纳米材料修饰电极

纳米材料修饰电极
纳米材料修饰电极

A highly sensitive hydrogen peroxide amperometric sensor based onMnO2-modi?ed vertically aligned multiwalled carbon nanotubes,Analytica Chimica Acta,2010 MnO2-多臂碳纳米管

Cu电极

Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing,Electrochimica Acta,2010 MnO2–AuNP/ GCE H2O2电流传感

A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide Nanocomposite,Talanta,2010 GO/MnO2/ GCE(氧化

石墨烯)

H2O2电流传感

Electrochemical investigation of MnO2 electrode material for supercapacitors,ScienceDirect,2011 MnO2泡沫镍电极MnO2电活性物

质作为超级电容

材料

Facile synthesis of novel MnO2 hierarchical nanostructures and their application to nitrite sensing,Sensors and Actuators B: Chemical,2009

MnO2/QPVP-Os/GCE

(联吡啶锇取代的聚乙

烯吡啶)

亚硝酸盐传感器

Preparation of MnO2/graphene composite as electrode material for supercapacitors,J Mater Sci ,2011 MnO2/grapheme(石墨

烯)

超级电容器

Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods,Microchim Acta (2011) β-MnO nanorods/GCE

H2O2电化学传

感器

Mn3O4 Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries,American Chemical Societ,2010 Mn3O4/RGO(还原石墨

电极)

锂离子电池阳极

材料

Non-enzymatic electrochemical CuO nano?owers sensor for hydrogen peroxide detection,Talanta,2010 CuO/Cu箔H2O2电流传感

器(无酶)

Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing,Sensors and Actuators B: Chemical,2010 CuO以碳为基底做成电

葡萄糖传感器

(无酶)

A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modi?ed carbon nanotube electrode,Biosensors and Bioelectronics,2010 CuO/MWCNTs/Cu电极葡萄糖传感器

(无酶)

An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modi?ed electrode,Biosensors and Bioelectronics,2010 CuxO/Cu箔葡萄糖传感器

(无酶)

Synthesis of CuO nanoflower and its application as a H2O2 sensor,Bull. Mater. Sci,2010 CuO NFS/Nafion-Au电

H2O2电流传感

器(无酶)

Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites, Microchim Acta,2010 Nafion/Cu-CuO

NWs/GCE

葡萄糖传感器

(无酶)

A sensitive mercury (II) sensor based on CuO

nanoshuttles/poly(thionine) modified glassy

carbon electrode,Microchim Acta (2010)

CuO/PTH/GCE(硫堇) Hg2+传感器

Nano nickel oxide modi?ed non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential,Biosensors and Bioelectronics,2011 nano NiO/ CPEs

(碳糊电极)

葡萄糖传感器

(无酶)

Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO nanowires,Talanta,2009 Na?on/ZnO/Au

electrodes

肼电化学传感器

A novel hydrazine electrochemical sensor

based on a carbon nanotube-wired ZnO

nano?ower-modi?ed electrode,Electrochimica

Acta,2009

ZnO/MWCNTs/GCE 肼电化学传感器

Highly-sensitive cholesterol biosensor based on well-crystallized ?ower-shaped ZnO nanostructures,Talanta,2009

Na?on/ChOx/ZnO/Au

electrodes(胆固醇氧化

酶)

胆固醇生物传感

Synthesis of nanochain-assembled ZnO ?owers

and their application to dopamine sensing,

Sensors and Actuators B: Chemical,2010

ZnO/GCE 多巴胺传感器

Improved glucose electrochemical biosensor by appropriate immobilization of nano-ZnO,Colloids and Surfaces B: Biointerfaces,2011

Na?on/GOx/ZnO/Au

electrodes(葡萄糖氧化

酶)

氧化锌纳米粒子

直接生长在金电

极上提高葡萄糖

传感器的性能

Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles,Electrochemistry Communications,2009

Na?on/ChOx/ZnO/Au

electrode(胆固醇氧化

酶)

胆固醇生物传感

ZnO Nanonails Synthesis and Their Application asGlucose Biosensor,American Scienti?c,2008

Na?on stabilized silver nanoparticles modi?ed

electrode and its application to Cr(VI)

detection,ournal of Electroanalytical

Chemistry,2011

GCE/Nf/Ag-nano Cr(VI)的检测

Gold nanoparticle/carbon nanotube hybrids as

an enhanced material for sensitive

amperometric determination of tryptophan,

Electrochimica Acta,2010

AuNP–CNT/GCE 色氨酸

Construction of Au nanoparticles on choline chloride modi?ed glassy carbon electrode for sensitive detection of nitrite,Biosensors and Bioelectronics,2009 nano-Au/Ch/GCE

(氯化胆碱)

亚硝酸盐传感器

Direct electrochemistry and electrocatalysis of heme proteins on SWCNTs-CTAB modi?ed electrodes,Talanta,2009 protein-SWCNTs-CTAB

/GCE(蛋白质)

有望成为第三代

基于酶类的电化

学传感器

Simultaneous determination of ascorbic acid, adrenaline and uric acid at ahematoxylin multi-wall carbon nanotube modi?ed glassy carbon electrode,Sensors and Actuators B: Chemical,2010

HMWCNT-GCE

(苏木精多臂碳纳米

管)

同时检测抗坏血

酸、肾上腺素和尿

Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotu bes modi?ed glassy carbon electrode,Sensors and Actuators B: Chemica,2010 f-MWCNTs /GCE 同时检测多巴胺

和对乙酰氨基酚

V oltammetric biosensors for the determination of paracetamol at carbon nanotube modi?ed pyrolytic graphite electrode,Sensors and Actuators B: Chemical,2010 MWNT or SWNT/EPPG

(棱面热解石墨电极)

伏安传感器测定

对乙酰基氨基酚

(扑热息痛)

V oltammetric oxidation and determination of cinnarizine at glassy carbon electrode modi?ed with multi-walled carbon nanotubes,Sensors and Actuators B: Chemical,2009 SWNTs/ GCE 对桂利嗪含量测

定灵敏

Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modi?ed glassy carbon electrode,Biosensors and Bioelectronics,2009

SWCNH/GCE

(单臂碳纳米管)

同时检测尿酸、多

巴胺和抗坏血酸

The determination of acetaminophen using a carbon nanotube:graphite-based electrode,Microchim Acta (2010) MWCNTs:graphite/GCE

多臂碳纳米管和石墨混

对乙酰氨基酚(扑

热息痛)

Characterization and sensing properties of a carbon nanotube paste electrode for acetaminophen,Microchim Acta ,2009 Carbon nanotubes paste

electrodes碳纳米管糊

carbon paste electrode

对乙酰氨基酚(扑

热息痛)

Electrochemical properties and the

determination of nicotine at a multi-walled

carbon nanotubes modified glassy carbon

electrode, Microchim Acta (2010)

MWNTs-GCE 对尼古丁的检测

Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene–chitosan/GCE

(石墨烯-壳聚糖)

对氨基苯酚

graphene–chitosan composite ?lm modi?ed glassy carbon electrode,Electrochimica Acta,2010

A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta,2010

graphene /GCE

(石墨烯)

对乙酰氨基酚的

检测,不受多巴胺

和抗坏血酸的干

A novel sensitive detection platform for antitumor herbal drug aloe-emodin

based on the graphene modi?ed electrode,Talanta,2010 GN/GCE(全氟磺酸氧

化石墨烯)

MWCNTs-Na?on

modi?e(对比)

对中草药抗癌菌

素芦荟大黄素的

检测

Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA, Colloids and Surfaces B: Biointerfaces,2011 graphene-COOH /GCE

graphene-NH2/GCE

(功能化石墨烯)

同时检测DNA中

的腺嘌呤和鸟嘌

Glucose Oxidase–graphene–chitosan modi?e d electrode for direct electrochemistry and glucose sensing,Biosensors and Bioelectronics,2009 GOD/graphene/chitosan

/GCE(葡萄糖氧化酶)

葡萄糖传感器

Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modi?ed electrodes,Biosensors and Bioelectronics,2010 graphene /GCE 抗坏血酸存在下

检测多巴胺

Application of graphene-modi?ed electrode for selective detection of dopamine,Electrochemistry Communications,2009

GR–CS/GCE,

(石墨烯-壳聚糖)

MWNTs-CS/GCE

抗坏血酸存在下

检测多巴胺

Na?on–graphene nanocomposite ?lm as

enhanced sensing platform for ultrasensitive

determination of cadmium,Electrochemistry

Communications,2009

Nafion/graphene /GCE 检测镉离子

Graphene-based modi?ed electrode for the direct electron transfer of Cytochrome c and biosensing,Electrochemistry Communications,2010 Cyt c/CS–GR/GCE(细

胞色素c/壳聚糖-石墨

烯)

很好的生物相容性

实现了细胞色素

c在电极上的电

化学活性和NO

的电催化活性

Graphene Nanosheets Modified Glassy Carbon Electrode as a Highly Sensitive and Selective V oltammetric Sensor for Rutin, Electroanalysis 2010 GNs/GCE(片状石墨烯) 选择性的检测芦

Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan Graphene Modified Electrode,Electroanalysis 2010 chitosan-graphene-GCE

(壳聚糖-石墨烯)

同时检测抗坏血

酸、多巴胺、尿酸

Highly selective amperometric nitrite sensor based on chemically reduced grapheme oxide CR-GO/GCE(还原型氧

化石墨烯)

灵敏的亚硝酸盐

传感器

mo di?ed electrode,Electrochemistry Communications,2012

A voltammetric sensor based on graphene-modi?ed electrode for simultaneous determination of catechol and hydroquinone ,Journal of Electroanalytical Chemistry,2011 GR/GCE(石墨烯)同时检测邻苯二

酚和对苯二酚

Graphene Based Electrochemical Sensors and Biosensors A Review,Electroanalysis 2010,

Cu nanoparticles incorporated polypyrrole modi?ed GCE for sensitive simultaneous determination of dopamine and uric acid,Talanta,2010 nano-Cu/PPy/GCE(聚吡

咯)

同时测定多巴胺

和尿酸

Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modi?ed glassy carbon electrode and its determination,Talanta,2010 graphene–chitosan/nano-

Fe3O4/GCE(石墨烯-

壳聚糖)

电催化氧化鸟嘌

呤及检测

Amperometric determination of bisphenol A in milk using PAMAM–Fe3O4 modi?ed glassy carbon electrode,Food Chemistry,2011 PAMAM/Fe3O4/GCE 测定牛奶中的双

酚A

Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modi?ed glassy carbon electrode,Journal of Hazardous Materials,2010

PAMAM/CoTe/GCE

(CdS、CdSe、CdSe、

ZnS也是量子点)

测定水中的双酚

A

Nanostructured Reduced Graphene Oxide Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries,ACSNANO,2011

RG-O/Fe2O3

(还原型氧化石墨烯)

锂离子电池阳极

材料

A novel non-enzymatic electrochemical glucose sensor modi?ed with FeOOH nanowire, Electrochemistry,2010

FeOOH/ QPVP-Os/

GCE(联吡啶锇取代的

聚乙烯吡啶)

不受多巴胺和抗

坏血酸的干扰

葡萄糖传感器

Mesoporous-TiO2 nanoparticles based carbon paste electrodes exhibit enhanced electrochemical sensitivity for phenols,Electrochemistry Communications,2009

meso-TiO2/CPE and

nano-TiO2/CPE(介孔和

纳米碳糊电极)

提高了对苯酚检

测灵敏度

Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries,Journal of Power Sources,2009 金红石态TiO2金红石态TiO2作

为锂离子电池阴

极电性能

V oltammetric determination of trace doxorubicin at a nano-titania/nafion composite nano-TiO2/Nafion

/GCE

实现了对痕量阿

红霉素的检测

film modified electrode in the presence of cetyltrimethylammonium bromide,Microchim Acta (2009)

Determination of Pb2+ions by a modi?ed carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica, Journal of Hazardous Materials,2010 MWCNTs/ nano-SiO2/

碳糊电极测定Pb2+

Sensitive and rapid determination of catechol in tea samples using mesoporous Al-doped silica modi?ed electrode, Food Chemistry,2009

mesoporous Al/SiO2 /

CPE(介孔铝/二氧化硅/

碳糊电极)

检测茶叶中的邻

苯二酚

Electrocatalytic oxidation and determination of ascorbic acid in the presence of dopamine at multiwalledcarbon nanotube–silica network –gold nanoparticles based nanohybrid modi?ed electrode,Sensors and Actuators B: Chemica,2010 MWNT–silica-NW–Au

NPs /GCE(SiO2纳米

网)

在多巴胺存在下

检测抗坏血酸

Direct electrochemistry and electrocatalysis of nitrite based on nano-alumina-modified electrode,J Solid State Electrochem (2010) Nano-Al2O3/GCE 对亚硝酸盐的检

Development and application of a nano

alumina based nitric oxide sensor,Microchim

Acta (2009)

Nano-Al2O3/GCE 一氧化氮传感器

V oltammetric behavior and the determination

of quercetin at a ?owerlike Co3O4

nanoparticles modi?ed glassy carbon electrode,

J Appl Electrochem (2011)

?owerlike Co3O4/GCE 检测槲皮素

Electrochemical determination of nitrite in water samples using a glassy carbon electrode modified with didodecyldimethylammonium bromide,Microchim Acta (2009) DDAB/GCE(双十二烷

基溴化铵)

检测水样中的亚

硝酸盐

Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide chitosan composite ?lm-modi?ed glassy carbon electrode,Sensors and Actuators B,2008 CPB/chitosan/GCE溴化

十六烷基吡啶

同时检测多巴胺

和抗坏血酸

Chitosan Incorporating Cetyltrimethylammonium Bromide

Modified Glassy Carbon Electrode for Simultaneous Determination of Ascorbic Acid and Dopamine,Electroanalysis 19, 2007, Chitosan-CTAB/GCE 同时检测多巴胺

和抗坏血酸

多巴胺

花状ZnO/GCE 多巴胺传感器

f-MWCNTs /GCE 同时检测多巴胺和对乙酰氨基酚

SWCNH/GCE(单臂碳纳米管)同时检测尿酸、多巴胺和抗坏血酸

graphene /GCE 抗坏血酸存在下检测多巴胺

GR–CS/GCE, (石墨烯-壳聚糖)抗坏血酸存在下检测多巴胺

chitosan-graphene-GCE(壳聚糖-石墨烯)同时检测抗坏血酸、多巴胺、尿酸

nano-Cu/PPy/GCE(聚吡咯)同时测定多巴胺和尿酸

CPB/chitosan/GCE溴化十六烷基吡啶同时检测多巴胺和抗坏血酸

Chitosan-CTAB/GCE 同时检测多巴胺和抗坏血酸

亚硝酸盐

MnO2/QPVP-Os/GCE(联吡啶锇取代的聚乙烯吡啶) 亚硝酸盐传感器

nano-Au/Ch/GCE(氯化胆碱)亚硝酸盐传感器

CR-GO/GCE(还原型氧化石墨烯)亚硝酸盐传感器

Nano-Al2O3/GCE 对亚硝酸盐的检测

DAB/GCE(双十二烷基溴化铵)检测水样中的亚硝酸盐

对乙酰氨基酚

f-MWCNTs /GCE 同时检测多巴胺和对乙酰氨基酚MWNT or SWNT/EPPG 测定对乙酰基氨基酚MWCNTs:graphite/GCE多臂碳纳米管和石墨混合对乙酰氨基酚(扑热息痛)Carbon nanotubes paste electrodes碳纳米管糊电极对乙酰氨基酚

graphene /GCE(石墨烯)对乙酰氨基酚的检测,不受多巴

胺和抗坏血酸的干扰

PAMAM

PAMAM/Fe3O4/GCE 测定牛奶中的双酚A

PAMAM/CoTe/GCE 测定水中的双酚A

纳米AI2O3,对有机磷分子有较好的氧化还原活性。

壳聚糖分子链上有许多游离的氨基,其氮原子上一对孤对电子易于从溶液中结合一个氢质子而使壳聚糖成为带正电荷的聚电解质.。人们充分利用生物高分子壳聚糖的生物相容性、低毒性、生物可降解性以及可食用性,不断开发它的应用领域。在分析化学上,己用于分离富集痕量Ni(II),Cu(II),Cd(II)。

壳聚糖作为化学修饰电极的研究己见报道。例如:Kazunori 等用壳聚糖修饰电极测定Cd(II)。Bai 等曾用壳聚糖修饰电极测定Fe(Ⅲ)。北京大学叶宪曾研究组曾用壳聚糖修饰玻碳电极,通过阳极溶出伏安法分别测定了贵金属元素Au(III),Ag(I),Pt(II)和Pd(II)。

阳离子交换试剂全氟磺酸Nafion可防止抗坏血酸、尿酸和乙酰氨基酚对葡萄糖检测的干扰。

银纳米修饰电极的制备及电化学行为

银纳米修饰电极的制备及电化学行为 作者:姚爱丽, 吕桂琴, 胡长文, YAO Ai-Li, LU Gui-Qin, HU Chang-Wen 作者单位:北京理工大学理学院化学系,北京,100081 刊名: 无机化学学报 英文刊名:CHINESE JOURNAL OF INORGANIC CHEMISTRY 年,卷(期):2006,22(6) 被引用次数:12次 参考文献(16条) 1.董绍俊;车广礼;谢远武化学修饰电极 2003 2.Nada M D;David M B查看详情 2001 3.Sandmamn G;Dietz H查看详情 2000 4.高迎春;李茂国;王广凤银纳米修饰电极的制备及其对灿烂甲酚蓝的催化研究[期刊论文]-Chin J Anal Lab 2004(12) 5.Sarkar J;Pal P;Talapatra G B Adsorption of 2-aminobenzothiazole on colloidal silver particles: An experimental and theoretical surface-enhanced Raman scattering study[外文期刊] 2005(26) 6.Vukovic V V;Nedeljkovic J查看详情 1993(04) 7.Gole A;Sainkar S R查看详情 2000(05) 8.Kumar A;Mandale A B;Sastry Sequential electrostatic assembly of amine-derivatized gold and carboxylic acid-derivatized silver colloidal particles on glass substrates[外文期刊] 2000(17) 9.Cheng L;Dong S J查看详情 2000 10.周延秀;朱果逸;汪尔康查看详情 1994(03) 11.Liu Z L;Wang X D;Wu H Y查看详情[外文期刊] 2005 12.Tang Z Y;Liu S Q;Dong S J查看详情 2001 13.曹楚南;张鉴清电化学阻抗谱导论 2002 14.阮北;鲁彬;童汝亭自组装巯基环肽单层膜修饰金电极电化学行为的研究[期刊论文]-J Hebei Normal University Natural Science Edition 2003(05) 15.孙向英;翁文婷荧光性自组装双层膜的制备及其性能研究[期刊论文]-Chemical Journal of Chinese Universities 2005(06) 16.Lu M;Li X H;Yu B Z查看详情[外文期刊] 2002 本文读者也读过(2条) 1.夏立新.宫科.汪舰.康笑博.佟胜睿.刘广业.XIA Li-Xin.GONG Ke.WANG Jian.KANG Xiao-Bo.TONG Sheng-Rui. LIU Guang-Ye用简便方法组装二维模板银纳米阵列[期刊论文]-化学学报2007,65(21) 2.吕桂琴.姚爱丽.郑传明.L(U) Gui-qin.YAO Ai-li.ZHENG Chuan-ming MPA包覆的银纳米粒子修饰电极制备和电化学表征[期刊论文]-北京理工大学学报2006,26(10) 引证文献(12条) 1.王耀先.贺国旭.张秋霞.王香.胡中爱铝基氪化铝模板制备Ag纳米线及其电化学性质[期刊论文]-化工新型材料2013(1) 2.周闻云.陈艳玲.韩清.贾玉萍抗坏血酸在纳米银DNA修饰电极上的电化学行为研究[期刊论文]-分析科学学报

纳米材料修饰电极

A highly sensitive hydrogen peroxide amperometric sensor based onMnO2-modi?ed vertically aligned multiwalled carbon nanotubes,Analytica Chimica Acta,2010 MnO2-多臂碳纳米管 Cu电极 Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing,Electrochimica Acta,2010 MnO2–AuNP/ GCE H2O2电流传感 器 A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide Nanocomposite,Talanta,2010 GO/MnO2/ GCE(氧化 石墨烯) H2O2电流传感 器 Electrochemical investigation of MnO2 electrode material for supercapacitors,ScienceDirect,2011 MnO2泡沫镍电极MnO2电活性物 质作为超级电容 材料 Facile synthesis of novel MnO2 hierarchical nanostructures and their application to nitrite sensing,Sensors and Actuators B: Chemical,2009 MnO2/QPVP-Os/GCE (联吡啶锇取代的聚乙 烯吡啶) 亚硝酸盐传感器 Preparation of MnO2/graphene composite as electrode material for supercapacitors,J Mater Sci ,2011 MnO2/grapheme(石墨 烯) 超级电容器 Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods,Microchim Acta (2011) β-MnO nanorods/GCE 。 H2O2电化学传 感器 Mn3O4 Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries,American Chemical Societ,2010 Mn3O4/RGO(还原石墨 电极) 锂离子电池阳极 材料 Non-enzymatic electrochemical CuO nano?owers sensor for hydrogen peroxide detection,Talanta,2010 CuO/Cu箔H2O2电流传感 器(无酶) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing,Sensors and Actuators B: Chemical,2010 CuO以碳为基底做成电 极 葡萄糖传感器 (无酶) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modi?ed carbon nanotube electrode,Biosensors and Bioelectronics,2010 CuO/MWCNTs/Cu电极葡萄糖传感器 (无酶) An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modi?ed electrode,Biosensors and Bioelectronics,2010 CuxO/Cu箔葡萄糖传感器 (无酶) Synthesis of CuO nanoflower and its application as a H2O2 sensor,Bull. Mater. Sci,2010 CuO NFS/Nafion-Au电 极 H2O2电流传感 器(无酶)

纳米储氢电极材料

纳米储氢电极材料主要有碳纳米管、镁镍合金和镁钛合金 Mg2 Ni纳米晶储氢材料 性能:它具有储氢容量高,吸放氢平台好,质量轻,资源丰富等优点,但要能达到实用化的目的就必须解决其在室温下吸放氢动力学性能差,表面容易形成氧化膜等缺点。 目前,在镁基储氢合金的开发研究中,现已有Mg2Ni ,Mg2Cu ,Mg2La系储氢合金,还有 一系列的多元MgNi系储氢合金。 制备方法采用机械合金化方法,即使用高能球磨机进行球磨制备 1. 采用机械合金化方法制备了Mg Ni 合金粉末,其晶 粒度在10nm左右。 2. 在较高的速度下球磨可以使生成Mg Ni 合金的时间提 前,完全合金化的过程缩短,还有利于减轻焊合提高球磨效率。 3. 过程控制剂的加入以及循环变速运转可以缓和焊合 现象的发生。 4. 初步的研究结果表明:Mg Ni 纳米晶粉末在室温下即 可吸氢,贮氢性能较之传统方法制备的材料有显著改善。 传统方法制备的Mg Ni 在温度低于250°C时不产生吸 2 氢现象,在经历一个前期活化过程之后,吸放氢实验在250 8 °C~350°C,氢气压力1.5~2.0MPa下完成。 将机械合金化制备的Mg Ni 纳米晶粉末在金属高压系 2 统进行贮氢性能研究。称取一定量样品放入反应室中,真空加热除气后,冷却到室温,放入一定量的氢气(氢气纯度大于99 %),观察粉末在室温下的吸氢情况。 储氢碳纳米管 碳纳米管CNTs,Carbon Nanotubes 是一种主要由碳六 边形弯曲处为碳五边形和碳七边形组成的单层或多层 纳米管状材料。管的内径在几个纳米到几十个纳米之间, 长度可达微米量级。仅有一层石墨片层结构的单层管被 称为单壁碳纳米管SWNTs, Single - Walled carbon nan tubes ,有多层石墨片alled carbon nan tubes 。单壁碳纳米管 是碳纳米管的一层结构的多层管被称为多壁碳纳米 管MWNTs,Multi - W种极限状态,管径较小,直径一般为1~ 6nm,最小的直径大约为014nm,其结构中的缺陷不易存 在,具有较高的均匀性和一致性。多壁碳纳米管的直径一 般为几纳米到几十纳米,长度为几十纳米到微米,层数从 2~50不等,层间距约为0134nm。 (文献参考:Mg_2Ni纳米晶储氢材料的机械合金化制备工艺研究) 物理吸附

羧基化多壁碳纳米管修饰电极循环伏安法测定过氧化氢

羧基化多壁碳纳米管修饰电极循环伏安法测 定过氧化氢 【摘要】目的:研究用羧基化多壁碳纳米管修饰电极伏安法测定过氧化氢的浓度。方法:采用涂布法制成羧基化多壁碳纳米管修饰电极;在pH=7.0 KH2PO4-Na2HPO4缓冲溶液中,采用该修饰电极伏安法测定H2O2。结果:该修饰电极对H2O2有着显著的电催化作用,与裸玻碳电极相比,其灵敏度大大提高,在 1.2×10-6~1.0×10-3 mol/L 浓度范围内,过氧化氢的氧化峰电流与其浓度呈良好的线性关系,检测限为3.1×10-7 mol/L,将该修饰电极用于医用过氧化氢的测定,相对平均偏差为1.2%,平均回收率为97.6%,结果满意。结论:该修饰电极响应快,灵敏度高,稳定性好,寿命长,适合于具有电活性生物分子的测定。 【关键词】碳纳米管学修饰电极伏安法过氧化氢 Abstract: Objective: To study a quantitative method for determination of hydrogen peroxide (H2O2) by voltammetry with multi-wall carbon nanotubes functionalized with carboxylic group modified electrode (CME). Method: The CME was fabricated, which based on the immobilization of multi-wall carbon nanotubes functionalized with carboxylic group. In a medium of KH2PO4-Na2HPO4 buffer solution with pH=7.0,the CME was

纳米铂

纳米铂-L半胱氨酸修饰玻碳电极对 对苯二酚的检测研究 姓名:陈盼盼学号:201004034032 班级:化学一、文献综述 化学工业对人类社会和物质文明做出了重大贡献,人们在享受现代科学与技术给人们带来巨大的便利和快乐的同时,也逐渐意识到人类未来面临的巨大生存危机和困难。20世纪,人们逐步认识化学品的不当生产和使用会对人的健康、社区环境、生态环境产生危害性。据统计,世界每年生产的人工合成有毒化合物约50万种,共400万t,所有这些物质,近一半留在大气江河、湖、海内,另外每年还有将近18万t的铅和磷,3000万t的汞和各种有毒重金属流入水体内,200万t石油流进海洋。中国化学工业排放的废水、废气和固体废物分别占全国工业排放总量的22.5%、7.82%和5.93%,造成环境严重恶化,直接危害人类,又破坏生物圈,长期的影响着人类的生存。 对苯二酚,又名氢醌.化学名1,4-苯二酚,英文名 1,4-Dihydroxybenzene ; Hydroquinone。对苯二酚为白色针状结晶,分子式C6H4(OH)2,分子量110.11,比重1.332,熔点172℃,沸点286℃,闪点165℃,溶于水、乙醇及乙醚,微溶于苯。可燃。自燃点516℃。长期接触对二苯酚蒸气、粉尘或烟雾可刺激皮肤、粘膜,并引起眼的水晶体混浊。操作现场空气中最高容许浓度2mg/m3。 对苯二酚是一种重要的化工原料且应用广泛【1】主要用于显影剂、蒽醌染料、偶氮染料、合成氨助溶剂、橡胶防老剂、阻聚剂、涂料和

香精的稳定剂、抗氧剂等。对苯二酚因具有毒性,而且在自然条件下,不易降解,对人体环境有较大的危害, 因此受到人们的普遍关注,但其微量不容易不检测出来,因而需要更加灵敏的方法来检测目前,微量对二苯酚的测定方法有荧光谱法【2】、薄层色谱法【3】高效液相色谱法【4】动力学光度法【5】因为对苯二酚具有电学活性,可用电化学方法测定其含量,因此用选择性好、灵敏度有高的化学修饰电极测量对对苯二酚已有报道【6-7】,但是因为修饰过程复杂,干扰过多,灵敏度等问题。所以要设计更好的修饰方法来对微量对苯二酚的检测。 玻碳电极,是电化学研究中使用最为频繁的碳材料基础电极【8】。它的表面具有多变的性质,极易受实验条件的影响而发生变化。玻碳电极在应用与电化学研究时,在每次试验前需要对电极进行前处理,以改善其电化学相应信号的重现性【8】。目前,世界上几乎所有的实验室,对玻碳电极最为常采用的的前处理程序都是先在Al2O3磨料浆中打磨电极,随后在超声水浴中清洗。但这样的处理方法再重现性上不尽人意。因次,在这里我们要进行电化学活化以此来满足电分析实验室所需的各种高要求,各种有效的电化学活化方法均采用一个叫高阳极极化电位。电化学活化既可以在酸性、中性溶液中【9】也可以在碱性溶液中【10】,动力学研究表明活化电极的电子传导性质的改善可能以表面的亲水性【11】、清洁度【12】、含氧基团【13】等因素有关。 纳米材料具有表面效应【14】、体积效应【15】和介电限域效应登

纳米材料表面修饰的研究进展

*国家自然科学基金资助(50372006;20273007) 崔黎黎:女,1981年生,硕士研究生,主要从事上转换发光材料及其表面修饰的研究 T el:010 ******** E mail:vicki ycsse@126.co m 纳米材料表面修饰的研究进展 * 崔黎黎,范慧俐,肖军平,杨 敏 (北京科技大学应用科学学院化学系,北京100083) 摘要 通过材料的表面修饰与包覆以改善材料的表面性质乃至改变材料的相结构和性质,已经成为纳米材料制备和应用的关键技术。综述了近年来纳米微粒表面修饰的研究进展,并对纳米微粒表面改性的各种方法原理及其特点进行了归纳和分析。 关键词 纳米材料 表面修饰 进展 Research Progress on Surface modification of Nanoparticles CUI Lili,FAN Huili,XIAO Junping,YANG M in (Department of Chemistry ,Schoo l of A pplied Science U niver sity o f Science and T echnolo g y Beijing,Beijing 100083) Abstract Surface coating and mo dification o f mater icals for the impro vement of the disper sion pro per ty and sur face pro per ties,o r fo r the modification of the structur e of mater icals have being beco me the crit ical technique in the pr epar atio n and applications o f nanoparticles.T he r ecent research pro gr ess of sur face mo dification of nanopart icles is re v iew ed in this paper.T he metho ds of sur face mo dification as w ell as their features and pr inciples are intro duced and an alyzed. Key words nanoparticles,surface modificatio n,prog ress 0 引言 由于纳米粒子具有许多特殊的性质[1],人们对纳米材料的研究表现出极大的热情,先后合成出多种功能先进、性能突出的纳米及纳米复合材料。因为纳米粒子具有特殊的表面性质,要获得稳定而不团聚的纳米粒子,必须在制备或分散纳米粒子的过程中对其进行表面修饰。表面修饰对于纳米粒子的制备、改性和保存都具有非常重要的作用。纳米粒子的表面修饰技术是一门新兴学科,20世纪90年代中期,国际材料会议提出了纳米粒子的表面修饰工程新概念,即用物理或化学方法改变纳米粒子表面的结构和状态,赋予粒子新的机能,并使其物性(如粒度、流动性、电气特性等)得到改善,实现人们对纳米粒子表面的控制[2]。近年来,纳米粒子的表面修饰研究非常活跃。 1 纳米粒子表面修饰研究的内容及目的 1.1 纳米粒子表面修饰研究的内容 纳米粒子的表面修饰研究主要包括3个方面:(1)研究纳米粒子的表面特性,以便有针对性地对其改性;(2)利用上述结果 对粒子的表面特性进行分析评估;(3)确定表面修饰剂的类型及处理工艺。 1.2 纳米粒子表面修饰的目的 修饰纳米粒子的表面,可以保护纳米粒子,改善粒子的分散性[3];提高纳米粒子的表面活性;改变纳米粒子表面状态;改善纳米粒子与分散介质之间的相容性;为纳米材料的自组装奠定 基础。纳米粒子经表面改性后,其吸附、润湿、分散等一系列表面性质都随之变化,有利于颗粒保存、运输及使用。纳米粒子经修饰以后,表面形成一层有机包覆层。包覆层的极性端吸附在颗粒的表面,非极性长链则指向溶剂,在一定条件下,有机链的非极性端结合在一起,形成规则排布的二维结构。如经有机分子修饰的CdT e 颗粒可自组装[4]来制备发光CdT e 纳米线。采用这种方式还成功获得了银、硫化银等的二维 自组装结构的纳米材料[4] 。 2 纳米粒子的表面修饰方法 2.1 表面物理修饰法 即通过吸附、涂敷、包覆等物理手段对微粒表面进行改性,如表面吸附和表面沉积法。 (1)表面吸附 通过范德华力将异质材料吸附在纳米粒 子的表面,以防止纳米粒子的团聚。如用表面活性剂修饰纳米粒子,表面活性剂分子就能在颗粒表面形成一层分子膜,阻碍了颗粒之间的相互接触,增大了颗粒之间的距离,避免了架桥羟基和真正化学键的形成。表面活性剂还可降低表面张力,减少毛细管的吸附力。加入高分子表面活性剂还可以起到一定的空间位阻作用。周迟骏等[5]采用这种表面吸附的方法以阴离子表面活性剂对FeO(OH )胶粒表面修饰,将动态膜的成膜时间从6~8h 减少至1~2h 。 (2)表面沉积 将1种物质沉积到纳米粒子表面,形成 与颗粒表面无化学结合的异质包覆层。利用溶胶可实现对无机 5 纳米材料表面修饰的研究进展/崔黎黎等

碳纳米管在电化学中的应用

碳纳米管在电化学中的应用 【摘要】对碳纳米管修饰电极的制备方法、应用以及碳纳米管修饰电极的发展趋势作比较全面的综述。 【关键词】碳纳米管;化学修饰电极 Application of the Carbon nanotube in electrochemistry Abstract The methods of preparation, applications and developing trends of carbon nanotube modified electrodes in the field of electrochemistry were reviewed. Key words Electrochemistry Carbon nanotube modified electrodes 碳纳米管,又名巴基管(buckytube),是1991年由日本科学家饭岛澄男(Sumio Iijima)在高分辨透射电镜(HRTEM)下发现的一种针状的管形碳单质。它以特有的力学、电学和化学性质,以及独特的准一维管状分子结构和在未来高科技领域中所具有的潜在应用价值,迅速成为化学、物理及材料科学等领域的研究热点。目前,碳纳米管在理论计算、制备和纯化生长机理、光谱表征、物理化学性质以及在力学电学、化学和材料学等领域的应用研究方兴未艾,在一些方面已取得重大突破。碳纳米管(CNT)的发现,开辟碳家族的又一同素异形体和纳米材料研究的新领域。 由于CNT具有良好的导电性、催化活性和较大的比表面积,可使过电位大大降低及对部分氧化还原蛋白质能产生直接电子转移现象,因此被广泛用于修饰电极的研究。碳纳米管在作为电极用于化学反应时能促进电子转移。碳纳米管的电化学和电催化行为研究已有不少报道。 1碳纳米管的分类 CNT属于富勒碳系,管状无缝中空,具有完整的分子结构,由碳六元环构成的类石墨平面卷曲而成,其中每个碳原子通过sp2杂化与周围3个碳原子发生完全键合,各单层管的顶端有五边形或七边形参与封闭。CNT的径向尺寸为纳米量级,轴向尺寸为微米量级,具有较大的长径比。由单层石墨片卷积而成的称为单壁碳纳米管(SWNT),制备时管径可控,一般在1~6 nm之间,当管径>6 nm后CNT 结构不稳定,易塌陷。SWNT轴向长度可达几百纳米甚至几个微米。由两层以上柱状碳管同轴卷积而成的称为多壁碳纳米管(MWNT),层间距约为0.34 nm。

(完整版)金属纳米颗粒制备中的还原剂与修饰剂の总结,推荐文档

《金属纳米颗粒制备中的还原剂与修饰剂》总结 一:金属纳米材料具有表面效应(比表面积大,表面原子多,表面原子可与其他原子结合稳定下来,使材料化学活性提高。)和量子尺寸效应,因而有不同于体相材料的光学、电磁学、化学特性。 目前制备方法为液相合成(操作简便、成本低、产量高、颗粒单分散性好)。——以金属盐或金属化合物为原料将其还原得到金属原子后聚集成金属纳米粒子。而金属纳米粒子比表面积大、物化活性高、易氧化、易团聚,所以需要引入修饰剂来控制形貌、稳定或分散纳米颗粒。 液相还原法按照溶剂不同可分为有机溶剂合成法(结晶性好、单分散性好、形貌易控、不能直接用于生物体系、环境不友好)和水溶液合成法(水溶性、制备方法简单环保、成本低、颗粒大小不均一)。按照还原手段不同可分为化学试剂还原法、辐射还原法、电化学还原法。 二:化学试剂还原法中常用的还原剂及其还原机理 还原能力不同:1)强还原剂(硼氢化物、水合肼、氢气、四丁基硼氢化物),还原能力强、反应速率快、纳米颗粒多为球形或类球形、尺寸小。2)弱还原剂(柠檬酸钠、酒石酸钾、胺类化合物、葡萄糖、抗坏血酸、次亚磷酸钠、亚磷酸钠、醇类化合物、醛类化合物、双氧水、DMF),反应体系一般需要加热。例如多元羟基类化合物可做溶剂和还原剂,通过控制反应条件可制备多种形貌的材料。柠檬酸钠、抗坏血酸做还原剂的同时可做保护剂。(一)无机类还原剂 1,硼氢化物(硼氢化钠钾、硼氢化四丁基铵TBAB),硼氢化钠化学性质活波与水反应放出 氢气,与金属盐反应时所需浓度低。 2,氢化铝锂,还原性极强,应用不及硼氢化钠。 3,水合肼N2H4·H2O,应用广泛。在碱性介质中为强还原剂。 4,双氧水。 5,有机金属化合物,二茂铁还原制备银纳米线。 6,氢气,(可以合成相当稳定无保护的可进一步修饰的银纳米颗粒。),控制反应时间可以得到相当大尺寸跨度的纳米颗粒,进一步处理如过滤离心可以得到尺寸分布窄的颗粒。 7,次亚磷酸盐,弱还原剂,因为容易与氧气反应所以一般用3-4倍。酸性条件下反应速度加快,认为酸性条件下利于次亚磷酸像活泼型转变。

锂离子电池纳米电极材料

锂离子电池纳米电极材料 摘要:纳米材料因为其具有尺寸小、比表面积大等特点,在锂离子电池电极材料的研究中倍受人民关注。使用纳米电极材料之后锂离子电池容量明显比传统的块体材料提高很多,然而纳米材料的使用也带来了相应的问题。本文主要讨论纳米材料在锂离子电池电极材料上的应用,分析其优缺点和改进方法,并对未来锂离子电池电极材料做出了展望。 关键词:纳米材料,锂离子电池, 1.锂离子电池原理和结构 作电压与重量能量密度优于常用的镍镉电池(Ni/Cd)与Ni/MH电池,又无记忆效应及环保问题(锂离子电池的金属含量最低),因此成为目前商业开发二次电池的主流;还以其薄形化及形状有高度的可塑性等特点,因此符合电子产品轻、薄、短、小的要求,所以备受各国科学家及电池业的重视,发展极快。 锂离子电池被人们称为“绿色环保能源”和“跨世纪的能源革命”。锂离子电池是照相机、电子手表、计算器、各种具有储存功能的电子器件或装置的理想电源。其结构如下图所示: 图1. 锂离子电池的结构

锂离子电池由正负电极、电解质、隔膜和外部控制电路组成。所以研究锂离子电池材料包括:电极材料、电解质材料和隔膜材料。 锂离子电池工作原理如下[1]: 图2. 锂离子电池工作原理 正极反应:LiCoO2→CoO2+Li++e 负极反应:Li++e+C6→LiC6 电池反应:LiCoO2+C6→CoO2+ LiC6 放电时:锂离子由负极中脱嵌,通过电解质和隔膜,重新嵌入到正极中。充电时:锂离子从正极中脱嵌,通过电解质和隔膜,嵌入到负极中。 2.纳米电极材料的优缺点 锂离子电池纳米电极存在一些潜在的优缺点。 优点:(i)更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;(ii)可发生在块体材料中不可能出现的反应;(iii)更高的电极/电解液接触面积提高了充/放电速率;(iv)短的电子输运路径(允许在低电导或高功率下使用);(v)短的锂离子传输路径(允许在低锂离子传导介质或高功率下使用)。 缺点:(i)高比表面积带来的不可预期的电极/电解液反应增加,导致自放电现象,差的循环性能及寿命;(ii)劣等的颗粒包装技术使其体积能量密度很低,除非开发出一种特殊的压缩工艺,否则会限制它的应用;(iii)电极合成过程可能会更加复杂。

卟啉_多壁碳纳米管修饰电极的制备及多巴胺的测定.kdh

收稿日期:2009-11-19 作者简介:叶芳(1983-),女,湖北武汉人,韶关学院化学与环境工程学院助教,主要从事电化学修饰电极的研究. 韶关学院学报·自然科学Journal of Shaoguan University ·Natural Science 2010年6月 第31卷第6期卟啉/多壁碳纳米管修饰电极的制备及多巴胺的测定 叶芳1,南俊民2 (1.韶关学院化学与环境工程学院,广东韶关512005;2.华南师范大学化学与环境工程学院,广东广州510006) 摘要:利用电化学方法在多壁碳纳米管修饰的玻碳电极表面聚合一层无金属卟啉,制备了卟啉/多壁碳纳米管修饰电极,采用循环伏安法研究多巴胺(DA)在不同修饰电极上的电化学行为,并计算得到了不同修饰电极有效面积A eff 以及DA 电化学氧化过程的一些重要参数.实验结果表明,这种双层膜修饰电极具有更为明显的催化效果,微分脉冲伏安结果显示,催化氧化峰电流与DA 浓度在5×10-5mol ·L -1~3×10-7mol ·L -1范围内呈良好的线性关系,检出限达6×10-8mol ·L -1(S/N=3).关键词:电化学;多壁碳纳米管;卟啉;修饰电极;多巴胺 中图分类号:O646.54文献标识码:A 文章编号:1007-5348(2010)05-0062-05 卟啉作为一类天然的大环化合物,因含有多个双键和高度共轭的大∏体系,可以通过聚合方式得到聚合膜,因具有多个电活性中心和优异的光学、电学等特性,从而在光学和光电化学等领域中具有广泛的应用.碳纳米管独特的结构形态和性质使其催化效率提高,因而在电化学传感器和修饰电极方面受到广泛关注[1].近年来,有关碳纳米管修饰电极研究报道逐年增加,主要的应用研究有:抗坏血酸、多巴胺(DA )、肾上腺素等生物分子的分离检测[2],细胞色素C 的直接电子转移[3],硫化氢的电化学检测[4]等. 本文以多壁碳纳米管(MWNT)修饰的玻碳电极为基底电极,采用电化学方法在其表面聚合一层无金属卟啉,即5-邻(4-溴戊氧基苯基)-10,15,20-三苯基卟啉(o -BrPETPP)膜,制备了o -BrPETPP/MWNT 修饰电极,并将其用于DA 的检测. 1实验部分 1.1仪器与试剂MWNT 为深圳多维新材料有限公司产品.实验中所使用的5-邻(4-溴戊氧基苯基)-10,15,20-三苯基卟啉(o -BrPETPP)由华南理工大学提供.DA (Aldrich-Sigma 公司产品)、十六烷基磷酸(DHP)及其他实验试剂均为分析纯试剂.所用水均为实验室自制二次蒸馏水. 0.05mol ·L -1KH 2PO 4-NaOH 缓冲液(pH=6.0),其pH 值可分别用0.1mol ·L -1HCl 和0.1mol ·L -1NaOH 溶液调节.CHI660A 电化学工作站(上海辰华仪器有限公司产品);KQ-50B 超声波清洗器(中国昆山超声仪器厂产品);PHS-3C 型酸度计(上海雷磁产品). 实验采用三电极体系:参比电极为饱和甘汞电极(SCE ),对电极为铂电极(213型),工作电极为裸玻碳电极、MWNT 修饰电极、o -BrPETPP 修饰电极、o -BrPETPP/MWNT 修饰电极. 1.2MWNT 的预处理 将0.2g MWNT 在2mol ·L -1HCl 中超声处理4h ,以纯化MWNT 并除去上面的金属氧化物催化剂;蒸馏水洗至中性,100℃下恒温干燥成粉末.然后将纯化后的MWNT 在80ml 浓混酸(V HNO 3∶V H 2SO 4 =1∶3)混合,室Jun.2010Vol.31No.6

碳基纳米复合材料修饰电极的制备及其在药物分析中的应用

碳基纳米复合材料修饰电极的制备及其在药物分析中的应用药物分析是分析化学中的一个重要分支,随着药学的发展逐渐成为一门独立的学科。现代药物分析无论是分析领域,还是分析技术都己经大大拓展。 电化学分析作为分析技术的一种,在药物分析领域中有着日益广泛的应用。而各种微电极、修饰电极、电化学传感器的问世,由于其具有灵敏度高、响应快、选择性好、操作简单等优点,为电化学分析在药物分析中的应用注入了新的活力。 随着工作者对电化学分析的研究日益深入,电化学分析在科研、生产中的应用越来越广泛,并且在新药研发以及药品生产等方面扮演着重要的角色。本论文主要研究了新型碳基纳米材料复合修饰电极的制备,探索了不同药物在修饰电极上的电化学行为和电极反应机理,从而建立了一系列灵敏、简单、准确的药物定量分析方法。 主要内容归纳如下:1、通过电化学方法将金属氧化物四氧化三钴 (Co3O4)/石墨烯(GR)纳米材料电沉积在玻碳电极表面上,制备了一种新型的纳米复合电极(Co3O4/GR/GCE),成功地被用于测定异烟肼。通过扫描电镜对此修饰电极的表面形貌进行了表征,Co3O4纳米粒子和GR能够很好地修饰在玻碳电极表面。 采用差分脉冲法(DPV)优化了异烟肼的测定条件,在最佳条件下,线性关系范围为0.5160μM,最低检出限为0.17μM(S/N=3),实际药物和血清中的回收率良好,相对标准偏差均小于5%。该方法方便可行,结果满意,重复性好,实用性强。 实验表明,相比于裸电极,此修饰电极获得了更好的电化学性能,可显著提高

纳米材料的形貌控制.(DOC)

纳米材料的形貌控制 1 概述 纳米材料是指材料的三维尺寸中至少有一维处于纳米尺度(1-100 nm),或由纳米尺度结构单元构成的材料。随着纳米材料尺寸的降低,其表面的晶体结构和电子结构发生了变化,产生了如小尺寸效应、表面效应、量子尺寸效应等宏观物质所不具有的特殊效应,从而具有传统材料所不具备的物理化学性质。纳米材料的尺度处于原子簇和宏观物质交界的过渡域,是介于微观原子或分子和宏观物质间的过渡亚稳态物质,它有着与传统固体材料显著不同的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应[1],表现出奇异的光学、磁学、电学、力学和化学特性。 1.1 纳米材料的特性 1.1.1 量子尺寸效应 当粒子的尺寸下降到某一临界值时,其费米能级附近的电子能级由准连续变为离散能级,并且纳米半导体微粒存在不连续的最高被占据的分子轨道和最低未被占据的分子轨道能级,使得能隙变宽的现象,称为纳米材料的量子尺寸效应。当能级间距大于磁能、热能、静电能或超导态的凝聚能时,量子尺寸效应会导致纳米颗粒光、电、磁、热及超导电性能与宏观性能显著不同。量子尺寸效应是未来光电子、微电子器件的基础。 1.1.2 小尺寸效应 当纳米材料的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等外部物理量的特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米颗粒表面层附近的原子密度减小,从而导致其光、电、磁、声、热、力学等物质特性呈现出显著的变化:如熔点降低;磁有序向磁无序态,超导相向正常相的转变;光吸收显著增加,并产生吸收峰的等离子共振频移;声子谱发生

改变等,这种现象称为小尺寸效应。纳米材料的这些小尺寸效应为实用技术开拓了新领域。 1.1.3 表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变化而急剧增大后引起的材料性质上的变化。随着材料尺寸的减小,比表面积和表面原子所占的原子比例将会显著增加。例如,当颗粒的粒径为10 nm时,表面原子数为晶粒原子总数的20%,而当粒径为l nm时,表面原子百分数增大到99%。由于表面原子数增多,原子配位不足及高的表面能,使这些原子易与其他原子相结合以降低表面能,故具有很高的化学活性。这种表面原子的活性不但能引起纳米粒子表面输运和构型的变化,也会引起电子能级和电子自旋构象的变化,从而对纳米材料的电学、光学、光化学及非线性光学性质等产生重要影响。通过利用有机材料对纳米材料表面的修饰和改性,可以得到超亲水和超疏水等性能可调的纳米材料,可以广泛的应用于民用工业。 1.1.4 宏观量子隧道效应 量子物理中把微观粒子具有的贯穿势垒的能力称为隧道效应。近年来的研究发现一些宏观量,如超微颗粒的磁化强度,量子相干器件中的磁通以及电荷等也具有隧道效应,它们可以穿越宏观系统的势垒而发生变化。故称为宏观量子隧道效应。对宏观量子隧道效应的研究对基础及应用研究都有着重要意义。宏观量子隧道效应与量子尺寸效应一起都将会是未来微电子、光电子器件的基础。此外,纳米粒子还具有其它的一些特殊性质,如库伦阻塞与量子隧穿及介电限域效应等。 1.2 纳米材料特性对材料性能的影响 1.2.1 电学性能 电学性能发生奇异的变化,是由于电子在纳米材料中的传输过程受到空间维度的约束而呈现出量子限域效应。纳米材料晶界上原子体积分数增大,晶界部分

锂离子电池中的纳米材料

锂离子电池中的纳米材料 学号:35072114 姓名:黄俊伟 前言:锂离子电池是现代材料电化学学科的一个巨大的成功。锂离子电池由锂离子插层负极材料(一般为石墨)、锂离子插层正极材料(一般为锂的氧化物如 LiCoO 2)及将两者分离开的锂离子传导电解液(如溶有锂盐LiPF 6 的碳酸乙二 酯-碳酸二乙酯有机溶液)等材料构成[1]。虽然这类电池已被成功地商业化,但现有的电极和电解液材料已达到了性能的极限。在消费电子,以及清洁能源存储和混合电动交通工具的使用中,新一代可充电锂电池的研制迫切需要材料技术的进一步突破。其中已在开发中的一种途径是纳米材料在锂离子电池中的应用。关键词:储锂金属,纳米形貌特征,插锂反应,可逆相变 一、电极 锂离子电池纳米电极存在一些潜在的优缺点。 优点:(i)更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;(ii)可发生在块体材料中不可能出现的反应;(iii)更高的电极/电解液接触面积提高了充/放电速率;(iv)短的电子输运路径(允许在低电导或高功率下使用);(v)短的锂离子传输路径(允许在低锂离子传导介质或高功率下使用)。 缺点:(i)高比表面积带来的不可预期的电极/电解液反应增加,导致自放电现象,差的循环性能及寿命;(ii)劣等的颗粒包装技术使其体积能量密度很低,除非开发出一种特殊的压缩工艺,否则会限制它的应用;(iii)电极合成过程可能会更加复杂。 认识了这些优缺点,人们已经加大在负极材料及最近展开的正极材料的研发力度。

二、负极 储锂金属存在的问题 储锂金属可部分重复地、在低电压(相对于锂)下进行储锂反应,它提供了比传统石墨大得多的比容量。例如,锂硅合金,饱和状态下的分子式为Li4.4Si,理论上可以达到4200mAh/g的比容量,而金属锂为3600mAh/g,石墨只有372mAh/g。但是,锂的嵌入再加上相变会导致体积发生巨大的变化,产生的应力致使金属电极断裂破碎,电阻增大,存储电荷的能力骤降。尽管在合金化反应中结构的变化是很正常的,但人们依然努力去降低这一效应以保持电极的完整性。 活泼/惰性纳米复合(active/inactive composite)概念 该方法包含了两种材料的混合,一种与锂反应,另一种作为惰性的局域缓冲。在这种复合材料中,活泼相纳米级金属团簇被包裹在惰性非晶相基体中,在嵌锂过程中很好地消除了产生的内应力,从而提高了合金化反应的可逆性。将这一概念应用到不同的体系中,结果显示这些电极极大地提高了锂电池的循环性能。 Si-C纳米复合材料就有此功能,2004年Novak,P等[2]在日本召开的锂电池会议中宣布其Si-C纳米复合材料电极循环100次后比容量仍高达 1000mAh/g,因而受到了非常的注目。 纳米形貌特征对循环性能的贡献 2005年3月份,Advanced Materials发表了对TiO2-B纳米管或纳米线的研究成果(B表示TiO2的类型而非硼元素)[3]。这种材料可由简单的水相合成途径大量合成,直径在40-60nm之间,长度可达数微米。多晶TiO 2 -B 纳米管是一种优秀的锂嵌入载体,插锂电位在1.5-1.6V,形成Li 0.91TiO 2-B

纳米材料改性水性聚氨酯的研究进展

纳米材料改性水性聚氨酯的研究进展 综述了纳米材料改性水性聚氨酯几种常用方法的特点和研究进展,指出了纳米材料改性水性聚氨酯存在的问题。 标签:水性聚氨酯(WPU);纳米材料;方法;改性 1 前言 近年来,随着人们环保意识的增强,水性聚氨酯(WPU)受到越来越多学者的关注。WPU是以水为分散介质的二元胶态体系,具有不污染环境、VOC(有机挥发物)排放量低、机械性能优良和易改性等优点,使其在胶粘剂、涂料、皮革涂饰、造纸和油墨等行业中得到广泛应用[1~4]。但在制备WPU过程中由于引入亲水基团(如-OH、-COOH等),因此存在固含量低,耐水性、耐热性和耐老化性差等缺陷,从而限制了其应用范围。 纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等特殊性质,为各种材料的改性开辟了崭新的途径。通过纳米材料改性的WPU,其成膜性、耐水性和耐磨性等性能均得到显著提高[5]。 2 纳米材料改性WPU的方法 2.1 共混法 共混法即纳米粒子在WPU中直接分散。首先是合成各种形态的纳米粒子,再通过机械混合的方法将纳米粒子加入到WPU中。但在该方法中,由于纳米粒子颗粒比表面积大,极易团聚。为防止纳米粒子团聚,科研工作者对纳米材料进行表面改性来提高其分散性,改善聚合物表面结构以提高其相容性。 李莉[6]等利用接枝改性后的纳米SiO2和TiO2与WPU共混,制备了纳米材料改性水性WPU乳液。研究发现,纳米粒子在乳液中分散均匀,无团聚现象;改性后的WPU乳液力学性能比未改性前得到改善和提高;当纳米粒子添加量为0.5%时,WPU乳液的力学性能最佳,吸水性降低了70%,添加的纳米粒子对波长290~400 nm的紫外光有吸收。 李文倩[7]等采用硅烷偶联剂(KH560)对纳米SiO2溶胶进行表面改性,然后将其与WPU共混制备出了WPU/SiO2复合乳液,考查了改性纳米溶胶含量对复合乳液及其涂膜性能的影响。结果表明,当纳米SiO2/KH560物质的量比为6:1时,改性后的纳米SiO2溶胶的粒径最小且分布较均一。KH560的加入使纳米SiO2粒子更均匀地分散在聚氨酯乳液中,且SiO2粒子与聚氨酯乳液之间存在一定键合作用,使涂层的耐热性得到显著增强。当改性SiO2溶胶添加量为5%~10%时,涂膜的硬度、耐磨性、耐划伤性、耐水性等性能明显提高。

基于碳纳米管修饰电极的酶生物传感器研究进展

基金项目:江西省教育厅科学技术研究项目(GJJ09352)作者简介:万谦(1982~),女,江西九江人,硕士研究生,讲师,主 要研究方向:纳米电化学分析。 *通讯联系人 基于碳纳米管修饰电极的酶生物传感器研究进展 万谦1,2 肖国光2杨平华2樊华1 (1.南昌大学环境与化学工程学院,江西南昌331000;2.九江学院化学化工学院,江西九江332005) 摘要:本文综述了基于碳纳米管修饰电极的酶生物传感器研究进展,介绍了碳纳米管修饰电极的发展及基于碳纳米管修饰电极的酶生物传感器的检测原理及分类;重点介绍了此类传感器在环境农药分析与生命科学分析中的应用。 关键词:碳纳米管修饰电极;酶生物传感器;农药;葡萄糖中图分类号:TQ170.5 文献标识码:A 文章编号:1672-8114(2009) 12-0001-051引言 1991年,Iijima [1]发现了多壁碳纳米管(M ul-ti-walled carbon nanotubes ,M WNTs);1993年,Iijima [2] 和Bethune [3]又同时发现了单壁碳纳米管(Sin-gle-walled carbon nanotubes ,SWNTs )。碳纳米管(Carbon Nanotubes ,CNTs)的发现立即得到全世界科学界的广泛关注,人们在不断开发其新的合成途径的同时,也在努力挖掘着它潜在的应用前景。2碳纳米管修饰电极 碳纳米管经过纯化、浓酸回流处理后,可以 与水、N,N-二甲基甲酰胺(DMF )及nafion 等分散物质形成悬浮液,然后通过微量滴管等直接滴涂或溅射等方法修饰到各种基质电极上,即可制成碳纳米管修饰电极。支持电极有玻碳电极、金电极和铂电极等。 3CNTs 修饰酶生物传感器(EBS )的检测原理及 分类 3.1检测原理 酶生物传感器的作用机理是在化学电极的敏感面上组装固定化酶膜,当酶膜上发生酶促反应时产生电极活性物质,基础电极对之响应,响应 信号与底物的浓度之间存在线性关系,从而测得 被检测物的浓度。利用CNTs 作为酶的固定材料,同时也作为基础电极的修饰材料制成的传感器即成为新型的碳纳米管修饰酶传感器[4]。3.2CNTs 修饰EBS 的分类3.2.1吸附型CNTs 修饰酶传感器 吸附是一种非常简单有效而又古老的电极 修饰方法, CNTs 可通过范德华力吸附在基础电极表面,有时电极表面还覆盖一层保护膜,以防止 CNTs 流失,同时也起到保护酶的作用。3.2.2糊类CNTs 修饰酶传感器 糊类电极是圆柱状电极,它是由CNTs 和绝缘体,如Nafion 等混合后而制得,其中的CNTs 不仅是电极的修饰物,同时也是该类电极的主体,起着导电的作用。这种宏观修饰像蓄“酶”池一样有很大的酶负载量。 3.2.3共价键合型CNTs 修饰酶传感器 对于Au 、 Pt 、C 等基础电极,采用水相氧化、等离子体氧化、电极氧化、硝酸氧化等预处理,可以在电极表面引入含氧基团,再通过表面有机反应,能以酯键、醚键、酰胺等键合方式将CNT 固定在电极表面。 4基于碳纳米管修饰电极的酶生物传感器的应用4.1基于碳纳米管修饰电极的酶生物传感器在农 药分析中的应用 基于碳纳米管修饰电极的酶生物传感器在 环境分析中,特别是农药分析中有广泛的应用,一般有两种酶修饰的方式,一是采用乙酰胆碱酯与

相关文档
最新文档