《岩石力学》复习资料

《岩石力学》复习资料
《岩石力学》复习资料

《岩石力学》复习资料

1.1 简述岩石与岩体的区别与联系。

答:岩石是由矿物或岩屑在地质作用下按一定的规律聚集而形成的自然物体,力学性质可在实验室测得;岩体是指由背诸如节理、裂隙、层理和断层等地质结构面切割的岩块组成的集合体,力学性质一般在野外现场进行测定,因此更接近岩体的实际情况,反映岩体的实际强度。

1.2 岩体的力学特征是什么?

答:(1)不连续性:岩体受结构面的隔断,多为不连续介质,但岩块本身可作为连续介质看待;

(2)各向异性:结构面有优先排列位向的趋势,随着受力岩体的结构趋向不同力学性质也各异;

(3)不均匀性:结构面的方向、分布、密度及岩块的大小、形状和镶嵌状况等在各部位都很不一致,造成岩体的不均匀性;

(4)岩块单元的可移动性:岩体的变形破坏往往取决于组成岩体的岩石块单元体的移动,这与岩石块本身的变形破坏共同组成岩体的变形破坏;

(5)力学性质受赋存条件的影响:在一定的地质环境中,岩体赋存有不同于自重应力场的地应力场、水、气、温度以及地质历史遗留的形迹等。

1.3 岩石可分为哪三大类?它们各自的基本特点是什么?

答:(1)岩浆岩:由岩浆冷凝形成的岩石,强度高、均匀性好;

(2)沉积岩:由母岩在地表经风化剥蚀后产生,后经搬运、沉积

和结硬成岩作用而形成的岩石,具有层理构造,强度不稳定,且具有各向异性;

(3)变质岩:由岩浆岩、沉积岩或变质岩在地壳中受高温、高压及化学活动性流体的影响发生变质而形成的岩石。力学性质与变质作用的程度、性质以及原岩性质有关。

1.4 简述岩体力学的研究任务与研究内容。

研究任务:①建模与参数辨别;②确定试验方法、仪器与信息处理;③现场测试;④实际应用;

研究内容:①岩石与岩体的物理力学性质(岩石的物质组成和结构特征,岩石的物理、水理性质,岩块在不同应力状态作用下的变形和强度特征,结构面的变性特征和强度参数的确定等);②岩石和岩体的本构关系(岩块的本构关系,岩体结构面分类和典型结构面本构关系,岩体的本构关系);③工程岩体的应力、变形和强度理论(岩体初始应力测量及分布规律,岩体中应力、应变和位移计算,岩体破坏机理、强度理论和工程稳定性维护与评价):④岩石(岩块)室内实验(室内实验是岩石力学研究的基本手段);⑤岩体测试和工程稳定监测(岩体原位力学实验原理和方法,岩体结构面分布规律的统计测试,岩体的应力、应变、位移检测方法及测试数据的分析利用,工程稳定准则和安全预测理论与方法)。

1.5 岩体力学的研究方法有哪些?

研究方法是采用科学实验、理论分析与工程紧密结合的方法。

①对现场的地质条件和工程环境进行调查分析,掌握工程岩体的组构规律和地质环境;

②进行室内外的物理力学性质试验、模型试验或原型试验,作为建立岩石力学的概念、模型和分析理论的基础。

③按地质和工程环境的特点分别采用弹性理论、塑性理论、流变理论以及断裂、损伤等力学理论进行计算分析。

2.1 名词解释

(1)岩石的质量指标(RQD ):大于10cm 的岩心之和与钻孔总长度的比率。

(2)孔隙比:孔隙的体积与固体的体积之比,c v V V e =

; (3)孔隙率:孔隙的体积与试件总体积之比,V

V n v =; (4)吸水率:岩石吸入水的质量与固体质量之比,%100?-=c

d d γγγω; (5)风化指标:包括软化系数(表示抗风化能力的指标,是试件干燥单轴抗压强度与饱和单轴抗压强度的比值,cd

cc R R =η,越小表示岩石受水的影响越大)和岩石耐崩解系数(试件实验前的质量与试验后残余质量的比值,s

r c m m l =2); (6)膨胀指标:包括自由膨胀系数(岩石在无任何条件下,浸水后产生的膨胀变形尺寸与原尺寸的比值,包括轴向自由膨胀率%100??=h h V h 和径向自由膨胀率%100??=d

d V d ),岩石的侧向约束膨胀率(将具有侧向约束的试件浸入水中,使试件仅产生轴向变形而求得

的膨胀率%1001??=h

h V hp )以及膨胀压力(岩石浸水后,使试件保持原有体积所需施加的最大压力);

(7)渗透性:在一定的水压作用下,水穿透岩石的能力。反映了岩石中裂隙向相互连通的程度,用达西定律描述:x x A dx

dh K

Q =,其中dx dh 表示水头变化率。 2.2 简述岩石的孔隙比与孔隙率的联系。

答:孔隙比(e )是指孔隙的体积与固体的体积之比,孔隙率(n )是指孔隙的体积与试件总体积之比,其关系为:n

n e -=

1。 3.1 简述岩柱劈裂破坏机理。

答:岩柱受压时,轴向趋于缩短,横向趋于扩张,是张拉破坏。当试件两端面无摩擦力时,若试件受到轴向压缩,试件横向自由扩张,其中的张拉应力使试件产生平行于轴线的垂直裂缝,呈柱状劈裂破坏。

3.2 刚性试验机的工作原理是什么?

答:刚性试验机(K m ≧K s ),由于试验机释放能ΔEm 小于ΔEs ,需要继续加载才能使试件产生新的位移,因此,保持峰值强度后的试验平稳进行,并记录下岩石峰值强度后的应力-应变曲线,即刚性试验机的工作原理。

3.3 什么是环箍效应?列举在单轴压缩中克服它的措施。

试件受压时,由于轴向趋于缩短,横向趋于扩张,而试件和压板间的摩擦约束作用则阻止其扩张,在试件端面部分形成了一个箍的作用,这一作用随着远离承压板而逐渐减弱,即环箍效应。

措施:在试件与压板间插入刚度与试件匹配、断面尺寸与试件相同的垫块;润滑试件端部;加长试件。

3.4 简述抗剪试验及裂隙法试验的试验要点。

【抗剪试验】

试验要点:如图,将按一定的精度要求加工好的立方体(5×5×5cm )岩石试件,放入钢制楔形角模内;再将夹有试件的角模放在试验机上缓慢加压至破坏,并记录下极限荷载P 。

试验关键技术:保持角模整体平衡、稳定,防止偏心荷载,使试件按预定的剪切面剪断;在加载过程中,角模会产生水平位移,为减少角模与试验机压板之间的摩擦力,在两者之间放滾柱板;角模的倾角α(试件剪断面方向角),不能太小也不能太大,一般在30°~70°。

【裂隙法试验】 实验要点:如图,用一个实心圆柱形试件,使它承受径向压缩荷载至破坏,再利用弹性理论推算出岩石的抗拉强度。钢丝直径为5mm ,作用为将试验机压板荷载转化为线性荷载传递给试件。试件尺寸为直径d =50mm ,长度t =25mm 。此时,试件的单轴抗拉强度dt

P t πσ2=。 实验关键:严格对中,为防止试件承受偏心荷载,要求钢丝垫条平行于试件轴线,上、下两钢丝的连线为试件的直径,保证破裂面通过试件的直径。

3.5 简述摩尔-库伦曲线的制作方法。

答:摩尔曲线制作方法:①在σ-τ平面上,做一组不同应力状态

下(包括单轴抗拉和单向抗压)的极限应力圆;②找出各应力圆上的破坏点;③用光滑曲线连接个破坏点,这条光滑曲线就是极限莫尔应力圆的包络线,即莫尔准则曲线。

库伦曲线的制作方法:作一系列不同倾角α的压剪试验,并由式

(1)计算出不同倾角的破坏面上的正应力σ和剪应力τ;再在σ-τ平面描点作出强度准则曲线,或用数理统计方法确定其方程。通常由抗剪试验得出的强度曲线是一条弧形曲线,一般把它简化为直线,即得到式(2)所示的强度准则。

)(αασsin cos f A P

+=(1)

)(αατcos sin f A P

-=

c +=?στtan (2)

3.6 影响岩石强度的主要因素有哪些?

答:(1)承压板的影响:①试件端面的摩擦力约束了试件端面附近的横向变形;②承压板与试件的刚度不匹配造成两者变形的不协调。

(2)试件尺寸及形状的影响:①形状:圆形不易引起应力集中并且容易加工;②尺寸:试件的强度随尺寸的增加而减小;③高径比:高径比越大试件抗压强度越低。

(3)加载速率的影响:岩石的单轴抗压强度随加载速度增大而增大。

(4)环境影响:①含水量:含水

量越大强度越低,且岩石越软影响越明显;②

温度:常温

下温度的影响不明显,超过180℃,温度越高强度越小,380℃左右时强度急剧下降。

(5)层理结构的影响:岩块的抗压强度因受力方向不同而有差异,层理显著的沉积岩差异更明显。

3.7 简述单向压缩下的岩石全过程应力应变曲线的特征。

答:岩石应力-应变全过程曲线只有在刚性试验中才能做出,如图所示,典型岩石应力-应变全过程曲线一般可以分为5个阶段来描述其性质:

①OA阶段,通常被称为压密阶段。其特征是应力-应变曲线呈上凹型,即应变随应力的增大而减小,形成这一特性的主要原因是:存在于岩石内部的微裂隙在外力作用下发生闭合所致。

②AB阶段,弹性变形阶段。这一阶段的应力-应变曲线基本呈直线。

③BC阶段,塑性变形阶段。当应力值超出屈服应力之后,随着应力的增大曲线呈下凹状,明显的表现出应变增大(软化)的现象。进入了塑性阶段,岩石将产生不可逆的塑性变形。同时ε1,ε3应变速率将同时增大但最小主应变的应变速率ε3的增大表现得更明显。

④CD阶段,为应变软化阶段。虽然此时已超出了峰值应力,但岩

石仍具有一定的承载能力,而这一承载力将随着应变的增大而逐渐减小,表现出明显的软化现象。

⑤D点以后为摩擦阶段。它仅表现了岩石产生宏观的断裂面之后,断裂面的摩擦所具有的抵抗外力的能力。

3.8 试说明岩石流变三阶段的特点。

答:岩石的蠕变是指在恒定的压力作用下应变随时间的增长而增长的特性;

岩石的蠕变特性可分为三阶段来描述:

①初始蠕变阶段(AB段),在此阶段存在瞬时弹性阶段和弹性后效等特性。

②稳定蠕变阶段(BC段),在此阶段存在瞬时弹性变形,弹性后效和粘性流动(永久变形)

③加速蠕变阶段(C点以后),又称破坏蠕变阶段或非稳定蠕变阶段,一般过了C点以后岩石破坏(失稳)不可避免。

3.9 蠕变力学模型(两元件)的结构关系推导过程。

答:(1)马克斯韦尔模型(M体)

马克斯韦尔模型是由虎克体(弹簧)和牛顿体(阻尼器)串联组成。M=H-N。

蠕变曲线 松弛曲线 弹性后效和粘性流动

静力平衡条件:21σσσ== 变形协调条件:21εεε+= 本构关系:

ησσε+=

?E

蠕变方程:t

E ησσε+=0 松弛方程:)()(t E e t E

ησσση-==-exp 0exp 0 粘性流动:const t ==

10ησε 流变特征

瞬变 蠕变 松弛 弹性后效 粘性流动 M 体

有 有 有 无 有

(2)开尔文模型(K 体)

开尔文模型是由弹簧和阻尼器并联组成。K=H|N 。

蠕变曲线 松弛曲线 弹性后效和粘性流动

静力平衡条件:21σσσ+=

变形协调条件:21εεε== 本构方程:?+=εηεσE

松弛方程:const =σ

蠕变方程:??????

???? ??--

=

t E E ησεexp 10 弹性后效:()??

????--=11exp t t E

ηεε 流变特征

瞬变 蠕变 松弛 弹性后效 粘性流动 K 体

无 有 无 有 无

(3)宾厄姆模型(B 体)

宾厄姆模型是由滑块(圣维南体St V )和阻尼器并联组成。B=N|St V 。

蠕变与粘性流动曲线

静力平衡条件:21σσσ+=

变形协调条件:21εεε== 本构关系:?????=+==?)()(f f f 220σεησσε<

蠕变方程:?????=-==)()(f t f f 2020σησσσε<

粘性流动:?????=-====)()(f t f f 2101210σησεεσεε< 流变特征 瞬变 蠕变 松弛 弹性后

效 粘性流动

N|St V

σ2<f 无 无 无 无

σ2=f 无 有 无 无 有

3.10 莫尔—库仑准则提出机理是什么?掌握其推导、图解、主应力表示方法。

答:(1)提出机理:岩石的破坏属于压剪破坏,在破坏面上,剪切破坏力的一部分用来克服与正应力无关的粘结力,使材料颗粒间相脱离;另一部分用来克服与正应力成正比的摩擦力,使面间发生错动而最终破坏。

(2)图解:

(3)推导:若破坏面的倾角为α,则其上的上的正应力

(αασsin cos f A P +=剪应力)(αατcos sin f A

P -=,将其简化为直线,即得到?στtan +=c 的强度准则。

(4)主应力表示:若某点有一个斜面正好处于极限破坏状态,则该点应力圆与强度直线相切。由图的三角关系可以得出31sin 1sin 1sin 1cos 2σ????σ-++-=c 。 3.11 格里菲斯准则的基本思想是什么?

答:在脆性材料内部存在着许多随机分布的,相互独立的微裂纹。在外力作用下,当微裂纹尖端处的变形达到某极值时,裂纹产生扩展、连接、贯通等现象,最终导致材料的破坏。其中有一个方向的裂纹最

有利于破裂,在外力作用下,首先在该方向裂纹的尖端张拉扩展。4.1 名词解释

(1)结构面:是岩体中的软弱面,是断层、节理、褶皱的统称。是在岩体形成的漫长地质作用过程中,形成并不断发育的地质界面,是一种不连续面。

(2)扩容:指岩体在压、剪应力状态下体积增大的现象。发生在剪切滑移和膨胀性软弱岩体产生变形时。在齿状接触的结构面中,当结构面沿齿斜面上升时,其上部的岩体会隆起,体积增大,称为剪胀现象;而当结构面沿齿斜面下降的方向滑移时,滑动面以上的岩体会产生沉降,体积缩小,扩容为负,称为减缩现象。

4.2 简述结构面分类及其特征指标。

答:(1)按地质成因分类:原生结构面、构造结构面和次生结构面。

(2)按结构面的破坏属性分类:分为单个节理、节理组、节理群、节理带以及破坏带或糜棱岩五大类型。

(3)按结构面的分布规模分类:相对分类是相对于工程的尺度和类型对结构面的规模进行分类,可分为细小、中等、大型三类;绝对分类只考虑了结构面的延伸长度和破坏带的宽度,将结构面分为五级。

4.3 简述结构面的切向、法向变形特性。

答:【切向变形】

(1)τ-Δu曲线。结构面的切向变形不仅与受力状态有关,而且与结构面的粗糙度、结构壁强度、充填状态等多种因素有关。按结构面

的破坏属性,变形曲线可以分为四类。

有充填结平面接触无充填齿状接触

部分充填齿状接触软弱式接触

①有充填结平面接触。结构面之间被胶结物质充填,初始抗剪强度较大,充填物被剪坏后,接触面变为平面接触,抗剪强度迅速下降至残余强度。此时,初始强度即为最大强度,由充填物质的抗剪强度决定,而残余强度受充填物质的颗粒级配、结构壁的强度和形态等因素的影响。

②无充填齿状接触。随着剪应力的增加,上下接触面逐渐进入起伏齿接触,结构面出现向上(剪胀)或向下(剪缩)的位移,当部分起伏齿被剪坏时,达到初始强度。随着位移的增加,起伏齿被剪坏的面积逐渐增大,受剪面积逐渐减小并产生应力集中,直至剪切面缩小至足以使起伏齿全部被剪坏,达到最大强度,结构面变成平面接触进入残余变形阶段。

③部分充填齿状接触。结构面内有部分充填物质,当充填物质被剪坏时,结构面达到初始强度并开始进入齿状接触,以后的变形同无

充填齿状接触,并出现二次强化现象。

④软弱式接触。结构面两壁岩石比较软弱,没有起伏齿状剪坏现象,但显示出明显的塑性变形,并伴随强化现象。其强度随位移的增加而增加,直至塑性破坏。

(2)扩容现象。指岩体在压、剪应力状态下体积增大的现象。发生在剪切滑移和膨胀性软弱岩体产生变形时。在齿状接触的结构面中,当结构面沿齿斜面上升时,其上部的岩体会隆起,体积增大,称为剪胀现象;而当结构面沿齿斜面下降的方向滑移时,滑动面以上的岩体会产生沉降,体积缩小,扩容为负,称为减缩现象。

【法向变形】

岩体的结构面一般是粗糙的,开始为点或线接触,当承受垂直于结构面的压力时,经挤压后,局部破碎或劈裂,逐渐变为面接触,并继续产生压缩变形;当超过极限之时,其变形将会传递给结构体。

①开始时随着法向应力的增加,结构面闭合变迅速增长,σ-u曲线呈上凹形;

②随应力σ的不断增大,σ-u曲线逐渐变陡,趋向各自的渐近线u=V mc,因为只要岩齿不被完全剪平,两接触面不可能完全接触,故V mc一般小于结构面厚度e。

③当法向应力大于岩块的极限抗压强度的三分之一时,含结构面岩体试件的变形由以结构面的闭合为主,转变为以岩块的弹性变形为主。

④结构面的应力-位移曲线与结构面的类型及岩壁性质基本无关,属于非线性曲线,可以拟合为双曲线或指数曲线。

4.4 结构面的强度指标有哪些?

答:(1)平直结构面

强度条件:摩擦角为结构面的内聚力和内和,w w w w C C ??στtan += 最易破坏方向:245w m ?θθ+

==ο

(2)齿状结构面

①规则齿状结构面

强度条件:)(i w +=?στtan 双线性准则:

,剪齿效应)

(,爬坡效应))((T T tan tan σσ?στσσ?στ≥+=≤+=r r w C i w w r T i C ??σtan tan -+=)( ②不规则齿状结构面-复杂不表

巴顿准则、莱旦尼准则。(JRC-结构面粗糙系数、JCS-结构壁抗压强度)

(3)非贯通结构面-复杂不表

由裂隙面和非贯通的岩桥组成。引入结构面的连续性系数K 1。

(4)充填物的影响

①颗粒级配。随着粗颗粒的增加,脆性变形增加,峰值强度逐渐增大,峰值强度后,过渡到理想塑性状态。

②厚度。充填物较薄时,随厚度的增加摩擦因数迅速降低,内聚力开始时迅速升高,升到一定值后又逐渐降低;当充填物厚度达到临界厚度后,摩擦因数和内聚力都趋于某一稳定值,此时结构面强度主要取决于充填夹层的强度。

③充填程度。充填程度越小,结构面抗剪强度越高。

4.5 结构面的力学效应分析(结构面倾角与强度的关系)。

答:(1)当β→φw 或β→90°时,岩体不可能沿结构面破坏,即结构面的存在不会削弱岩体的强度。

(2)岩体最大强度为完整岩石强度,其破坏面与主平面的夹角245max ?

β+=ο;岩体最小强度为结构面的最小强度,其破坏面与主平

面的夹角245min w

?β+=ο。

(3)造成岩体强度削弱的结构面倾角范围:βmin <β<βmax 。

(4)当β<βmin 或β>βmax 时,岩块先发生破坏,岩体强度等于岩块强度;当βmin <β<βmax 时,节理(结构面)先发生破坏,岩体强度小于岩块强度;当β=βmin 或β=βmax 时,岩块和节理(结构面)同时破坏,岩体强度等于岩块强度。

(5)岩体强度曲线

4.6 岩体的变形模量的表达方式及测量方法?

答:岩体变形模量是反映岩体变形特征的力学参数,定义为:

e p m E εεσ

+=,其中εp +εe 为岩体在压应力σ作用下产生的总应变,εp

为永久应变,εe 为弹性应变,E m 为岩体的变形模量,是σ-ε曲线的割线斜率。

测量方法:承压板法、钻孔变形法、狭缝压力枕法、岩体变形参数估算法。

5.1 简述工程岩体分类的目的及原则。

答:目的:①为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据;②便于施工方法的总结,交流,推广;③便于行业内技术改革和管理。

原则:①有明确的类级和适用对象;②有定量的指标;③类级一般分五级为宜;④分类方法简单明了,数字便于记忆和应用;⑤根据适用对象,选择考虑因素。

5.2 影响围岩分类的主要因素有哪些?

答:(1)岩石强度。岩石强度是岩体固有承载能力天然属性。表示岩石强度的参数常由实验测定,包括岩石的抗压强度、抗拉强度和抗剪强度。

(2)岩体的完整性。岩体的完整性取决于岩体内结构面的空间分布状态、分布密度、开度、充填状态以及充填物质的特征性因素。直接影响岩体工程质量的优劣和工程围岩的整体稳定性。风化作用也是影响岩体完整性的重要因素,目前只能定性描述。

(3)水的影响。水的影响表现在:①使充填物的物理力学性质

劣化;②减少岩体内的有效应力,降低了岩体的抗剪强度,改变了岩体中的应力场和破坏机理。

(4)地应力。

(5)工程围岩的稳定性。工程围岩分类中,通常用岩体工程的自稳时间和工程顶部的沉降来反映工程的稳定性。

5.3 几种典型的分类方法。

答:(1)单因素分类。①按岩块的单轴抗压强度分类(5类);②按岩体波速分类(7类,完整性系数:弹性波在岩体中传播速度与在岩块内传播速度比值的平方2

???? ??=pr pm v v K ;③按岩石质量指标(RQD )分类(5类);④按巷道围岩稳定性分类(9类)。

(2)多因素分类。

①Q 分类(逐渐变好)

SRF

J J J J RQD Q w a r n ??= RQD-岩体的质量指标,J n -岩体裂度影响系数;J r -结构面粗糙度影响系数;J a -结构面岩壁强度降低系数;J w -地下水影响系数;SRF-应力折减系数。

②岩体力学分类法(逐渐变差)

RMR=R 1+R 2+R 3+R 4+R 5+R 6

RMR-岩体质量分类值;R 1-岩石抗压强度;R 2-岩体质量指标;R 3-结构面间距;R 4-结构面状态;R 5-地下水状态;R 6-修正指标。

5.4 简述我国工程岩体分级的基本方法。

答:我国两种代表性的分类方法是:煤炭系统围岩分类(五类,

质量由最好过渡到最差)和公路隧道围岩分类(六类,质量由最好过渡到最差)。

首先以岩石单轴饱和抗压强度和岩体完整性指标为基本参数,按给定的经验公式计算岩体的基本质量指标;再考虑地下水、结构面、原岩原应力等因素对岩体质量的影响,修正岩体基本质量指标,将修正后的掩体质量指标作为定量指标,结合定性描述,将岩体质量分为五级;最后给出了各类岩体的力学性质参数,描述了各类岩体工程的自稳能力。

质量指标:BQ=90+3σc +250K v (σc -岩石单轴饱和抗压强度;K v -岩体完整性系数)

若σc >90+250K v ,取σc =90+250K v ;若K v >0.4+0.04σc ,取K v =0.4+0.04σc 。

质量修正指标:【BQ 】=BQ-100(K 1+K 2+K 3)(K 1-地下水影响修正系数;K 2-主要软弱结构面产状影响修正系数;K 3-原岩应力状态影响修正系数)。

6.1 岩体的初始应力包括哪些?

答:岩体初始应力是指岩体在天然状态下所存在的内在应力,又称为地应力。主要包括自重应力和构造应力。

6.2 岩体初始应力的计算方法。

答:(1)自重应力:①海姆公式:原岩处于静水压力状态。H z y x γσσσ===;②金尼克公式:地表为水平面,地下岩体为弹性体,其垂直应力等于上覆岩体的自重,H z z y x λγλσσμμ

σσ==-==1

(2)构造应力。由于地质构造运动而产生的应力为地质构造应力,

地质构造应力

在空间上的分布规律为地质构造应力场。

6.3 简述水压致裂法的原理与特点。

答:原理:通过液压泵向钻孔内拟定量测深度加液压将孔壁压裂,测定压裂过程中的各特征点压力及开裂方位,然后根据测得的压裂过程中泵压表的读数,计算测点附近岩体中地应力大小和方向。压裂点上下用止水封隔器密封,其结构如图1所示。水压致裂过程中泵压变化及其特征压力示于图2所示。

图1 水压致裂法示意图图2 压裂过程中泵压变化及特征压力

①P0-岩体内孔隙水压或地下水压力;②P b-注入钻孔内液压将

孔壁压裂的初始压裂压力;③P s-液体进入岩体内连续地将岩体劈裂的液压,称为稳定开裂压力;④P s0-关泵后压力表上保持的压力,称为关闭压力。如果围岩渗透性大,该压力将逐渐衰减;⑤P b0-停泵后重新开泵将裂缝压开的压力,称为开启压力。

特点:①设备简单。只需用普通钻探方法打钻孔,用双止水装置密封,用液压泵通过压裂装置压裂岩体,不需要复杂的电磁测量设备。

②操作方便。只通过液压泵向钻孔内注液压裂岩体,观测压裂过

程中泵压、液量即可。

③测值直观。它可根据压裂时泵压(初始开裂泵压、稳定开裂泵

压、关闭压力、开启压力)计算出地应力值,不需要复杂的换算及辅助测试,同时还可求得岩体的抗拉强度。

④测值代表性大。所测得的地应力值及岩体抗拉强度是代表较大

范围内的平均值,有较好的代表性。

⑤适应性强。这一方法不需要电磁测量元件,不怕潮湿,可在干

高等岩石力学试题答案1

1. 简述岩石的强度特性和强度理论,并就岩石的强度理论进行简要评述。 答:岩石作为一种天然工程材料的时候,它具有不均匀性、各向异性、不连续等特点,并且受水力学作用显著。在地表部分,岩石的破坏为脆性破坏,随着赋存深度的增加,其破坏向延性发展。 岩石强度理论是判断岩石试样或岩石工程在什么应力、应变条件下破坏。当然岩石的破坏与诸多因素有关,如温度、应变率、湿度、应变梯度等。但目前岩石强度理论大多只考虑应力的影响,其他因素影响研究并不深入,故未予考虑。 (1). 剪切强度准则 a. Coulomb-Navier 准则 Coulomb-Navier 准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。岩石并不沿着最大剪切应力作用面产生破坏,而是沿其剪切应力和正应力最不利组合的某一面产生破裂。即: ?στtan +=C 式中?为岩石材料的内摩擦角,σ为正应力,C 为岩石粘聚力。 b. Mohr 破坏准则 根据实验证明:在低围压下最大主应力和最小主应力关系接近于线性关系。但随着围压的增大,与关系明显呈现非线性。为了体现这一特点,莫尔准则在压剪和三轴破坏实验的基础上确定破坏准则方程,即: ()στf = 此方程可以具体简化为斜直线、双曲线、抛物线、摆线以及双斜直线等各种曲线形式,具体视实验结果而定。 虽然从形式上看,库仑准则和莫尔准则区别只是在于后者把直线推广到曲线,但莫尔准则把包络线扩大或延伸至拉应力区。 c. 双剪的强度准则 Mohr 强度准则是典型的单剪强度准则,没有考虑第二主应力的作用。我国学者俞茂宏从正交八面体的三个主应力出发,提出了双剪强度理论和适用于岩土介质的广义双剪强度理论,并得到了双剪统一强度理论: () 3211t b b σσσασ=+--α ασσσ++≤1312 ()t b b σασσσ=-++31211 αασσσ++≥1312 式中α和b 为两个材料常数,是岩石单轴抗拉强度。在主应力空间里,上式代表一个以静水应力轴为中心轴具有不等边十二边形截面的锥体表面。 (2). 屈服强度准则 a. Tresca 屈服准则

岩石力学

第一章岩石物理力学性质;1.构成岩石的主要造岩矿物有哪些?;答:岩石中主要造岩矿物有:正长石、斜长石、石英、;2.为什么说基性岩和超基性岩最容易风化?;答:基性和超基性岩石主要是由易风化的橄榄石、辉石;3.常见岩石的结构连接类型有哪几种?各有什么特点;答:岩石中结构连接的类型主要有两种,分别是结晶连;结晶连接指矿物颗粒通过结晶相互嵌合在一起;4.何谓岩石中的 第一章岩石物理力学性质 1.构成岩石的主要造岩矿物有哪些? 答:岩石中主要造岩矿物有:正长石、斜长石、石英、黑云母、白云母、角闪石、辉石、橄榄石、方解石、白云石、高岭石、磁铁矿等。 2.为什么说基性岩和超基性岩最容易风化? 答:基性和超基性岩石主要是由易风化的橄榄石、辉石及斜长石组成,所以非常容易风化。 3.常见岩石的结构连接类型有哪几种?各有什么特点? 答:岩石中结构连接的类型主要有两种,分别是结晶连接和胶结连接。 结晶连接指矿物颗粒通过结晶相互嵌合在一起。这类连接使晶体颗粒之间紧密接触,故岩石强度一般较大,抗风化能力强;胶结连接指岩石矿物颗粒与颗粒之间通过胶结物连接在一起,这种连接的岩石,其强度主要取决于胶结物及胶结类型。 4.何谓岩石中的微结构面,主要指哪些,各有什么特点? 答:岩石中的微结构面(或称缺陷)是指存在于矿物颗粒内部或矿物颗粒及矿物集合之间微小的若面及空隙。包括矿物的解理、晶格缺陷、晶粒边界、粒间空隙、微裂隙等。

矿物解理面指矿物晶体或晶粒受力后沿一定结晶防线分裂成光滑平面,解理面往往平行于矿物晶体面网间距较大的面网。 晶粒边界:由于矿物晶粒表面电价不平衡而引起矿物表面的结合力,该结合力源小于矿物晶粒内部分子、原子、离子键之间的作用力,因此相对较弱,从而造成矿物晶粒边界相对软弱。微裂隙:指发育于矿物颗粒内部及颗粒之间的多呈闭合状态的破裂痕迹线。具有方向性。粒间空隙:多在成岩过程中形成晶粒之间、胶结物之间微小的空隙。 5.自然界中的岩石按地质成因分类,可以分为几大类,各大类有何特点? 答:按地质成因分类,自然界中岩石可分为岩浆岩、沉积岩和变质岩三大类。 岩浆岩按照岩浆冷凝成岩的地质环境不同又可分为深成岩、浅成岩和喷出岩。其中深成岩常形成巨大的侵入体,有巨型岩体,大的如岩盘、岩基,其形成环境都处在高温高压之下,形成过程中由于岩浆有充分的分异作用,常常形成基性岩、超基性岩、中性岩及酸性、碱性岩等,其岩性较均一,变化较小,岩体结构呈典型的块状结构,结构多为六面体和八面体,岩体颗粒均匀,多为粗-中粒结构,致密坚硬,空隙少,力学强度高,透水性弱,抗水性强;浅成岩成分与相应的深成岩相似,其产状多为岩床、岩墙、岩脉等小侵入体,岩体均一性差,岩体结构常呈镶嵌式结构,岩石常呈斑状结构和均粒-中细粒结构,细粒岩石强度比深成岩高,抗风化能力强,斑状结构则差一些;喷出岩有喷发及溢流之别,其结构比较复杂,岩性不一,各向异性显著,岩体连续性差,透水性强,软弱结构面发育。 沉积岩是由风化剥蚀作用或火山作用形成的物质,在原地或被外力搬运,在适当条件下沉积下来,经胶结和成岩作用而形成的。其矿物成分主要是粘土矿物、碳酸盐和残余的石英长石等,具层理构造,岩性一般具有明显的各向异性,按形成条件和结构特点,沉积岩可分为:火山碎屑岩、胶结碎屑岩、粘土岩、化学岩和生物化学岩等。 变质岩是在已有岩石的基础上,经过变质混合作用形成的。因其形成的温度、压强等变质因素复杂,其力学性质差别很大,不能一概而论。 6.表示岩石物理性质的主要指标及其表示方式是什么?

高等岩石力学答案

3、简述锚杆支护作用原理及不同种类锚杆的适用条件。 答:岩层和土体的锚因是一种把锚杆埋入地层进行预加应力的技术。锚杆插入预先钻凿的孔眼并固定于其底端,固定后,通常对其施加预应力。锚杆外露于地面的一端用锚头固定,一种情况是锚头直接附着在结构上,以满足结构的稳定。另一种情况是通过梁板、格构或其他部件将锚头施加的应力传递于更为宽广的岩土体表面。岩土锚固的基本原理就是依靠锚杆周围地层的抗剪强度来传递结构物的拉力或保持地层开挖面自身的稳定。岩土锚固的主要功能是: (1)提供作用于结构物上以承受外荷的抗力,其方问朝着锚杆与岩土体相接触的点。 (2)使被锚固地层产生压应力,或对被通过的地层起加筋作用(非顶应力锚杆)。

(3)加固并增加地层强度,也相应地改善了地层的其他力学性能。 (4)当锚杆通过被锚固结构时.能使结构本身产生预应力。 (5)通过锚杆,使结构与岩石连锁在一起,形成一种共同工作的复合结构,使岩石能更有效地承受拉力和剪力。 锚杆的这些功能是互相补允的。对某一特定的工程而台,也并非每一个功能都发挥作用。 若采用非预应力锚杆,则在岩土体中主要起简单的加筋作用,而且只有当岩土体表层松动变位时,才会发挥其作用。这种锚固方式的效果远不及预应力锚杆。效果最好与应用最广的锚固技术是通过锚固力能使结构与岩层连锁在一起的方法。根据静力分析,可以容易地选择锚固力的大小、方向及其荷载中心。由这些力组成的整个力系作用在结构上,从而能最经济有效地保持结构的稳定。采用这种应用方式的锚固使结构能抵抗转动倾倒、沿底脚的切向位移、沿下卧层临界面上的剪切破坏及由上举力所产生的竖向位移。 岩土的锚杆类型: (1)预应力与非预应力锚杆 对无初始变形的锚杆,要使其发挥全部承载能力则要求锚杆头有较大的位移。为了减少这种位移直至到达结构物所能容许的程度,一般是通过将早期张拉的锚杆固定在结构物、地面厚板或其他构件上,以对锚杆施加预应力,同时也在结构物和地层中产生应力,这就是预应力锚杆。 预应力锚杆除能控制结构物的位移外,还有其它有点: 1安装后能及时提供支护抗力,使岩体处于三轴应力状态。 2控制地层与结构物变形的能力强。 3按一定密度布臵锚杆,施加预应力后能在地层内形成压缩区,有利于地层稳定。 4预加应力后,能明显提高潜在滑移面或岩石软弱结构面的抗剪强度。 5张拉工序能检验锚杆的承载力,质量易保证。 6施工工艺比较复杂。 (2)拉力型与压力型锚杆 显而易见,锚杆受荷后,杆体总是处于受拉状态的。拉力型与压力型锚杆的主要区别是在锚杆受荷后其固定段内的灌浆体分别处于受拉或受压状态。拉力型锚杆的荷载是依赖其固定段杆体与灌浆体接触的界面上的剪应力(粕结应力)由顶端(固定段与自由段交界处)向底端传递的。锚杆工作时,固定段的灌浆体易出现张拉裂缝.防腐件能差。

岩石力学 知识点整理

岩石力学 第一章 绪论 1、岩石力学是研究岩石或者岩体在受力的情况下变形、屈服、破坏及破坏后的力学效应。 2、岩石的吸水率的定义。 演示吸水率是指岩石在大气压力下吸收水的质量w m 与岩石固体颗粒质量s m 之比的百分数表示,一 般以a w 表示,即w 0s a s s m w 100%m m m m -==? 第二章 岩石的物理力学性质 1、影响岩石的固有属性的因素主要包括试件尺寸、试件形状、三维尺寸比例、加载速度、湿度等。 2、简述量积法测量岩石容重的适用条件和基本原理。 适用条件:凡能制备成规则试样的岩石均可 基本原理:G/A*H H :均高;A :平均断面;G :重量 3、简述劈裂试验测岩石抗压强度的基本原理。 在试件上下支承面与压力机压板之间加一条垫条,将施加的压力变为线性荷载以使试件内部产生垂直于上下荷载作用方向的拉应力在对径压缩时圆盘中心点的压应力值为拉应力值的3倍而岩石的抗拉强度是抗压强度的1/10,岩石在受压破坏前就被抗拉应力破坏 4、简述蜡封法测量岩石容重的适用条件和基本原理。 适用条件:不能用量积法或水中称量法(非规则岩石试样且遇水易崩解,溶解及干缩湿胀的岩石) 基本原理:阿基米德浮力原理 首先选取有代表性的岩样在105~110℃温度下烘干24小时。取出,系上细线,称岩样重量(g s ),持线将岩样缓缓浸入刚过熔点的蜡液中,浸没后立即提出,检查岩样周围的蜡膜,若有起泡应用针刺破,再用蜡液补平,冷却后称蜡封岩样的重量(g 1),然后将蜡封岩样浸没于纯水中称其重量(g 2),则岩石的干容重(γd )为: γd =g s /[(g 1-g 2)/γw -(g 1-g s )/γn] 式中,γn 为蜡的容重(kN/m 3),.γw 为水的容重(kN/m 3) 附注:1. g 1- g 2即是试块受到的浮力,除以水的密度,(g 1- g 2)/γw 即整个试块体积。 2. (g 1- g s )/γn 为蜡的体积 第三章 岩石的力学性质 1、岩石的抗压强度随着围压的增大而(增大或减小)? 增大而增大。 2、岩石的变形特性通常用弹性模量、变形模量和泊松比等指标表示。 ①弹性模量:岩石在弹性变形阶段内,正应力和对应的正应变的比值。 ②变形模量:岩石在弹塑性变形阶段内,正应力和对应的总应变的比值。 ③泊松比:岩石在单向受拉或受压时,横向正应变与轴向正应变的绝对值的比值。 3、简述如何利用全应力-应变曲线预测岩石的蠕变破坏。 当岩石应力水平小于 H 点的应力值,岩石试件不会发生蠕变。

北京科技大学考研岩石力学答案`

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 名词解释 1.岩石饱水系数(kw):指岩石吸水率与饱水率的比值。 2.岩石吸水率:岩石在常温下吸入水的质量与其烘干质量的百分比。3.岩石饱和吸水率:岩石在强制状态(高压或真空、煮沸)下,岩石吸入 水的质量与岩样烘干质量的比值。 4.岩石的天然含水率(W):天然状态下,岩石中水的质量Mw与岩石烘 干质量Mrd的比值。 5.岩石的流变性:岩石的应力—应变关系与时间因素有关的性质,包括蠕 变、松弛和弹性后效。 6.岩石的蠕变:当应力不变时,变形随时间增加而增长的现象。 7.岩石的松弛:当应力不变时,变形随时间增加而减小的现象。 8.弹性后效:加载或卸载时,弹性应变滞后于应力的现象。 9.岩石的各项异性:岩石的全部或部分物理力学性质随方向不同而表现出 差异的现象 10.岩石的粘性:物体受力后变形不能在瞬间完成,且应变速率随应力增 加而增加的性质 11.弹性:物体在受外力作用的瞬间即产生全部变形,而去除外力(卸载)后又能立即恢复其原有形状和尺寸的性质。 12.塑性:物体在受力后变形,在外力去除(卸载)后变形不能完全恢复的性质。 13.岩石的扩容:岩石在压力作用下,产生非弹性体积变形,当外力增加 到一定程度,随压力增大岩石体积不是减小,而是大幅增 加,且增长速率越来越大,最终导致试件破坏。这种体积 明显扩大的现象称为扩容。 14.岩石的长期强度:在岩石承受荷载低于其瞬时强度的情况下,如持续 作用较长时间,由于流变作用岩石也可能发生破坏, 因此岩石的强度是随外载作用时间的延长而降低。 通常把作用时间趋于无穷大的强度(最低值)称 为岩石的长期强度。 15.岩石的质量系数(RQD):钻探时长度在10cm(含10cm)以上的岩芯 累积长度占钻孔总长的百分比。 16.岩石的抗冻系数(cf):经冻融实验后,岩样抗压强度的下降值与冻融 前的抗压强度的比值 17.岩石的裂隙度(K):指沿取样线方向单位长度上的节理数量。18.岩石的软化系数():饱水岩样的抗压强度与自然风干岩样的抗压强 度之比。 19.岩石的泊松比():岩石的横向应变与纵向应变的比值称为泊松 比 20.龟裂系数(完整性系数):弹性纵波在岩体中的传播速度与在岩石中的 传播速度之比的平方。 21.等应力轴比:使巷道周边应力的均匀分布时的椭圆长短轴之比。22.零应力轴比:巷道设计时,不出现拉应力的椭圆长短轴之比。23.地应力:存在于地层中的未受工程扰动的天然应力。(原岩应力)24.次生应力:岩体开挖扰动后,应力重新分布而产生的地压。 25.变形地压:由于岩体变形,应力重新分布而产生的地压。 26.膨胀地压:粘性吸水矿物吸水后产生膨胀而对支架产生的力。27.边坡崩塌:边坡表层岩体突然脱离母体,迅速下落且堆积子坡脚下,伴随岩石的翻滚和破碎。 28.边坡稳定系数(F):沿最危险破坏面作用的最大抗滑力(或力矩)与 下滑力(或力矩)的比值。 即F=抗滑力/下滑力 29.岩石的边坡倾倒:有一组倾角很陡的结构面,将岩体切割成许多相互 平行的块体,而临近坡面的陡立块体缓慢地向坡外弯 曲和倒塌。 30.岩爆:岩石破坏后尚剩余一部分能量,这部分能量突然释放就会产生v 岩爆(冲击地压) 问答题 1.单轴压缩条件下岩石的全应力—应变曲线可将岩石的变形分成哪四个阶 段?各阶段的特征是什么? 答:可分成孔隙裂隙压密阶段(OA段)

高等岩石力学试题答案(2012)

1..简述岩石的强度特性和强度理论,并就岩石的强度理 论进行简要评述。 答:岩石作为一种天然工程材料的时候,它具有不均匀性、各向异性、不连续等特点,并且受水力学作用显著。在地表部分,岩石的破坏为脆性破坏,随着赋存深度的增加,其破坏向延性发展。 岩石强度理论是判断岩石试样或岩石工程在什么应力、应变条件下破坏。当然岩石的破坏与诸多因素有关,如温度、应变率、湿度、应变梯度等。但目前岩石强度理论大多只考虑应力的影响,其他因素影响研究并不深入,故未予考虑。 (1). 剪切强度准则 a.Coulomb-Navier准则 Coulomb-Navier准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。岩石并不沿着最大剪切应力作用面产生破坏,而是沿其剪切应力和正应力最不利组合的某一面产生破裂。即:? τtan σ =C +

式中?为岩石材料的内摩擦角,σ为正应力,C为岩石粘聚力。 b. Mohr破坏准则 根据实验证明:在低围压下最大主应力和最小主应力关系接近于线性关系。但随着围压的增大,与关系明显呈现非线性。为了体现这一特点,莫尔准则在压剪和三轴破坏实验的基础上确定破坏准则方程,即:()σ τf = 此方程可以具体简化为斜直线、双曲线、抛物线、摆线以及双斜直线等各种曲线形式,具体视实验结果而定。 虽然从形式上看,库仑准则和莫尔准则区别只是在于后者把直线推广到曲线,但莫尔准则把包络线扩大或延伸至拉应力区。 c. 双剪的强度准则 Mohr强度准则是典型的单剪强度准则,没有考虑第二主应力的作用。我国学者俞茂宏从正交八面体的三个主应力出发,提出了双剪强度理论和适用于岩土介质的广义双剪强度理论,并得到了双剪统一强度理论:

高等岩石力学练习题详解

岩体力学习题 1、何谓岩体力学? 谈谈你对岩体力学的认识和看法。 1)岩体力学是力学的一个分支学科,是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,是一门应用型基础学科。 2)认识和看法:对于岩体力学的认识看法,主要还是体现在其形成发展的过程以及研究对象内容所囊括的重要意义。 岩体力学的形成和发展,是与岩体工程建设的发展和岩体工程事故分不开的。岩块物理力学性质的试验,地下洞室受天然水平应力作用的研究,可以追溯到19世纪的下半叶。20世纪初出现了岩块三轴试验,1920年,瑞士联合铁路公司采用水压洞室法,在阿尔卑斯山区的阿姆斯特格隧道中,进行原位岩体力学试验,首次证明岩体具有弹性变形性质。1950~1960年,岩体力学扩大了应用范围,从地下洞室围岩稳定性研究扩展到岩质边坡和地基岩体稳定性研究等。1957年,法国的J.塔洛布尔著《岩石力学》,从岩体概念出发,较全面系统地介绍了岩体力学的理论和试验研究方法及其在水电工程上的应用。至50年代末期,岩体力学形成了一门独立的学科。60年代以来,岩体力学的发展进入了一个新的历史时期,研究内容和应用范围不断扩大,对不连续面力学效应和岩体性能进行了研究,取得了成果和发展;有限元法、边界元法、离散元法先后被引入,岩体中天然应力量测的加强与其分布规律不断被揭示。 岩体力学的理论基础直接来源于弹塑性力学,同时也包含了理论力学、材料力学等方面的知识,只是研究对象细化到了岩土体这一材料上,故而其研究的重要意义在于:大量岩体工程的开展必须要保证其既安全稳定又经济合理,所以要通过准确地预测工程岩体的变形与稳定性、正确的工程设计和良好的施工质量等来保证。其中,准确地预测岩体在各种应力场作用下的变形与稳定性,进而从岩体力学观点出发,选择相对优良的工程场址,防止重大事故,为合理的工程设计提供岩体力学依据,是工程岩体力学研究的根本目的和任务。岩体力学的发展是和人类工程实践分不开的。起初,由于岩体工程数量少,规模也小,人们多凭经验来解决工程中遇到的岩体力学问题。因此,岩体力学的形成和发展要比土力学晚得多。随着生产力水平及工程建筑事业的迅速发展,提出了大量的岩体力学问题。诸如高坝坝基岩体及拱坝拱座岩体的变形和稳定性;大型露天采坑边坡、库岸边坡及船闸、溢洪道等边坡的稳定性;地下洞室围岩变形及地表塌陷;高层建筑、重型厂房和核电站等地基岩体的变形和稳定性;以及岩体性质的改善与加固技术等等。对这些问题能否做出正确的分析和评价,将会对工程建设和生产的安全性与经济性产生显著的影响,甚至带来严重的后果。 2、何谓岩块、岩体? 试比较岩块与岩体,岩体与土有何异同点? 1)岩块:指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体。 2)岩体:指在地质历史过程中形成的,由岩块和结构面网络组成的,具有一定的结构并赋存于一定的天然应力状态和地下水等地质环境中的地质体,是岩体力学研究的对象。 3)岩块与岩体:岩块是构成岩体的最小岩石单元体,岩体包含岩块; 岩体与土:土不具有刚性的联结,物理状态多变,力学强度低等,因而也不具有岩体的结构面。 3、何谓岩体分类? RMR 分类和Q 分类各自用哪些指标表示? 怎样求得? 1)岩体分类:在工程地质分组的基础上,通过对岩体的的一些简单和容易实测的指标,将工程地质条件与岩体参数联系起来,并借鉴已建的工程设计、施工和处理等方面成功与失败的经验教训,对岩体进行归类的一种方法。

岩石力学复习题及参考答案

中南大学网络教育课程考试复习题及参考答案 岩石力学(专科) 一、名词解释: 1.岩体 2.围岩 3.稳定蠕变 4.柔性支护 5.塑性破坏 6.稳定蠕变 7.剪胀 8.长期强度 9.脆性破坏 10.端部效应 11.构造应力 12.松脱地压 13.非稳定蠕变 14.结构面充填度 15.变形地压 16.延性 17.蠕变 18.岩体结构 19.真三轴试验 20.扩容 21.剪胀率 二、问答题: 1.解释锚杆支护的挤压加固作用,并指出其适用条件。 2.说明不连续面的起伏对不连续面抗剪强度的作用,写出无充填规则齿状不连续面的抗剪强度表达式。 3.解释锚杆支护的组合作用,并指出其适用条件。 4.什么是常规三轴压缩试验?试指出在常规三轴试验中,随围压增大,岩石的抗压强度和变形特征。 5.解释断层和水对露天矿边坡稳定性的作用。 6.说明岩石单轴压缩试验中产生端面效应的原因,如何消除端部效应对试验结果的影响? 7.岩石有哪些基本破坏方式?莫尔-库论理论和格里菲斯理论分别适用于哪种破坏方式? 8.对岩石进行三轴压缩试验,试问在不同的围压条件下,岩石的变形性质、弹性模量和强度可能发生的变化是什么? 9.简述采用喷射混凝土对巷道进行支护的力学作用。 10.如何根据岩石的单轴压缩试验曲线确定岩石的三种弹模?岩石的三种弹模分别反映岩石的什么特征? 11.岩石在普通试验机上进行单轴压缩试验,试问有哪几种典型的应力应变曲线形式(要求画出相应的曲线)? 三、判断题: 1.图1所示为被一组节理切割的岩体所处的受力状态(应力圆)以及组成岩体的岩石的强度曲线(a )和节理强度曲线(b ),图中节理面法线与最大主应力之间的夹角为α。试判别图中表示的分析结果是否正确。 [ ] a.岩体沿节理剪切破坏( ) b. 岩体沿节理剪切破坏( ) 图1 2.设计一条水平坑道断面如图2所示,其长轴与原岩应力分量p 平行,短轴与原岩应力分量q 平行。已知1/>q p 。这样的坑道断面布置将使围岩处于较好的应力状态或是不好的应力状态。 [ ]

岩石力学课程复习资料(1406)

《岩石力学》课程复习资料 一、名词解释: 1.岩体 2.围岩 3.稳定蠕变 4.柔性支护 5.塑性破坏 6.稳定蠕变 7.剪胀 8.长期强度 9.脆性破坏 10.端部效应 11.构造应力 12.松脱地压13.非稳定蠕变 14.结构面充填度 15.变形地压 16.延性 17.蠕变 18.岩体结构19.真三轴试验 20.扩容 21.剪胀率 二、问答题: 1.解释锚杆支护的挤压加固作用,并指出其适用条件。 2.说明不连续面的起伏对不连续面抗剪强度的作用,写出无充填规则齿状不连续面的抗剪强度表达式。 3.解释锚杆支护的组合作用,并指出其适用条件。 4.什么是常规三轴压缩试验?试指出在常规三轴试验中,随围压增大,岩石的抗压强度和变形特征。 5.解释断层和水对露天矿边坡稳定性的作用。 6.说明岩石单轴压缩试验中产生端面效应的原因,如何消除端部效应对试验结果的影响? 7.岩石有哪些基本破坏方式?莫尔-库论理论和格里菲斯理论分别适用于哪种破坏方式? 8.对岩石进行三轴压缩试验,试问在不同的围压条件下,岩石的变形性质、弹性模量和强度可能发生的变化是 什么? 9.简述采用喷射混凝土对巷道进行支护的力学作用。 10.如何根据岩石的单轴压缩试验曲线确定岩石的三种弹模?岩石的三种弹模分别反映岩石的什么特征? 11.岩石在普通试验机上进行单轴压缩试验,试问有哪几种典型的应力应变曲线形式(要求画出相应的曲线)? 三、判断题: 1.图1所示为被一组节理切割的岩体所处的受力状态(应力圆)以及组成岩体的岩石的强度曲线(a)和节理 强度曲线(b),图中节理面法线与最大主应力之间的夹角为α。试判别图中表示的分析结果是否正确。[ ] a.岩体沿节理剪切破坏( ) b. 岩体沿节理剪切破坏( ) 图1 2.设计一条水平坑道断面如图2所示,其长轴与原岩应力分量p平行,短轴与原岩应力分量q平行。已知 1 /> q p。这样的坑道断面布置将使围岩处于较好的应力状态或是不好的应力状态。 [ ] p 图2 3.岩石的基本破坏方式有( )和( );莫尔理论适用于( ),格里菲斯理论适用于( )。 [ ]

岩石力学结课论文

岩石力学结课论文 之后,我们开始接触到了更多的实践性科目,岩石力学作为工程力学专业的专业选修课之一,向我们介绍了继土力学之后更加深入的岩土分析方法和技巧。 我们首先学习了岩石的物理性质,知道了岩石是构成地壳的基本材料,是经过地质作用而天然形成的(一种或多种)矿物集合体。岩石通常按地质成因分为岩浆岩、沉积岩和变质岩等三种类型。岩浆岩是岩浆冷凝而形成的岩石,绝大多数岩浆岩是由结晶矿物所组成,由于组成它的各种矿物化学成分和物理性质较为稳定,它们之间的联结是牢固的,因此岩浆岩通常具有较高的力学强度和均质性。工程中常遇到的岩浆岩有花岗岩、玄武岩等。沉积岩是母岩(岩浆岩、变质岩和早已形成的沉积岩)经风化剥蚀而产生的物质在地表经搬运沉积和硬结成岩作用而形成的岩石组成。沉积岩的主要物质成分为颗粒和胶结构。颗粒包括各种不同形状及大小的岩屑及某些矿物;胶结物常见的成分有钙质、硅质、铁质以及泥质等。沉积岩的物理力学性质不仅与矿物和岩屑有关,而且也与胶结物性质有关。沉积岩具有层理构造,这使得它的物理力学性质具有方向性。工程建设中常见的沉积岩有灰岩、砂岩、页岩等。变质岩是由岩浆岩、沉积岩甚至变质岩在地壳中受到高温、高压及化学活动性流体的影响下发生变质而形成的岩石。它在矿物成份、结构构造上具有变质过程中产生的特征,也常常残留有原岩的某些特点。因此,变质岩的物理力学性质不仅与原岩的性质有关,而且与变质作用的性质及变质程

度有关。工程建设中常见的变质岩类有大理岩、片麻岩、板岩等。岩石是自然历史的产物,由于它们的生成条件及在生成以后的漫长地质历史时期中,形成了许多各式各样的结构面,例如岩浆侵入岩与围岩接触面,不同侵入岩体彼此的接触面、冷凝裂隙,喷出岩和沉积岩的层理、不整合面,变质岩的片理、片麻理,组成各种岩石的矿物晶体的各种优势定向排列面以及由于地质构造运动、风化、重力和卸荷等各种不同动力的作用而产生的断层、节理、裂隙等。它们严重地破坏了岩石的完整性。在这种情况下,对岩体工程的安危起主要控制作用的,通常不再是被各种结构面分割的岩石块体,而主要是岩体中存在的结构面,或者是由岩石和结构面共同控制。在岩石力学中常用到岩块、岩体、岩石等术语,一般地被结构面切割成的岩石块体或从地壳岩层中切取出来的无显著软弱面的岩石块体称为岩块,而把自然埋藏条件下的大范围分布的由岩块和各种结构面(软弱面)网络组成的地质体称为岩体。岩石则是岩块和岩体的统称。 之后学习了岩石的强度、变形和应力分布的问题,岩石的变形是指岩石在任何物理因素作用下形状和大小的变化。工程上最常研究的变形是由于荷载变化引起的。例如在岩石上建造大坝(相当于对基岩加载)或在岩石中开挖(相当于对岩石局部卸载)都会引起岩石变形。岩石的变形对工程建筑物的安全影响很大,因为当岩石产生变形时,建筑物的应力可能增加。例如,当大坝建造在多种岩石组成的岩基上,这些岩石的变形性质不同,则由于基岩在荷载(坝体重力)作用下的不均匀变形可以使坝体内的剪应力和主拉应力增长,造成开裂错位等不良后果,如果岩基中岩

高等岩石力学试题汇总

1.简述岩石的强度特性和强度理论,并就岩石的强度理论进行简要评述。答:岩石作为一种天然工程材料的时候,它具有不均匀性、各向异性、不连续等特点,并且受水力学作用显著。在地表部分,岩石的破坏为脆性破坏,随着赋存深度的增加,其破坏向延性发展。 岩石强度理论是判断岩石试样或岩石工程在什么应力、应变条件下破坏。当然岩石的破坏与诸多因素有关,如温度、应变率、湿度、应变梯度等。但目前岩石强度理论大多只考虑应力的影响,其他因素影响研究并不深入,故未予考虑。 (1). 剪切强度准则 a.Coulomb-Navier准则 Coulomb-Navier准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。岩石并不沿着最大剪切应力作用面产生破坏,而是沿其剪切应力和正应力最不利组合的某一面产生破裂。即:? τtan σ =C + 式中?为岩石材料的内摩擦角,σ为正应力,C为岩石粘聚力。 b. Mohr破坏准则 根据实验证明:在低围压下最大主应力和最小主应力关系接近于线性关系。但随着围压的增大,与关系明显呈现非线性。为了体现这一特点,莫尔准则在压剪和三轴 τf= 破坏实验的基础上确定破坏准则方程,即:()σ此方程可以具体简化为斜直线、双曲线、抛物线、摆线以及双斜直线等各种曲线

形式,具体视实验结果而定。 虽然从形式上看,库仑准则和莫尔准则区别只是在于后者把直线推广到曲线,但莫尔准则把包络线扩大或延伸至拉应力区。 c. 双剪的强度准则 Mohr 强度准则是典型的单剪强度准则,没有考虑第二主应力的作用。我国学者俞茂宏从正交八面体的三个主应力出发,提出了双剪强度理论和适用于岩土介质的广义双剪强度理论,并得到了双剪统一强度理论: () 3211t b b σσσασ=+--α ασσσ++≤1312 ()t b b σασσσ=-++31211 αασσσ++≥1312 式中α和b 为两个材料常数,是岩石单轴抗拉强度。在主应力空间里,上式代表一个以静水应力轴为中心轴具有不等边十二边形截面的锥体表面。 (2). 屈服强度准则 a. Tresca 屈服准则 Tresca 屈服准则也可称为最大剪应力准则,它认为当岩石中剪应力达到材料的特征值时岩石就屈服破坏,即: ()s 31max 2121σσστ=-= 式中为材料拉伸屈服极限。该屈服准则也没有考虑中间主应力对材料屈服破坏的影响,从实验结果来看它对金属材料近似正确,而对岩石材料的结果相差较远。

高等岩石力学课程报告英文读书报告

Reading report Paper title: A new hard rock TBM performance prediction model for project planning Major: 隧道与地下工程 Name: 叶宇航 Number: 1530767

Several models have been introduced over the years for prediction of hard rockTBM performance.The TBM performanceprediction models are mostly based on an empirical or a semi-theoretical approach. Although they have advantages and area of applications, they also have disadvantages, such as CSM model don’t consider the main influencing parameter, NTNU model require special experiments originated from the drilling, QTBM are too complicated. The authors hope to better understand machine-rock interaction and to develop a more accurate model for performance estimate of hard rock TBMs.In order to achieve it, the authors investigate the field data of three main tunneling projects in Iran and Manapouri tunnel project in New Zealand.The data obtained from the projects as before mention includinggeological and performance parameters,have wide ranges of variations.Butthese wide ranges of geological and performance parameters helped in developing a more comprehensive TBM performance prediction model which has covered different geological conditions. In general, to justify the use of TBM in any project and for planning purposes, a reasonably accurate estimation of rate of penetration (ROP), daily rate of advance (AR), and cutter cost/life estimate is necessary. But the authors chosen Field Penetration Index(FPI) which is a composite parameter as the machine parameter. In the text, both single and multi-variable regression analyzes were used to investigate relationship between engineering rock properties and TBM performance parameters and finally to develop empirical equation. The analysis of the data obtained from the projects proved that FPI is a suitable machine performance parameter for developing empirical relationships with geological parameters.And multi-variable regression analysis show good correlation between ln (FPI) as response parameter and UCSand RQD as predictors. In conclusionFPI is a good parameter for the evaluation ofhard rockTBM performance. Therefore, the authors developed a chart of FPI prediction.This chart can be used for quick estimationof range of values for FPI in grounds with different rockstrength and rock quality. Excepts the FPI, the authors also concerned the boreability. Boreability is the term commonly used to express the ease or difficulty of rockmass excavation by a tunnel boring machine. Rock mass boreability depends on a number of influencing parameters including intact rock/rock mass properties, machine specifications and operational parameters. In tunneling projects, ground characteristics or boreability of the rockmass is an important parameter for selecting machine type and specifications. It is clear that proper evaluation of rock mass boreability can also play a major role in machine operation to achieve the best performance. FPI can be selected as an index for categorizing rock mass boreability. Based on the analysis of give projects, the authors defined six rock massboreability classes, from most difficult for boring or B-0 class(Tough) to easiest for boring or B-V class (Excellent). Considered the relationship between FPI and boreability, the authors give a table of TBM performance estimation in rock masses with different boreability classes. All in all, the paper proposeda simplemodel to evaluate rock mass boreability and TBM performancerange. This model demonstrates that machine performance hasbeen related to two main rock properties (UCS and RQD) and twooperational parameters (average cutter head thrust and

高等岩石力学.总结

岩石(体)力学特性专题 第一节刚性压力机的作用原理及在试验中岩石变形破裂机理 一、岩石在普通试验机中进行单向压缩试验时的变形特性 岩石的变形特性通常可从试验时所记录下来的应力-应变曲线 中获得。岩石的应力-应变曲线反映了各种不同应力水平下所 对应的应变(变形)规律。以下介绍具有代表性的典型的应力- 应变曲线。 1.典型的岩石应力-应变曲线分析 图1例示了典型的应力-应变曲线。根据应力-应变曲线的形态 变化c可将其分成OA,AB,BC三个阶段。三个阶段各自显 示了不同的变形特性。 (1)0A阶段,通常被称为压密阶段。其特征是应力-应变曲线呈上凹型,即应变随应力的增加而减少,形成这一特性的主要原因是:存在于岩石内的微裂隙在外力作用下发生闭合所致。 (2)AB阶段,也就是弹性阶段c从图1可知,这一阶段的应力-应变曲线基本呈直线。若在这一阶段卸荷的话其应变可以恢复,由此而称为弹性阶段。这一阶段常用两个弹性常数来描述其变形特性。即弹性模量E和泊松比μ。所谓弹性模量,是指应力-应变曲线中呈直线阶段的应力与应变之比值(或者是该曲线在直线段的斜率)被称作平均模量。就模量的概念而言,岩石的模量还有初始模量、切线模量、割线模量等。在岩石力学中比较常用的是平均弹性模量和割线模量。割线模量是指岩石峰值应力一半的应力、应变之比值。其实质代表了岩石的变形模量。所谓泊松比μ,是指在弹性阶段中,岩石的横向应变与纵向应变之比值。这是描述岩石侧向变形特性的一个参数。最近几年来,经过大量的试验发现,在AB阶段,由于受荷后不断地出现裂纹扩展,岩石将产生一些不可逆的变形。因此从某种意义上来说,它并不属于真正的弹性特性,只能是一种近似的弹性介质。B点是该岩石的屈服点,当应力超过B点,则将进入第三阶段。 (3)BC阶段,也被称作塑性阶段。当应力值超出屈服应力之后,随着应力的增大曲线呈下凹状,明显地表现出应变增大(软化)的现象。进人了塑性阶段,岩石将产生不可逆的塑性变

岩石力学-教学大纲

《岩石力学》课程教学大纲 【英文译名】:Rock Mechanics 【适用专业】:地质工程 【学分数】:2 【总学时数】:32 【实践时数】:4 一、本课程教学目的和课程性质 本课程是为地质工程专业本科开设的专业必修课。岩石力学是研究岩石的物理力学性质及岩体的强度、变形和稳定性的一门科学,学习岩石力学的目的是认识岩体、利用岩体、保护岩体和有效地破碎岩石。本课程的任务是使学生通过学习掌握岩石力学的基本理论和有关知识。 二、本课程的基本要求 从认识岩石出发,学习岩石力学中的基本理论和分析方法,注意岩石和岩体的各种地质、物理和力学参数,不断积累岩石工程和灾害工程的经验,学习岩石力学应该了解岩石力学所研究问题的复杂性及学科本身还不太成熟的现实,着重掌握基本概念,对所进行的计算和研究进行科学的分析和判断,并密切结合工程实践作出结论。 三、本课程与其他课程的关系 学习本课程应该具备基础力学知识,工程地质学和土力学是必须的先修课程 四、课程内容 CH.1 绪论 1.岩石力学的概念 2.本课程的特点及学习要求 3.本学科发展概况 CH.2 岩石的物理力学性质 1.概述 2.岩石的物理性质 岩石的密度,相对密度,容重,孔隙性,吸水性,透水性,碎胀性 3.岩石的力学性质 岩石的强度性质,岩石的变形性质

4.岩石的流变性质 流变的概念,基本流变模型 5.岩石的强度理论 最大伸长线应变理论,库伦-莫尔理论,格里菲斯强度理论 重点:岩石的物理性质,岩石的力学性质,最大伸长线应变理论、库伦-莫尔理论、格里菲斯强度理论。 难点:岩石的流变性质,格里菲斯强度理论。 CH.3岩体的力学性质及其分类 1.岩体的强度 岩体结构,结构面的状态,结构面的强度指标,节理面的力学效应,岩体的强度,岩体强度的测定 2.岩体的变形 岩体的应力-应变曲线,岩体变形特性参数的量测 3.岩体的分类 按岩石强度分类;按岩石(岩芯)质量指标分类;按岩体波速比分类;按岩体结构类型分类。 重点:岩体结构,结构面的状态,结构面的强度指标,节理面的力学效应,岩体的强度,岩体强度的测定;岩体的应力-应变曲线,岩体变形特性参数的量测;岩体的分类。 难点:岩体的应力-应变曲线,岩体变形特性参数的量测。 CH.4 原岩应力及其测量 1.概述 2.重力应力场 3.构造应力场 4.原岩应力的一般规律 重力应力场与构造应力场分布特点;地壳浅部原岩应力的一般规律; 5.影响原岩应力分布的因素 地形;岩体的结构;岩体力学性能;岩层历史。 6.岩体应力测量 重点:重力应力场与构造应力场分布特点;地壳浅部原岩应力的一般规律;影响原岩应力分布的因素。 难点:岩体应力测量 CH.5 岩体的次生应力 1.概述 2.弹性区次生应力

高等岩石力学读书报告

高等岩石力学 读书报告 学院:国土资源工程学院 专业:地质工程 姓名:曾敏 学号:2006201071 高等岩石力学读书报告 岩石力学是研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。又称岩体力学,它是力学的一个分支。研究的目的在于解决水利、土木工程等建设中的岩石工程问题。它是近代发展起来的一门新兴学科,是一门应用性的基础学科。对于岩石力学的定义有很多种说法,这里推荐一种较广义、较严格的定义:“岩石力学是研究岩石的力学性状的一门理论科学,同时也是应用科学;它是力学的一个分支,研究岩石对于各种物理环境的力场所产生的效应。”这个定义既概括了岩石力学所研究的破碎与稳定两个主要方面的内容,也概括了岩石受到一切力场作用所引起的各种力学效应。岩石力学的理论基础相当广泛,涉及固体力学、流体力学、计算数学、弹塑性理论、工程地质和地球物理学等学科,并与这些学科相互渗透。 岩石力学主要理论基础及与其他学科的结合 岩石力学是一门应用性的基础学科。它的理论基础相当广泛,涉及到很多基础及应用学科。岩石力学的力学分支基础 1、固体力学 固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律。在采矿工程中用到的固体力学主要有:材料力学,结构力学,弹、塑性力学,复合材料力学,断裂力学和损伤力学。如把采场上覆岩层看作是梁或板结构用的就是结构力学理论;采用弹性力学研究巷道周围的应力分布。 2、流体力学 流体力学主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动规律。流体力学中研究得最多的流体是水和空气。对于地下采矿工程来说,其研究对象就是地下水与瓦斯等矿井气体。 3、爆炸力学 爆炸力学主要研究爆炸的发生和发展规律,以及爆炸的力学效应的利用和防护。它从力学角度研究爆炸能量突然释放或急剧转化的过程,以及由此产生的强冲击波(又称激波)、高速流动、大变形和破坏、抛掷等效应。同时爆炸力学是流体力学、固体力学和物理学、化学之间的一门交叉学科。地下开采中的巷道掘进,露天开采中的采剥都要进行爆破。 4、计算力学 计算力学是综合力学、计算数学和计算机科学的知识,以计算机为工具研究解决力学问题的理论、方法,以及编制软件的学科。从20世纪50年代以来,它在力学的各分支学科和边缘学科中得到了很大的发展,无论是在科学研究还是工程技术中均得到了广泛应用,现在它已成为力学除理论研究和实验研究之外的第3种手段。常见的计算力学方法并已广泛用到数值模拟计算中的有:材料非线性有限元法、几何非线性有限元法、热传导和热应力有限元法、弹性动力学有限元法、边界元法、离散元法、无网格法、有限差分法、非连续变形分析等。以计算力学为基础的数值模拟方法在采矿工程中的研究应用也正广泛地开展起来。

相关文档
最新文档