNA分子转 化受体细胞,并能在受体细胞中复制和遗传;④对转化子筛选和鉴定。⑤对获得外源基因的细胞或生物体通过培养, 获得所需的遗传性状或表达出所需要的产物。 2、在PCR扩增时,(1)PCR扩增后出现的条带与预计的大小不一致,或大或 小,或者同时出现特异性扩增带与非特异性扩增带,为什么?有何对策? (2)PCR扩增后有时出现涂抹带或片状带,其原因是什么?应该如何改进? (20分) (1)其原因:一是引物与靶序列不完全互补、或引物聚合形成二聚体。二是Mg2+离子浓度过高、退火温度过低, 及PCR循环次数过多有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶则不出现,酶量过多有时也会出现非特异性扩增。其对策有:①必要时重新设计引物。②减低酶量或调换另一来源的酶。③降低引物量,适当增加模板量,减少循环次数。④适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。 (2)出现片状拖带或涂抹带 PCR扩增有时出现涂抹带或片状带或地毯样带。其原因往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。其对策有:①减少酶量,或调换另一来源的酶。②减少dNTP的浓度。③适当降低Mg2+浓度。④增加模板量,减少循环次数。 3、获得一个功能未知的基因克隆后,怎样研究该基因的功能?请提出具体的 研究方案。(20分) 基因功能的研究思路主要包括: 1.基因的亚细胞定位和时空(发育期或梯度药物处理浓度, 不同组织/器官)表达谱; 2.基因在转录水平的调控(可以通过genome walking PCR或通过已有的资源库寻找该基因的启动子等转录调控区域, 通过单杂交或ChIP 等技术, 寻找该基因的转录调控蛋白)

相关文档
最新文档