实验室气相色谱仪器的气路故障分析

实验室气相色谱仪器的气路故障分析
实验室气相色谱仪器的气路故障分析

实验室气相色谱仪器的气路故障分析

关键字:气相色谱仪器气路故障流量计

对于气路部分来说,按其容易发生的故障的现象可以分为三大类,流量调节故障;气路泄漏故障;气路堵塞与污染故障。

在气相色谱仪出现的各种故障中,有相当大的一部分都与气路有关,因此,了解和熟悉气路故障是十分必要的。

一、流量的调节1、流量调不上去(1)直观检查:首先检查仪器系统是否有明显的漏气声。在仪器系统气路有较大的泄漏发生时,很可能导致流量调不上去。如果听不到漏气声则转入(3)进行。(2)查漏:听到有漏气声之后,可依照声音发出的方向而逐步定位。此时可利用皂液的涂抹进一步确定漏气的发生处。找到原因后及时堵漏。(3)柱前压观察:观察柱前压指

示表的数值大小,可迅速判断是气源引起的故障,还是仪器内部气路堵塞及损伤造成的。如果是柱前压太低(精确地说是比正常流量操作时的预定压力值低),则说明气源需要检查;如果柱前压正常则需要检查仪器的内部气路。(4)

钢瓶高压检查:打开钢瓶阀后,观察高压表指示,压力应在1~15MPa之间。如果压力在1MPa以下,停用该钢瓶,换气;如压力值在合适的范围内,说明钢瓶压力正常。(5)减压阀上低压输出检查:调节减压阀看钢瓶上低压表指示能否调到0.25~0.6MPa之间。如果正常,可怀疑气路过滤接头有堵塞或者是仪器上的稳定阀有问题,此时应按照(6)来进行;如低压值不正常,则说明减压阀有问题,需进行(7)的修理。(6)过滤器堵塞及稳压阀检查:将

过滤器出口到仪器气源入口处的接头缓缓旋开,观察是否有较强的气流从接头处跑出。如有,则说明过滤器不堵塞,稳压阀可能有问题。在确定稳压阀不出气后,可进行阀拆卸与清洗,这可能是稳压阀内阀针与阀座间堵塞所致。如清洗后阀仍不能正常工作,最好换一个新阀;在上面试验中若无较强气流从旋开的接头中流出,需要检查过滤器入口前后可能堵塞之处;当然中间管线的堵塞也是可能的,但发生率甚小。(7)减压阀修理:在明了减压阀的结构之后,可拆卸修理减压阀。由于该减压阀入口一侧有高压,因此如无修理经验最

好不要盲目拆卸。有条件的,建议换用新阀;换阀时必须注意到,氢气表或氧气表应与其它气源表所用减压阀分开使用,减压阀上应标明其专用的气源名称。

(8)停用,换气:在钢瓶的压力太小时,应立即停用、换新瓶或充气。

在过小的压力下,不但气源输出不稳,而且气源中杂质浓度将明显增大,这对高灵敏度的分析是特别不利的。另一个必须要注意的问题,是钢瓶中的余气,特别是氢气钢瓶的余气不能随便排放。(9)拆下柱入口气路:将柱子入口处气接头拆下,观察流量计中的转子是否能升到最上端。如果能升到最上端,说明柱前气路正常,转入(10)作进一步检查;如果转子达不到最上端说明柱前气路有堵塞,需进行(13)检查。(10)拆下柱出端:将柱子入口接回原气路中后,再将柱出口侧接头拆下,此时观察流量计中的转子能否调到预定值。如果可以,将判断柱后管路及检测器有堵塞,需按(11)进行处理;如果转子仍调不上来,则可以认为柱填充过紧,需按(12)进行。(11)堵塞检查与排除:在判断为柱后管路或检测器堵塞时应进行排队和清洗。

(12)柱填充物太紧:柱填充过紧的主要原因是载体目数太大,造成过大的气阻所引起。在适当采用目数小一些的载体或减短色谱柱的长度后可以使流量上调到预定值。(13)拆下流量计出口气接头:将转子流量计出口端气路旋开后,观察转子能否升到最高端。如果可以,则判定进样、汽化器气路堵塞,按(14)处理;如果转子仍不能升到最高端,可认为流量阀损坏或流量计入口管路有堵塞,此时按(15)进行。(14)进样口堵塞:进样器的堵塞可按注射器的清洗步骤进行。(15)流量阀与管路堵塞:用分段试堵将很快判定是否流量管路产生了堵塞。如有,按气路管路的清洗进行;如流量计前管路正常,可拆卸流量控制阀进行清洗。2、流量太大调不小如果

气体流量一直很大而不能调小,可以认为是气路控制系统的一种故障。产生此类故障的原因有三种:第一,是流量计后气路有泄漏;第二,是气路气阻太小;第三,是流量控制阀件损坏。其检查方法如下:首先堵住检测器的气路出口,观察流量计中的转子是否可下降到零位。如不能降为零,需要考虑对漏气处进行检查,具体方法见气路泄漏的检查与排除;如转子可降到零位说明系统不漏气。此时应观察一下流量调节阀转动时,流量是否有较大的变动,若有变动可适当增加气路气阻;若无变动则应怀疑阀件本身有问题,按照阀件的清洗部分

处理。处理后的阀件应再装回原气路中进行控制试验。

二、气路泄漏检查1、气路渠漏检查按照其对气路密闭性的严格程度,检查气路是否泄漏的方法分为A、B、C三级。A级试漏:对气路严重泄漏的最

粗略观察。通常在气源打开并稳定之后,不应听到气路流经的各管路及阀件接头处有丝丝的跑气声,如听到明显的漏气声,说明系统有大漏!必须依据漏气声,追查出泄漏处,并加以排除。引起系统大漏的常见原因是:气路接头没上紧,气路中管路开裂及没加合适的垫片等。查找气路的严重泄漏,也可在流路的流量开到最大时,用肥皂水在各接头逐步测试有无气泡出现而加以证实。

B级试漏:对气路中轻微漏气的检查。方法是堵住气路出口,观察气路中流量计内的转子。如果能缓缓下降为零,即可认为此气路B级试漏合格。如转子不能降到零,可用肥皂水在各接头处仔细观察。直到找到泄漏处为止。

C级试漏:对气路中极小漏气的检查。方法是堵住气路出口,观察系统压力表,不得在半小时之内有5kPa(相当于0.05kgf/cm2)以上的下降。此时系统压力应在0.25MPa(相当于2.5kgf/cm2)以上。必要时可在系统出口处外接一个0. 5级标准压力表来读取压力变化数。在证实气路系统有泄漏时,可用分段

堵住或关闭气路的方法来缩小漏气发生的范围。绝大多数的漏气点都发生于气路接头处,而气路阀件内部的泄漏也时有发生,至于管路中间的泄漏,除了急转弯处以外是很少见的。2、气路接头漏气故障的排除发现接头有泄漏

时,首先对所用接头做如下检查:(1)接头配合垫片是否合适,退火及无伤痕;(2)接头密合处是否干净平滑无污物;(3)接头配合装配时,是否相互对准对正;(4)能否先用手将接头大体上紧。如上述检查无异常,

再用扳手(一般为两把)将接头上紧。上紧时应注意压力要适当,对于有塑料、橡胶、聚四氟垫片的接头压力不宜过大,一般能密封后再上紧一点即可;对于有金属垫片的接头,压力可适当加大,但也应以不漏气为界限。

实验室集中供气系统的特点与优点

实验室集中供气系统的特点与优点 完善的实验室供气系统是实验室仪器设备正常工作的基础。 目前大多数实验室中的各种分析仪器如气相色谱仪、气相色谱质谱仪、液相色谱质谱仪、原子吸收分光光度计、原子荧光光度计、等离子发射光谱仪、电感耦合等离子质谱仪等都需要连续使用高纯载气和燃气,因此实验室的安全、连续、稳定运行需要我们考虑如何将这些气体供到各实验室中放置的分析仪器。 一、实验室集中供气系统主要组成部分 1、实验室气体管道:气体管路多采用不锈钢管、软管通过卡套式连接自动焊接等安装和特殊气体管道安装完成整个系统的连接。 2、气体管道常用零部件主要有减压器、球阀、针阀、直通、三通、等等。 二、实验室集中供气系统的特点 1、载气流量恒定、气体纯度高,为实验室选用的分析设备提供量值和压力稳定的气体。 2、建一个集中的气瓶间可以节省有限的实验室空间,更换钢瓶时不需要切断气体,保证气体的连续供应。使用者只需管理较少的钢瓶,支付较少的钢瓶租金,因为使用同一气体的所有使用点来自于同一个气源。此种供应方式最终会减少运输费用,减少退还给气体公司的空瓶中的余气量,以及良好的钢瓶管理。

3、集中管道供应系统可以将气体出口放置在使用点处,这样的话可以更合理的设计工作场所。 4、保证其储存和使用的安全性。保障分析测试人员在实验中免受有毒有害气体的侵害。 三、实验室集中供气系统的优点 1、解决了气瓶的放置问题。气瓶间的位置如果可能尽量位于与实验室相对独立的房间,如果与实验室在同一大楼内,则气瓶间的位置要尽量位于人流较少并且独立的房间,这种方式可使气瓶与工作人员及仪器完全隔离,即使有害气体有泄漏,也不会发生直接伤害。 2、解决了气体混合的问题。将所有载气气瓶根据气体性质分别集中在一个气瓶间中(其实最主要是将易燃易爆气体(如H2、天燃气、乙炔等)与助燃气体(如氧气、氯气)分开存贮)。 3、解决了气瓶压力的问题。每种气体可以将多瓶气体并联然后通过一个出口统一减压后运送气体至使用点。因为气瓶间是相对独立的,整个气路系统压力最大的地方也是气瓶出口处,因此这种方式将气瓶压力可能发生的危险缩小至气瓶间内,可对人体及仪器的伤害可降到最低。

气路系统基本结构及工作原理

气路系统基本结构及工作原理

————————————————————————————————作者: ————————————————————————————————日期: ?

气路系统结构及工作原理 气压系统由空压机、干燥器、滤清器、自动排水器、防冻器及各类控制阀件组成,压缩空气经多级净化处理后,供底盘行驶及车上作业使用。 一.结构特点 气压系统主要由以下组成: ?压缩空气气源 ?动力系统控制气路 ?底盘气路 ?绞车气路 ?司钻控制 压缩空气气源整车共用,底盘气路和绞车气路均为相对独立管路,并相互锁定;分动箱的动力操作手柄在切换发动机动力时,同时切换压缩空气气源,钻机车在行驶状态接通底盘气路,钻修作业接通绞车气路。当二者其一管路接通压缩空气气源时,另外一路则被切断压缩空气气源,确保设备操作安全,减少气路管线泄漏。方框图如下:

二.压缩空气气源 1.空气压缩机,往复活塞结构,4缸V形排列;2台,分别安装在2台发动机右侧前 部,由曲轴端皮带轮驱动;强制水冷,润滑,冷却管线与发动机冷却水道相连,润滑管线与发动机润滑系统相连。 2.调压阀,安装在空气压缩机缸体侧部,调定控制气压系统空气压力,调定值0.8 ±0.05 MPa,当系统气体压力升高,达到调定值时,调压阀动作发出气动信号,分两路,一路信号接通两台空气压缩机卸荷阀,顶开各气缸进气阀门,空压机置空负荷运转状态,停止向气压系统供气;另一路信号接通两台干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,吸附干燥剂层的水份,迅速排出干燥器体外,使其干燥剂再生。系统压力低于调定值,调压阀气信号消失,空压机卸荷阀复位,空压机重新进入正常工作状态,继续向系统供应压缩空气,同时,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。 3.干燥器,吸附再生式结构,2台,各自连接在空气压缩机的输出气路处。内装干燥 剂,当湿空气流过时吸附水份,输出干燥空气。当系统压力达到调定值时,调压阀发生指令,打开干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,经干燥剂层,吸附其中的水份,并排出干燥器,使其干燥剂再生。系统压力低于调定值,调压阀气信号消失,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。干燥器排泄口装有电热塞,当气温低于0℃时自动将电源接通,加热排泄口,防止冰冻。 4.空气滤清器,旋风滤芯结构,压缩空气进入滤清器,在导流片的作用下飞速旋转, 离心力迫使较大的水滴和固体杂质抛向筒壁,集聚到下部排泄口;压缩空气再经滤芯过滤,进一步净化。 5.自动排水器,浮球结构,进水口与滤清器排泄口连接,当聚集的液面升高到设定位 置,将浮球抬起,打开排泄口,排除废液。 6.防冻器,吸管喷射结构,串联在压缩空气管道中,当气温低于4℃时,可向防冻器 内加注乙二醇或其他防冻剂,当空气进入防冻器喷射流动时,吸管口形成负压区,乙二醇经吸管混合在压缩空气射流中,充分雾化,降低管道中压缩空气的凝固点,防止管道冻裂和冰堵,确保设备冬季正常运行。 7.储气罐,椭圆封头圆柱形结构,安装在底盘大梁外测,配置安全阀,超压自动排

实验室气相色谱仪器的气路故障分析

实验室气相色谱仪器的气路故障分析 关键字:气相色谱仪器气路故障流量计 对于气路部分来说,按其容易发生的故障的现象可以分为三大类,流量调节故障;气路泄漏故障;气路堵塞与污染故障。 在气相色谱仪出现的各种故障中,有相当大的一部分都与气路有关,因此,了解和熟悉气路故障是十分必要的。 一、流量的调节1、流量调不上去(1)直观检查:首先检查仪器系统是否有明显的漏气声。在仪器系统气路有较大的泄漏发生时,很可能导致流量调不上去。如果听不到漏气声则转入(3)进行。(2)查漏:听到有漏气声之后,可依照声音发出的方向而逐步定位。此时可利用皂液的涂抹进一步确定漏气的发生处。找到原因后及时堵漏。(3)柱前压观察:观察柱前压指 示表的数值大小,可迅速判断是气源引起的故障,还是仪器内部气路堵塞及损伤造成的。如果是柱前压太低(精确地说是比正常流量操作时的预定压力值低),则说明气源需要检查;如果柱前压正常则需要检查仪器的内部气路。(4) 钢瓶高压检查:打开钢瓶阀后,观察高压表指示,压力应在1~15MPa之间。如果压力在1MPa以下,停用该钢瓶,换气;如压力值在合适的范围内,说明钢瓶压力正常。(5)减压阀上低压输出检查:调节减压阀看钢瓶上低压表指示能否调到0.25~0.6MPa之间。如果正常,可怀疑气路过滤接头有堵塞或者是仪器上的稳定阀有问题,此时应按照(6)来进行;如低压值不正常,则说明减压阀有问题,需进行(7)的修理。(6)过滤器堵塞及稳压阀检查:将 过滤器出口到仪器气源入口处的接头缓缓旋开,观察是否有较强的气流从接头处跑出。如有,则说明过滤器不堵塞,稳压阀可能有问题。在确定稳压阀不出气后,可进行阀拆卸与清洗,这可能是稳压阀内阀针与阀座间堵塞所致。如清洗后阀仍不能正常工作,最好换一个新阀;在上面试验中若无较强气流从旋开的接头中流出,需要检查过滤器入口前后可能堵塞之处;当然中间管线的堵塞也是可能的,但发生率甚小。(7)减压阀修理:在明了减压阀的结构之后,可拆卸修理减压阀。由于该减压阀入口一侧有高压,因此如无修理经验最

WCB刹车气路控制系统

伊顿WCB刹车气路控制系统 1.0 WCB水冷却盘式刹车简介 1.1 原理及结构 参见图1,从气缸(18)端面进气孔导入的压缩空气推动活塞(25),使压力盘组件(14)压紧动摩擦盘组件(9),刹车扭矩从大螺杆(8)传递到安装法兰(2),刹车扭矩的大小由导入气缸的气压大小决定。释放所施加的气压,复位弹簧(26) 使活塞复位,摩擦付分离。摩擦产生的大量热量由铜合金静摩擦盘(3)背面的冷却水流带走。 图1 刹车结构剖面 序号名称序号名称序号名称序号名称 1 安装法兰组件8 大螺杆15 压紧盘2 2 磨损环 2 安装法兰9 动摩擦盘组件16 平垫圈2 3 中间盘组件 3 静摩擦盘10 动摩擦盘17 大螺母2 4 中间盘 4 静盘螺栓11 动摩擦盘芯18 气缸2 5 活塞 5 静盘螺母12 平头螺钉19 内侧密封圈2 6 复位弹簧 6 内圈压条13 夹管20 外侧密封圈 7 外圈压条14 压紧盘组件21 齿轮 1.2特点 1.2.1 WCB气动水冷却盘式刹车是为恒定张力应用而设计的,特别适用于大惯量的持续制

动,并且制动力可随气压的变化而改变。 1.2.2 水冷却 1.2.3 长寿命、可靠 2.0 推荐的刹车控制系统 WCB2气动水冷却盘式刹车是一种依靠压缩空气为动力的制动器,所以WCB2刹车的气路控制设计是至关重要的,如果气动元件选用不当,将不能充分体现伊顿WCB 刹车的特性,下面我们将多年的实践总结的一套气路控制方案供大家参考。 2.1 伊顿WCB 刹车气路控制图 图 2 2.2 特点 该气路控制系统能在刹车过程中随时调节刹车力的大小,其操作特性与液压盘刹非常相似,并且比液压盘刹柔性更好。 2.3 推荐气路元件 以下我们推荐的气路元件是国内外用户较多选用的。 名称 型号 厂家 性能参数 参考价格 备注 手动调压阀 2AAF-0 力士乐 调压范围0-6.5Bar TMR6-L6-F 三爱斯 调压继气器 P-055162-00000 力士乐 24 VEX1500-06 SMC 24、36 P-055163-00000 力士乐 36

实验室设计总体规划方案(精)

实验室建设项目的涉及面广,范围包括实验室装修、实验室设计、通风排风系统、洁净系统、水系统、暖通系统、供气系统、实验室家具等等。本文为大家讲解实验室设计总体规划方案。 1、实验室装修:实验装修不同于普通的工装,在设计、选材和施工等方面要考虑防水、防滑、防尘、防腐蚀、防静电、防干扰、防振动等要求,更要结合一些精密仪器的用水、用电、用气,以及使用环境的特殊要求进行设计施工。同时,实验室装修与每一个分项工程交叉衔接,息息相关,必须对实验室的通风、空调、给排水、电气、消防、纯水、洁净和供气等专业进行总体部署和协调,防止建筑拥堵、错位,合理设计、施工和管理,使复杂的工程变得井然有条。 2、实验室暖通系统:实验室排风涉及实验人员的安全性和舒适性,必须严格控制好排风效果、噪声和节能等因素。通常,为避免实验室内产生的毒害气体交叉污染,实验室气流方向应从低危险区域向高危险区域流动,气流设计应从办公区域,廊道,以及其他辅助区域流入实验室,保持实验室内的适当负压,确保实验室内的气流不外泄到走廊,为保证效果必须采用VAV变风量排风系统。同时,需采取有效的变风量补风措施,并保持实验室内的适

当负压,且补风不能影响室内温度。这些与普通的办公室暖通空调要求相差很大。 3、实验室洁净系统:洁净实验室主要目的是保护实验人员的安全,防止感染细菌和病毒,保护实验样品的安全,防止污染,确保实验结果的准确性。其建设要点包括:工艺布局合理,根据需要设置更衣、风淋和缓冲间,做到人流、物流、污物流三流清晰,避免交叉感染;装饰材料应易于清洁消毒、耐腐蚀、不起尘、不开裂、光滑防水,相交位置做圆弧处理,无缝对接;空调净化系统的划分应有利于实验室的消毒灭菌、自动控制系统的设置和节能运行;采用洁净空调系统,设粗、中、高三级空气过滤器,排风与送风连锁;气流有序,由清洁区向半污染区和污染区流动。 4、实验室供气系统:实验室供气系统虽然投资份额相对较小,但对实验环境的安全性有重要影响。首先,气瓶间必须采取的专业的通风、防爆措施;其次,气路系统要有泄露报警、紧急切断和强排风等装置;第三,为了保证气体纯度和气压的稳定性,必须进行多级减压供气,设置气路吹扫、排空等设施。 5、实验室各专业建设相互交错、穿插进行,装修、水电、排风、补风、空调、供气等专业必须周密设计,统筹安排,精心施工,才能保证施工进度和质量。此外,实验室恒温恒湿、纯水、弱电等专业也有其特殊要求。

气路控制系统安全操作规程

编号:CZ-GC-00094 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 气路控制系统安全操作规程 Safety operation procedures for gas path control system

气路控制系统安全操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程 在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重 的会危及生命安全,造成终身无法弥补遗憾。 一、空压机 1、空压机尽量安装在周围环境温度较低的场所,且周围要有保养和检查间隙。 2、试车前应检查润滑油是否充足,压力表及电器设备是否完好,连接气路是否畅通。 3、关闭输出阀,接连起动开关,压力达到0.7MPa以上时,慢慢地打开输出阀。 4、压力表指示0.7MPa无异常声音时方可连续运转,当压力降至0.7MPa以下时,要停止使用。注意观察装入加油口内机油的温度计,空压机运转1~2小时后,应在一稳定的温度下工作,在运转中当油温超过104°C时停机检查。 5、停机时,关闭输出阀,切断起动开关,当压力表降零以前,不得再起动。

6、运转中注意: a、定期检查油面高度,及时添加至油口内平面。 b、本机除规定的N150号压缩机油外,严禁使用其它牌号压缩机油,换油期为1500小时。 c、随时检查油温,若超过104°C,应停止工作。 d、添加油或放油时,要待停机后压力降至零时,方能打开加油塞或放油堵以防油气反溅。 二、伺服阀 空压机出厂时,伺服阀已调整好,一般不允许随便调整。当关闭输出阀,空压机处于空运转状态,此时压力表应在0.75~0.85MPa 之间平衡工作,若超过上述数值应拆下伺服阀进行清洗,安装后按下列规程调整: a、起动运转; b、关闭输出阀; c、当压力指示小于0.75时,应将伺服阀调节螺钉往里拧,使压力上升,若压力指示大于0.8MPa时,应将螺钉往外拧。使压力

实验室气体管道设计方案

方案内容 方案设计目的 高纯气体中央供气系统是专为高精度分析测试设备所用高纯工作气体的传输而设计,系统需要为分析设备提供压力、流量稳定且经过长距离传输后纯度不变的高纯气体以满足各种高精度分析设备的使用要求。系统同时还应该满足安全性的要求,并方便客户的日常使用及管理。 第一部分气瓶间布局 1.由于存放的气体由于有可燃性气体和助燃气体,按国家规定必须分库存放。分别放入不同的气瓶间内。 2.气瓶间内设立一次调压面板,其中二托一面板带吹扫铜镀铬面板4套 3.压力调节器入口前需加装烧结金属过滤器以防止颗粒等杂质污染系统。 4.所有面板均配备吹扫阀,可实现对面板的清洗置换。 5.压力调节器及相关管件均需牢固的固定在压力调节面板上,面板应设计的紧凑而合理,以尽量减少系统中的死体积。 6.压力调节面板应采用全不锈钢材料制成,并且牢固的固定在可靠的位置上,确保其安全性。 7.气瓶间内存放的气瓶采用带防倒链的气瓶支架固定,气瓶支架坚固耐用、美观大方。 气瓶支架采用铝合金制作而成。 8.气瓶间内的气体钢瓶与压力调节器之间采用SS 316L高压金属软管连接无渗透。 高压软管为柔性软管,以保证连接的方便性。并自导防护钢缆,预防极端情况下,

钢瓶阀损坏等现象带来的高压“抽鞭”事故。压力调节器与管道的连接方式为双环卡套。 9.高压软管上的钢瓶接头必需与钢瓶角阀的规格相匹配,以确保连接的可靠性。 10.排空气路应分类收集、固定牢固并排放至室外安全地点。 第二部分终端布局 11.系统设置为二次减压系统。终端采用壁挂式设计。上设有压力调节器、输出压力指示计、紧急切断阀,同一气路的呈上下对应排布,方便操作。面板为不锈钢产品。 具体位置参见图纸,具体配置情况如下: ■壁挂式终端标准型 26套 注:该终端可以实现在室内对设备的压力调节、输出压力的监控及气路开关控制,省去了每日往返于气瓶间和实验间的奔波,提高了办事效率。 12.控制终端上的气体出口尺寸要与分析仪的气体入口尺寸相对应。气体出口接头还应方便安装。 第三部分气路的布线 13.气瓶间内压力调节面板与实验室内的气路终端之间选用SS 316L BA管进行连接,管道内表面光洁度为Ra<0.4um BA级管道。 14.4N氮气主管线采用OD3/8”(6.35mm)的管道,0.5Mpa压力下流量可达8M3/小时,完全满足常规用气需求,支线采用OD1/4”(6.35mm)的管道。用焊接三通分出支路来对设备进行供气。 15.5N氮气、氦气、预留气主管线采用OD1/4”(6.35mm)的管道,支线采用OD1/4” (6.35mm)的管道。用焊接三通分出支路来对设备进行供气。

气路控制系统安全操作规程(新版)

气路控制系统安全操作规程 (新版) The safety operation procedure is a very detailed operation description of the work content in the form of work flow, and each action is described in words. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:YK-AQ-0916

气路控制系统安全操作规程(新版) 一、空压机 1、空压机尽量安装在周围环境温度较低的场所,且周围要有保养和检查间隙。 2、试车前应检查润滑油是否充足,压力表及电器设备是否完好,连接气路是否畅通。 3、关闭输出阀,接连起动开关,压力达到0.7MPa以上时,慢慢地打开输出阀。 4、压力表指示0.7MPa无异常声音时方可连续运转,当压力降至0.7MPa以下时,要停止使用。注意观察装入加油口内机油的温度计,空压机运转1~2小时后,应在一稳定的温度下工作,在运转中当油温超过104°C时停机检查。 5、停机时,关闭输出阀,切断起动开关,当压力表降零以前,

不得再起动。 6、运转中注意: a、定期检查油面高度,及时添加至油口内平面。 b、本机除规定的N150号压缩机油外,严禁使用其它牌号压缩机油,换油期为1500小时。 c、随时检查油温,若超过104°C,应停止工作。 d、添加油或放油时,要待停机后压力降至零时,方能打开加油塞或放油堵以防油气反溅。 二、伺服阀 空压机出厂时,伺服阀已调整好,一般不允许随便调整。当关闭输出阀,空压机处于空运转状态,此时压力表应在0.75~0.85MPa 之间平衡工作,若超过上述数值应拆下伺服阀进行清洗,安装后按下列规程调整: a、起动运转; b、关闭输出阀; c、当压力指示小于0.75时,应将伺服阀调节螺钉往里拧,使

实验室设备管理系统软件工程

实验室设备管理系统软件工程 在实验室建设的课题里,一些重要实验室需要做到环境建设、实验设备采购、实验室家具采购,其中往往在实验室装修阶段,我们需要格外重视实验室系统工程建设,下面陕西宏硕带大家来看看实验室建设里有哪些系统工程。 一、实验室暖通系统: 实验室排风涉及实验人员的安全性和舒适性,必须严格控制好排风效果、噪声和节能等因素。通常,为避免实验室内产生的毒害气体交叉污染,实验室气流方向应从低危险区域向高危险区域流动,气流设计应从办公区域,廊道,以及其他辅助区域流入实验室,保持实验室内的适当负压,确保实验室内的气流不外泄到走廊,为保证效果必须采用VAV变风量排风系统。同时,需采取有效的变风量补风措施,并保持实验室内的适当负压(5?10)Pa,且补风不能影响室内温度。这些与普通的办公室暖通空调要求相差很大。 二、实验室洁净系统: 洁净实验室主要目的是保护实验人员的安全,防止感染细菌和病毒,保护实验样品的安全,防止污染,确保实验结果的准确性。其建设要点包括:工艺布局合理,根据需要设置更衣、风淋和缓冲间,做到人流、物流、污物流三流清晰,避免交叉感染;装饰材料应易于清洁消毒、耐腐蚀、不起尘、不开裂、光滑防水,相交位置做圆弧处理,无缝对接;空调净化系统的划分应有利于实验室的消毒灭菌、自动控制系统的设

置和节能运行;采用洁净空调系统,设粗、中、高三级空气过 滤器,排风与送风连锁;气流有序,由清洁区向半污染区和污染区流动。 三、实验室供气系统: 实验室供气系统虽然投资份额相对较小,但对实验环境的安全性有重要影响。首先,气瓶间必须采取的专业的通风、防爆措施;其次,气路系统要有泄露报警、紧急切断和强排风等装置;第三,为了保证气体纯度和气压的稳定性,必须进行多级减压供气,设置气路吹扫、排空等设施。 综上所述,实验室各专业建设相互交错、穿插进行,装修、水电、排风、补风、 空调、供气等专业必须周密设计,统筹安排,精心施工,才能保证施工进度和质 量。此外,实验室恒温恒湿、纯水、弱电等专业也有其特殊要求。 实验室建设不同于普通的建设项目,具有综合性、专业性、系统性强的特点,必须统一部署,总体协调,集中建设,才能从组织管理的源头更好地控制项目风险。

气路控制系统安全操作规程

仅供参考[整理] 安全管理文书 气路控制系统安全操作规程 日期:__________________ 单位:__________________ 第1 页共4 页

气路控制系统安全操作规程 一、空压机 1、空压机尽量安装在周围环境温度较低的场所,且周围要有保养和检查间隙。 2、试车前应检查润滑油是否充足,压力表及电器设备是否完好,连接气路是否畅通。 3、关闭输出阀,接连起动开关,压力达到0.7MPa以上时,慢慢地打开输出阀。 4、压力表指示0.7MPa无异常声音时方可连续运转,当压力降至0.7MPa以下时,要停止使用。注意观察装入加油口内机油的温度计,空压机运转1~2小时后,应在一稳定的温度下工作,在运转中当油温超过104C时停机检查。 5、停机时,关闭输出阀,切断起动开关,当压力表降零以前,不得再起动。 6、运转中注意: a、定期检查油面高度,及时添加至油口内平面。 b、本机除规定的N150号压缩机油外,严禁使用其它牌号压缩机油,换油期为1500小时。 c、随时检查油温,若超过104C,应停止工作。 d、添加油或放油时,要待停机后压力降至零时,方能打开加油塞或放油堵以防油气反溅。 二、伺服阀 空压机出厂时,伺服阀已调整好,一般不允许随便调整。当关闭输出阀,空压机处于空运转状态,此时压力表应在0.75~0.85MPa之间平 第 2 页共 4 页

衡工作,若超过上述数值应拆下伺服阀进行清洗,安装后按下列规程调整: a、起动运转; b、关闭输出阀; c、当压力指示小于0.75时,应将伺服阀调节螺钉往里拧,使压力上升,若压力指示大于0.8MPa时,应将螺钉往外拧。使压力下降,反复调整在0.75~0.8MPa的某一稳定压力下,空压机处于稳定空运转状态(即进气阀关闭状态下运转),无异常声音时,再锁紧螺母。 d、慢慢打开输出阀送气,观察压力表稳定在0.75~0.8MPa之间检查排气量。 e、反复检查四次,空压机运转及在额定工况下运转可靠、稳定。 三、气缸 1、安装使用时,气罐活塞杆不能受偏心载荷或横向载荷,应使载荷的运动方向与活塞杆轴心线一致。活塞杆运行时,无别劲扭曲现象。 2、气缸使用环境温度不易过高。 3、气缸勿用在有腐蚀性气体的环境中。 4、更换新气缸后,应在负载的情况下,用工作压力运行2~3次,检查气缸各部有无异常现象。 四、减压阀 1、减压阀的安装配有固定支架,安装时,注意按阀体上的箭头所示方向接管,该方向即为进气口方向。 2、在通气前,逆时针旋转手轮,使减压阀定值弹簧卸荷,然后打开气源,按顺时针方向逐渐转动手轮,压力渐增,直至压力表指示压力为所需压力,并通过制动旋钮锁紧手轮。 第 3 页共 4 页

GC7900气相色谱仪故障处理分析

GC7900气相色谱仪故障处理分析 摘要:GC7900型气相色谱仪在日常工作使用中出现的故障包括:色谱电路故障 和气路故障,电路故障是温度控制系统故障和检测放大系统故障;气路故障是气 路纯度不够,气体稳压稳流不好,漏气现象。本文就以上故障进行了分析和处理。 关键词:气相色谱仪故障分析处理 引言 GC7900型气相色谱仪是分别配有热导池氢火焰检测器,其特点温度梯度小、 控温稳定、分离效果好。仪器可根据试样的实际情况,可接填充柱,也可接毛细 管柱。本文以氢火焰检测器为例,就以下故障进行分析处理。 1电路故障分析与处理 1.1温度控制异常 温度控制原理是由感温元件(铂电阻)产生的热敏电阻信号传递给温控电路 中的集成放大器,放大器将电阻信号变成电压信号转变后实现模数转换,即A/D 转换,送给微处理放大器CPU进行计算,最后由可控硅的导通角改变而精确控温,可控硅铂电阻元件可用万用表测量好坏。温度异常表现为两种形态,一种是不能 升温,一种是温度不稳定。温控系统电路故障,一般就GC7900型气相色谱仪而言,常见是铂电阻断、短路和可控硅元件损坏,辅助回路电路元件故障。 (1)找出温度异常检测室、汽化室、柱箱。首先测量其铂电阻的好坏,再检测各加热丝是否损坏。 (2)用万用表电压档测量选定的加热部份后加热元件两端的电压值,若无200-220V电压为温度控制电路故障,若有电压时,关闭电源测量各加热元件电阻值,柱箱电阻为26Ω,气化室、检测室为340Ω,若测量电阻偏大,则加热件损坏。 1.2进样不出峰 1.2.1常规中FID检测器不出峰的维护 首先判定仪器的电路是否有故障,将仪器控制面板中的粗调电位器(10K阻 值的)做任意方向的调节,如果在记录仪上有发生基线变动的情况,证明仪器的 电路放大部份基本正常。 1.2.2微电流放大器损坏 微电流放大器接入的信号是由FID检测器在高压电极电离后产生的微弱信号源,损坏后表现为电平在0-1800mv之间不断地跳动,判定FID微电流放大器好 坏方法是: (1)有输入信号(用万用表红表笔触碰信号收集器),但无输出,放大器损坏。 (2)有输入也有输出信号,微电流放大器运行正常。 (3)微电流放大器常见故障是检测室极化电极损坏(用万用表测量无240V 直流电压),集成电路AD549JH损坏。 1.2.3微电流放大器产生的基线波动 放大器自激检查,发现基线呈有规律的往复摆动时,即可判定放大内部自激,此时应降低直流稳压电源的内阻值用一个容量为47μF的电容,并连在电源输出 和地之间即可消除噪声。 2气路故障分析与处理 2.1点不着火 遇到火点不着:一般情况下首先判定仪器FID检测器的喷嘴是否堵塞。如没

北京分公司高纯气路系统设计施工安装方案

中央化验室高纯气路系统 设计及施工安装方案 设计目的: 高纯气体中央供气系统是专为高精度分析测试设备所用高纯工作气体的传输而设计,系统需要为分析设备提供压力、流量稳定且经过长距离传输后纯度不变的高纯气体,以满足各种高精度分析设备的使用要求。系统同时还应该满足安全性的要求,并方便客户的日常使用及管理。 一、气瓶间布局 1.由于存放的气体由于有可燃性气体和助燃气体,按国家规定必须分库存放。分别放入不同的气瓶间内。 2.气瓶间内设立一次调压面板,其中二托一面板带吹扫铜镀铬面板 4 套。 3.压力调节器入口前需加装烧结金属过滤器以防止颗粒等杂质污染系统。 4.所有面板均配备吹扫阀,可实现对面板的清洗置换。 5.压力调节器及相关管件均需牢固的固定在压力调节面板上,面板应设计的紧凑而合理,以尽量减少系统中的死体积。 6.压力调节面板应采用全不锈钢材料制成,并且牢固的固定在可靠的位置上,确保其安全性。 7.气瓶间内存放的气瓶采用带防倒链的气瓶支架固定,气瓶支架坚固耐用、美观大方。气瓶支架采用铝合金制作而成。 8.气瓶间内的气体钢瓶与压力调节器之间采用 SS 316L 高压金属软管连接无渗透。高压软管为柔性软管,以保证连接的方便性。并自导防护钢缆,预防极端情况下,钢瓶阀损坏等现象带来的高压“抽鞭”事故。压力调节器与管道的连接方式为双环卡套。 9.高压软管上的钢瓶接头必需与钢瓶角阀的规格相匹配,以确保连接的可靠性。 10.排空气路应分类收集、固定牢固并排放至室外安全地点。

二、终端布局 1.系统设置为二次减压系统。终端采用壁挂式设计。上设有压力调节器、输出压力指示计、紧急切断阀,同一气路的呈上下对应排布,方便操作。面板为不锈钢产品。 壁挂式终端标准型 26 套 注:该终端可以实现在室内对设备的压力调节、输出压力的监控及气路开关控制, 省去了每日往返于气瓶间和实验间的奔波,提高了办事效率。 2.控制终端上的气体出口尺寸要与分析仪的气体入口尺寸相对应。气体出口接头还应方便安装。 三、气路的布线 1.气瓶间内压力调节面板与实验室内的气路终端之间选用 SS 316L BA 管进行连接,管道内表面光洁度为 Ra<0.4um BA 级管道。 2. 4N 氮气主管线采用 OD3/8”(6.35mm)的管道,0.5Mpa 压力下流量可达 8M3/小时,完全满足常规用气需求,支线采用 OD1/4”(6.35mm)的管道。用焊接三通分出支路来对设备进行供气。 3. 5N 氮气、氦气、预留气主管线采用 OD1/4”(6.35mm)的管道,支线采用 OD1/4”(6.35mm)的管道。用焊接三通分出支路来对设备进行供气。 4.管道穿过障碍物时须使用管套并采用不可燃材料填充间隙。 5.管道之间采用较为先进的全自动定位轨道式氩弧焊机进行内外保护氩弧焊方式连接,其优点是泄漏率较小,且不会再内表面产生氧化层或褶皱等焊接缺陷。 6.管路上的三通全部采用焊接三通来实现连接,可更有效保证气体的传输质量。 7.管道需用固定卡具固定在管道支架上。管道支架为槽钢结构美观大方。与墙体和管道固定牢固。且为耐火材料(铝合金)制成。 8.气体管路在铺设过程中要做到横平竖直,为保证管道走线的直线度和管道间的间距,每间隔一定距离应设置一组管卡。卡具应由不燃材料制作而成,美观大方。

气路控制系统的使用和维护

气动控制系统使用和维护 气动控制系统,具有易操作、经济、安全之特性,在整个污水处理系统中,气动控制将可取代人手,节省能源、增加效率,提高系统的处理能力。 本污水处理系统的气路系统由空气源、方向控制阀、执行元件、及其他不同的气动辅助元件所组成:由空气压缩机提供压缩空气,经过空气干燥机,空气过滤器和油雾器组成的二联件,利用电磁阀切换控制,进入气动阀执行开关动作,以控制管道内的流体;其基本组成如下: 一、皮带传动式空气压缩机 本设备提供系统所需的压缩空气,其详细资料见使用说明书 二、空气干燥机 此装置是将空压机提供的压缩空气进行处理,除去其中的水份。是藉着一只空气对冷媒之热交换器(蒸发器),将压缩空气温度降至露点温度2℃,可凝结压缩空气中所含之水份或水滴,再经由分离器,分离空气及水滴,而水滴经由自动排水器排出系统外,完成整个干燥过程。详见冷冻式干燥机的使用说明书 三、二联件: 此装置包括空气过滤器、油雾器,是一种模块组合式连接;空气过滤器能减少悬浮在压缩空气中的粒子;油雾器能将适量的润滑油雾化,经压缩空气带往系统里以做润滑。 四、电磁阀 利用电讯号控制压缩空气的开关、流向及流量 五、辅助气动仪表 主要是压力表,它能显示管道气体压力是否在规定的范围内;如指示压力不在规定范围内,可以调节相应装置来达到;(详见空压机说明) 六、气动阀 此为本控制系统的关键性元件-执行元件,采用的是国家专利产品XQF系列开关式管道气动阀。其工作原理详见气动阀说明书 ?本污水处理站设有气动阀: ◆投药系统气动阀26套 ◆开关式气动阀95套 1、气动阀的日常维护: (1)气动阀外观应保持清洁、标识清楚,无碰压、无损伤。 (2) (3)阀体执行机构的传动应灵活,无松动和卡涩现象。 (4)连接伸缩缸的气管的长度应能调节,并应有足够的长度,保证调节机构在全开和全关的范围内动作灵活、平稳,不妨碍执行机构的动作。 (5) (6)气动阀初次安装完结或初次使用前应先检漏。

16公交车辆气路故障浅析

公交车辆气路系统故障浅析 技师保五厂刘学斌 内容摘要: 随着汽车技术的发展和北京优先发展公共交通战略的实施,城市公交车辆技术水平有了很大的变化,一系列新型高技术总成普遍装备到了公交车辆上。其中ABS系统,电控空气悬挂系统,电控交接盘系统,自动变速箱缓速器系统等设备需要压缩空气的总成越来越多,气路系统管线走向更区复杂。气路系统一但出现故障的车辆的影响越来越大,轻者造成系统漏气、控制失灵,重则造成制动失灵,发生事故。 关键词: 气路系统、气压制动系统 论文主题: 一、气路系统故障与形成因素 车辆气路系统主要故障分为两类:1、气路系统漏气,阀件内部磨损、膜片、密封圈老化失效、管路异常损坏、阀件内部因异物造成关闭不严或关闭缓慢等; 2、气路系统不过气,总成内部阀件因油污等异物堵塞卡滞、冬季气路系统冻结,堵塞等。 我们通过对车辆大量实践维护经验可得知,在车辆保养维修的过程中,我们大约需要花费约很长的时间进行故障查找,而实质的故障排除与维修时间仅占一半。我们可以通过对车辆总成结构、原理、功能等方面的理解,总结出更方便、快捷的方法对汽车进行维修和保养。 二、车辆气路系统组成及工作原理 车辆气路系统以气压制动系统为主,以压缩空气为气源,采用前轴和后轴制动气路分立的双回路制动系统,主要由空压机、冷凝器、气压调节阀、制动阀、储气罐、单向阀、快放阀、挂车继动阀、继动阀、差动阀、制动气室及管路等组成。由车辆辅助气罐供给空气悬挂、电控交接盘、变速箱缓速器提供气源。 (一)空气压缩机 一般由活塞、活塞环、连杆、曲轴、缸筒、缸盖、进排气阀门等组成。有单缸式、双缸式之分。其冷却方式分为水冷式和风冷式。其润滑油的供给一般由发动机润滑系统提供压力润滑。空气压缩机一般安装在发动机上,驱动方式有齿轮驱动和皮带驱动两种。 目前空气压缩机的进排气阀门大都采用弹性钢片阀片与进排气孔阀板组合而成,空气压缩机泵气速度与进排气阀门的密封性能关系较大。 (二)冷凝器 1、用途:是在大部分水、油到达空气干燥器之前,对其进行冷凝,分离和排放。杂质沉积在集液腔,通过自动排放阀在每次制动操作时,油水被自动排放。并附有手动排放装置。 2、工作原理:由空压机输出的压缩空气经入口进入散热壳体与内腔之间的螺旋

气路控制系统安全操作规程(通用版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 气路控制系统安全操作规程(通 用版)

气路控制系统安全操作规程(通用版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 一、空压机 1、空压机尽量安装在周围环境温度较低的场所,且周围要有保养和检查间隙。 2、试车前应检查润滑油是否充足,压力表及电器设备是否完好,连接气路是否畅通。 3、关闭输出阀,接连起动开关,压力达到0.7MPa以上时,慢慢地打开输出阀。 4、压力表指示0.7MPa无异常声音时方可连续运转,当压力降至0.7MPa以下时,要停止使用。注意观察装入加油口内机油的温度计,空压机运转1~2小时后,应在一稳定的温度下工作,在运转中当油温超过104°C时停机检查。 5、停机时,关闭输出阀,切断起动开关,当压力表降零以前,不得再起动。 6、运转中注意:

a、定期检查油面高度,及时添加至油口内平面。 b、本机除规定的N150号压缩机油外,严禁使用其它牌号压缩机油,换油期为1500小时。 c、随时检查油温,若超过104°C,应停止工作。 d、添加油或放油时,要待停机后压力降至零时,方能打开加油塞或放油堵以防油气反溅。 二、伺服阀 空压机出厂时,伺服阀已调整好,一般不允许随便调整。当关闭输出阀,空压机处于空运转状态,此时压力表应在0.75~0.85MPa之间平衡工作,若超过上述数值应拆下伺服阀进行清洗,安装后按下列规程调整: a、起动运转; b、关闭输出阀; c、当压力指示小于0.75时,应将伺服阀调节螺钉往里拧,使压力上升,若压力指示大于0.8MPa时,应将螺钉往外拧。使压力下降,反复调整在0.75~0.8MPa的某一稳定压力下,空压机处于稳定空运转状态(即进气阀关闭状态下运转),无异常声音时,再锁紧螺母。 d、慢慢打开输出阀送气,观察压力表稳定在0.75~0.8MPa之间检

实验室气体管路施工技术要求及验收标准

实验室气体管路施工技术要求及验收标准实验室气体管路施工技术要求及验收标准 技术要求 (1)总体设计:管道采用1/4”外径,经过BA处理的专用高等级洁净不锈钢管道。所有集中在气瓶柜的管路有适当的路径进入各实验桌,在使用仪器的附近接气体考克。 (2)管路设计、规划要点: 气体管路系统应具有良好的气密性,可靠性,可维护性。 1、气瓶阀接口为GB标准的外螺纹形式,为了便于管路系统与气瓶连接,故从气瓶阀出口到管道系统应设有转换接头(气瓶接头)。 2、为了方便更换气瓶,从上述气瓶接头到调节阀之间应设有耐高压的不锈钢螺旋管。 3、

由于气瓶内部的气体压力为150Bar左右,使用点的压力较小,气体压力有变化,而且数值差距较大,故应在气瓶出口处设置一级减压阀(双表头)。 4、气路系统中应设有在紧急情况下能够快速切断供气的装置—开关阀,为了开关系统的方便和快捷,本项目中开关阀采用球阀。 5、为了保持气体的纯度及管道系统的气密性,所有管道采用进口BA级316L不锈钢管道,内表面按规定处理。 6、管道与阀件的连接,管道与管道的连接应保证系统的气密性,同时要便于维修及更换阀件。 7、管道固定件要求坚固,轻巧,耐用。 (3) 施工要求: 1、所有不锈钢管道两端用塑料盖密封,外部有塑料套密封,在进入施工现场后,安装前,方可将塑料套拆封,并除去塑料盖。 2、管道铺设时,应注意平直,弯管处采用专用弯管器,不得徒手弯曲,切断管道时,用专

用切管器操作,严禁用锯子锯断管道。管道切断后,应用专用工具处理断口,严禁用普通锉刀处理。 3、在管道的行进路线中,每隔l米应设置一组管夹,如遇特殊建筑物结构,应酌情考虑。 4、管道穿墙及穿地板时,应设置套管,套管与管道之间的空隙,应采用不可燃烧的材料填充。 5、管道采用全自动焊机焊接方式衔接。 6、所有螺纹连接处应采用密封带密封。 7、所有系统部件安装完毕后,应用高纯氮气进行三遍以上的大流量吹扫。 8、在整个施工过程中,应注意施工安全。 (4)验收说明 施工结束后,用高纯氮气进行检漏保压测试,测试压力应为工作压力的1.25倍。试压规定时间后,压力表读数变化小于0.5%(根据GB金属工业管道施工及验收标准)。 以上管道、各种阀件品牌、材质,连接方式及其相关工艺流程等需严格按标书要求响应,须符合国家标准。

浅谈搅拌站气路控制系统

编号:AQ-JS-09084 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 浅谈搅拌站气路控制系统 Discussion on gas control system of mixing plant

浅谈搅拌站气路控制系统 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 在搅拌站中,许多机构都是通过气压驱动来工作。气压驱动具有低成本、无污染的优点,避免了使用油路系统易发生漏油和沾灰的缺陷。气路控制系统由空压机、贮气罐、手动阀、气源三联件、电磁换向阀等控制元件、管路、接头、气缸等执行元件等组成。 气控系统的结构及基本原理 HZS120型搅拌站的气路系统分为两个部分:一为主体部分,包括水泥称量斗、粉煤灰称量斗、膨胀剂称量斗、水和附加剂称量斗、砂石集料斗等气缸用气以及筒仓破拱。另一为砂、石配料系统。气路控制系统在工作中要求做到: (1)确保油雾杯中贮存有防锈汽轮机油,调节适当的供油量(5滴/min左右)。 (2)压力调整:主体部分工作压力为0.55~0.7Mpa;砂石配料系统工作压力为0.55~0.7Mpa;筒仓破拱工作压力为0.2~

0.3Mpa。 (3)HZS120型搅拌站搅拌主机是双卧轴强制式搅拌机,该搅拌主机采用轴端密封技术。轴端的气压在主机运行时应为0.2~ 0.5bar,在主机停止时应为1~1.5bar。 气控系统常见故障及解决方法 2.1气源故障 2.1.1减压阀故障。压力调不高,往往是调压弹簧断裂或膜片破裂,必须更新;压力上升缓慢,一般是过滤网堵塞,应拆下清洗。 2.1.2管路故障。接头泄漏和软管破裂可由声音判断漏气的部位,若管路中聚积冷凝水时易结冰堵塞气路,应及时排除。 2.1.3压缩空气处理组件故障。油水分离器滤芯堵塞、破损,排污阀的运动部件不灵活等,要经常清洗滤芯,除去排污阀内的杂质。油雾器不滴油、油杯底部沉积有水分、油杯口密封圈损坏等。应检查进气口的气流量是否低于起雾流量,是否漏气,油量调节针阀是否堵塞等。 2.2气缸故障

气路故障排除方法与介绍

门定位器常见故障分析 气动调节阀在自动调节系统中是一个非常重要的环节。人们常把调节阀比喻为生产过程自动化的“手足”。由于生产过程的调节对象要求要求调节阀具有各种各样的特性,以满足生产工艺的需要。在调节阀的附属装置中,最主要、最实用的是阀门定位器。 现场使用阀门定位器的种类非常繁多,有气动阀门定位器、电气阀门定位器、有配薄膜执行机构的阀门定位器、有配活塞执行机构的阀门定位器、有力平衡式阀门定位器、有位移平衡式阀门定位器,阀门定位器的广泛使用,在生产过程中,难免会出现各种故障,为保质、保量、安全地生产,就必须及时排除定位器可能产生地一切故障。 要排除阀门定位器地的故障,必须正确判断阀门定位器的那一个环节、那一个元件发生的故障。通常有如下两种故障分析法:一是根据阀门定位器的传递函数,对阀门定位器进行逐个环节,逐个元件的分析,这种对现场检修不太适用,但对于疑难问题的分析,却非常有效;二是根据检修者对故障的现象进行综合分析和判断,此种方法最适于现场检修。下面将阀门定位器可能产生的常见故障的起因分析如下: 1.阀门定位器有信号输入,但无输出压力信号 (1)电/气定位器,衔铁与线圈架之间有异物。 (2)恒节流孔堵塞。 (3)喷嘴挡板配合不良或喷嘴挡板损坏。 (4)放大器中膜片(金属膜片或者橡胶膜片)损坏。 (5)气路连接有误(包括放大器)。 (6)电/气定位器输入信号线正负极接反。 (7)定位器的输入接线盒内的二极管开路或接线不良。 (8)气源压力的大小不合要求。 (9)放大器耗气量超额定数值太大。 (10)电/气定位器磁钢极性的安装相异。 (11)放大器预紧力超重。 (12)滑阀式放大器内的滑阀被异物卡死。 (13)“手动/自动”切换位置不对(非手动位置和非自动位置)。 (14)电/气定位器输入电信号短路。 (15)平衡弹簧安装,调试不好。 2.下行程定位器输出压力变化缓慢 (1)放大器的气锥阀的锥度较小。 (2)放大器膜片长期使用,产生弹性滞后现象。 (3)气动定位器的感测元件(波纹管或膜盒)长期使用,产生弹性滞后。 (4)反馈弹簧产生弹性滞后。 3.上行程定位器给出压力变化缓慢 (1)放大器进气球阀陷得过深。 (2)放大器耗气量较大。 (3)放大器进气球阀沾污,流通面积减小。 (4)恒节流孔的直径与喷嘴直径之比小于额定值(技术要求数值)。 (5)喷嘴与挡板之间的配合不好。 (6)衔铁与线圈架之间有轻微的磨擦。 4.定位器线性不好 (1)反馈凸轮或弹簧选择不当。 (2)反馈机构安装不好。 (3)反馈凸轮或弹簧安装不当。

相关文档
最新文档