水分测定1

水分测定1
水分测定1

1、水分的定义

种子水分是指按规定程序把种子样品烘干所失去的重量,用失去的重量占供检样品原始重量的百分率表示。

如禾谷类种子的安全水分一般为12%~14%以下,油料作物种子为9%~10%以下。

种子中的水分按其特性可分为自由水和束缚水两种。

1、自由水

自由水是生物化学的介质,存在于种子表面和细胞间隙内,很容易受外界环境条件的影响,容易蒸发。

2、束缚水

束缚水与种子内的亲水胶体如淀粉、蛋白质等物质中的化学基团,如羧基、氨基与肽链等以氢键或氧桥等牢固结合。不能在细胞间隙中自由流动,不易受外界环境条件影响。

种子烘干时,水分开始蒸发很快,这是因为自由水蒸发容易,随着烘干的进程,蒸发速度逐渐缓慢,这是由于束缚水被种子内胶体牢固结合,因此用烘干法设计水分测定程序时,应通过适当提高温度(130℃)或延长烘干时间才能把这种水分蒸发出来。

如用较高温度(130℃)烘干时间过长,或过高的温度(超过130℃),有可能使样品烘焦,放出分解水,使水分测定百分率偏高。

3、油份

含亚麻油酸等不饱和脂肪酸较高的油料种子(如亚麻),如果种子磨碎,或剪碎,或烘干温度过高,不饱和脂肪酸易氧化,使不饱和键上结合了氧分子,增加了样品重量,使水分测定结果偏低,因此,应严格控制烘干温度,并且不应磨碎或剪碎。

一些蔬菜种子和油料种子含有较高的油分,油分沸点较低,尤其是芳香油含量较高的种子,温度过高就易挥发,使样品减重增加,水分百分率偏高。

测定种子水分必须保证使种子中自由水和束缚水充分而全部除去,同时要尽最大可能减少氧化、分解或其他挥发性物质的损失。

必须采用快速天平,最好采用电子天平,感量达到0.001g。

4、水分测定方法

种子水分测定方法很多,目前最常用的方法是烘干减重法(包括烘箱法、红外线烘干法等)和电子水分仪速测法(包括电阻式、电容式和微波式水分速测仪)。一般正式报告需采用烘箱标准法法进行种子水分测定,而在种子收购、调运、干燥加工等过程中可以采用电子水分仪速测法。

一、不需预先烘干的水分测定标准程序(一)低恒温烘干法

低恒温烘干法是将样品放置在103±2℃的烘箱内烘干8h.

1、适用种类

烘干法适用于下列种类:葱属、花生、芸苔属、辣椒属、大豆、棉属、向日葵、

亚麻、萝卜、蓖麻、芝麻、茄子。低温烘

干法必须在相对湿度较低(70%以下)的室

内进行,否则会影响其准确性。

2.铝盒恒重

在水分测定前预先准备。将待用铝盒

(含盒盖)洗净后,于130℃的条件下烘干

1h,取出后冷却称重,再继续烘干30m i n,

取出后冷却称重,当两次烘干结果误差小

于或等于0.002g时,取两次重量平均值;

否则,继续烘干至恒重。

3.预调烘箱温度

按规定要求调好所需温度,使其稳定

在103±2℃,如果环境温度较低时,也可

适当预置稍高的温度。

4.样品制备

需磨碎种子的最低重量为100克,不

需磨碎种子的最低重量为50克。用下列一

种方法进行充分混合,并从送验样品中取

15-20g每份。

取样时先将密闭容器内的样品充分混

合,从中分别取出两个独立的试验样品

15~25g,放入磨口瓶中。

5、烘干称重

(1)先将样品盒预先烘干、冷却、称重,

并记下号。

(2)取得试样两份(并非从一次磨碎中取

二个重复样品)每份4.500-5.000g。

(3)将试样放入预先烘干和称重过的样品

盒内,再称重(精确至0.001g)。

(4)使烘箱通电预热,将样品摊平快速放

人箱内上层,样品盒距温度计的水银球垂

直距离约2.5c m处,保证铝盒水平分布,迅

速关闭烘箱门。使箱温回升至103±2℃时

开始计时,烘8h。

(5)用坩锅钳或戴上手套盖盒盖,盖铝盖

应在烘箱内,把铝盒放人干燥器内冷却至

室温,约30~45m i n后称重(热样品在30s内

可以从空气中吸收水分)。

(二)高温烘干法

此法是将样品放在130-133℃的条件下烘

干1h。

1、适用种类

高温烘干法适用于下列种类:

芹菜、石刁柏、燕麦属、甜菜、西瓜、

甜瓜属、南瓜属、胡萝卜、甜荞、苦荞、

大麦、莴苣、番茄、苜蓿属、草木樨属、

烟草、水稻、黍属、菜豆属、豌豆、鸦葱、

黑麦、狗尾草属、高粱属、菠菜、小麦属、

巢菜属、玉米。高温烘干法测定时,对检验

室空气相对湿度没有特别要求。

二、高水分预先烘干法

1、适用种类

适用于测定水分时需要磨碎的种子种类。

如果禾谷类种子水分超过18%,豆类和油料

作物水分超过16%时,必须采用预先烘干

法。

2、测定方法

第一次称取两份样品各25.00g(精度接近

2m g),置于直径大于8c m的样品盒中,在

(103±2)℃烘箱中预烘30m i n,油料种子在

70℃预烘1h,种子摊成一薄层(厚度不超过

2m m)。干燥后的材料在室内冷却2h,然后称

重。

第二次将已初步烘干的种子磨碎,从

中称取4.500~5.000g

试样两份,用低温或高温烘干法烘干、冷

却、称重、计算百分率。

3、结果计算

样品的原始水分可以从第一次(预先

烘干)和第二次所得结果,并按下列公式计

算其百分率:

S1×S2

种子水分(%)=S1+S2-————

——

100式

中S1—第一次整粒种子烘干后失去的水

分,%;

S2—第二次磨碎种子烘后失去的水分,%。

三、允许差距

两次测定结果的容许差距不得超过

0.2%,结果可用两次测定值的算术平均数

表示。如超过,必须重新测定。

四、结果报告

结果填报在检验结果报告单的规定空

格中,精确度为0.1%。

1.水分测定时,当一个样品的两次测定之

间差距超过多少时,就需要重新测定?

(B.0.2%

2.一个样品水分测定得到下面数据,其中

样品盒和盖的重量为4.005g,样品盒和盖

及样品的烘前重量为8.648g,样品盒和盖

及样品的烘后重量为7.891g,那么这份样

品的水分含量为

(A.16.3%)

3.低恒温烘干法测定种子水分必须在相对

湿度多少以下的室内进行?(70%)

4.下列哪种作物种子需要采用高温烘干法

测定水分?(B.胡萝卜)

5.种子中的水分按其特性可分为自由水和

两种。

8.由于种子中的自由水易受外界的温度和

湿度的影响,请简要说明在水分测定时,

哪些操作可能会使水分测定结果偏低?

(1)测定前:送验样品没有装在防湿容器

中,样品接收后没有立即进行测定,在此

这个过程中,水分有可能散失,从而导致

水分测定结果偏低(1分);

(2)测定过程中:取样、磨碎和称重等操

作应迅速(1分);烘干过程中如果烘干温

度和时间未达到规定,都有可能导致水分

测定结果偏低(1分);如果水分含量达到

预先烘干法标准的高水分种子没有预先进

行烘干,而直接磨碎,可能会导致水分在

磨碎过程中散失,从而造成测定结果偏低

9.由于种子中的自由水易受外界的温度和

湿度的影响,请简要说明在水分测定时,

哪些操作可能会使水分测定结果偏高?

(1)测定前:送验样品没有装在防湿容器

中,样品接收后没有立即进行测定,在此

这个过程中,水分有可能从外界环境吸收

水分,从而导致水分测定结果偏高;

(2)测定过程中:粉碎后的样品没有及时装入样品瓶中,取样、磨碎和称重等操作不够迅速,造成种子吸湿;烘干过程中如果烘干温度和时间超过规定,都有可能导致化合水和油分挥发,使样品减重增加,造成水分测定结果偏高;

粗灰分的测定

饲料中粗灰分的测定采用GB/T 6438-2007 1 适用范围 本方法适用于配合饲料及单一饲料中粗灰分含量的测定。 2 测定原理 试样经高温灼烧分解后,测量其所得残渣质量,用质量分数表示。 3 仪器设备 3.1 实验室用粉碎机。 3.2 分样筛:40目(孔径0.45 mm)。 3.3 分析天平:感量0.000 1 g。 3.4 马弗炉:电加热,空调控温度,带高温计。 3.5 坩埚:陶瓷。 3.6 干燥器:具有变色硅胶干燥剂。 3.7 盘式电炉:可调温。 4 试样的选取和制备 按《中慧农牧股份有限公司近红外仪作业指导书》中“样品制备”项制备样品,密封保存,防止试样中组分变化或变质。 5 分析步骤 5.1 坩埚恒重 将坩埚连同盖子一起放入马弗炉中,于550 ℃下灼烧30 min。待炉温降至200 ℃后,将坩埚移入干燥器中,冷却至室温后称量。再次将坩埚放入550 ℃马弗炉中灼烧30 min后冷却称量,直至二次称量之差小于0.000 5 g时为坩埚恒重,取称量最小量为坩埚重。 5.2 样品称取及测定 称取约5 g试样于已恒重坩埚中,准确至0.000 1 g,并摊匀,半掩盖子。将盛有试样的坩埚放在垫有石棉网的电炉上灰化至无烟,再移入预先加热到550 ℃的马弗炉中灼烧3 h,直至试样完全灰化,无黑色炭粒。 待炉温降至200 ℃时,将坩埚移入干燥器内冷却,称量,准确至0.000 1 g。再次将坩埚放入550 ℃马弗炉中灼烧1 h后冷却称量,直至二次称量之差小于0.001 g时为恒重,取称量最小量为灼烧后坩埚及试样重。 6 计算 试样中粗灰分W,以质量分数表示,数值以%计,按式(1)进行计算: (1)式中:M0——灼烧前试样及坩埚(包括盖)的质量,g; M1——灼烧后灰分及坩埚(包括盖)的质量,g; M2——已恒重的坩埚(包括盖)的质量,g。 7 重复性 每个试样取两个平行样测定,取算术平均值为测定结果。 灰分含量在5 %以上,允许相对偏差为1 %;含量在5 %以下,允许相对偏差为5 %。 8 注意事项 8.1 试样必须放置在垫有石棉网的电炉上进行炭化,半掩坩埚盖,调节电炉缓慢升温,防止因电炉升温过快而使部分样品颗粒被逸出气流带走或使样品快速膨胀逸出坩埚。某些含糖较高的单一饲料(如乳清粉),炭化时易逸出坩埚,应预先加数滴纯度较高的植物油再炭化,同时注意缓慢升温。含糖和脂肪高的样品炭化过程中不能出现明火。 8.2 马弗炉温度在200℃时,放入样品进行灰化,应控制马弗炉的温度不能超过600℃。8.3 灰化后如果还能观察到炭粒,可将坩埚冷却后加适量水润湿,烘干,继续灼烧1小时。

实验一食品水分活度的测定

※<实验一食品水分活度的测定(6学时)——扩散法> 一、目的和要求 1、熟知扩散法测水分活度的原理; 2、加深对食品水分活度的理解和认识; 3、掌握扩散法测定水分活度的方法。 二、原理 用一般食品水分测定方法定量地测定的水分即含水量,不能说明这些水是否都能被微生物利用,对食品的生产和保藏均缺乏科学的指导作用;而水分活度则反映食品与水的亲和能力大小,表示食品中所含的水分作为生物化学反应和微生物生长的可利用价值,水分活度近似地表示为在某一温度下溶液中水蒸汽分压与纯水蒸汽压之比值。 扩散法即用坐标内插法来测定食品的水分活度,这种方法并不需要特殊的仪器装置,可将一系列已知水分活度的标准溶液与食品试样一起放入密闭的容器中,在恒温下放置一段时间,测定食品试样重量的增减,根据增减值绘出曲线图,从图上查出食品重量不变值,即为该食品试样的水分活度A w。 三、材料、试剂和仪器 1、材料:鱼粉 2、标准饱和盐溶液,其标准饱和溶液的A w值如下表: 标准饱和盐溶液的A w值(25℃) 标准试剂A w标准试剂A w LiCl 0.11 NaBr·2H2O 0.58 CH3COOK 0.23 NaCl 0.75 MgCl2·6H2O 0.33 KBr 0.83 K2CO30.43 BaCl20.90 Mg(NO3)2·6H2O 0.52 Pb(NO3)20.97 3、主要仪器设备 康威氏(Conway)扩散皿(构造如图1-1)、分析天平、恒温箱 四、实验步骤 1、在康威氏皿的外室放置标准盐饱和溶液,在内室的铝箔皿中加入1g左右的食品试样,试样与铝箔先用分析天平准确称量并记录。 2、在玻璃盖涂上凡士林密封,放入恒温箱在25±5℃下保持2小时,准确称试样重,以后每半小时称一次,至恒重为止,算出试样的增减重量。 3、若试样的A W值大于标准试剂,则试样减重;反之,若试样的A W比标准试剂小,则试样重量增加,因此要选择3种以上标准盐溶液与试样一起分别进行试验,得出试样与各种标准盐溶液平衡时重量的增减数。 4、以食品试样增减的毫克数为纵坐标,以水分活度A W为横坐标作图(如图1-2),在图中A点是试样与MgCl2·6H2O标准饱和溶液平衡后重量减少20.2mg,B点是试样与Mg(NO3)2·6H2O 标准饱和溶液平衡后失重5.2mg,C点是试样与NaCl标准饱和溶液平衡后增加的重量为

卡尔费休水分测定的原理介绍

卡尔-费休库仑法水分测定仪测试原理 一、引言 测定物质中水分含量的方法很多,现对常用的几种方法就其经济性、准确性做简单的对比分析。 1干燥法优点:仪器价格低廉。缺点:精度差;仅能测定至10-3级;在干燥蒸馏过程中挥发性物质亦被蒸发,不能测定物质中水分含量的真值,试验时间过长。 2光谱、色谱法优点:可以测至10-6级。缺点:仪器价格昂贵;环境要求高;准备时间长(几个小时);不利于产品的过程控制。 3卡氏容量法优点:测试品种多,相对于卡氏库仑法有些特殊物质在特定试剂条件下可以测定(如酮类、醛类)。缺点:在最佳状态下仅能测至10-4级;耗材(试剂)大;测定时间偏长。 4卡氏库仑法优点:仪器价格中等;耗材少;可以测定至10-6级;时间短,一般物质在掌握好进样量的前提下使用淄博华坤电子仪器有限公司DT-30系列全自动(以下简称华坤仪器)60秒内即可完成测定,是过程控制和仲裁判定的最佳方法。缺点:有些具有副反应的物质如酮类、醛类不能测定。 对于多数物质而言,选择卡氏库仑法仪器做为质量控制测定水分含量是一种即经济又准确的方法。 二、卡氏库仑法仪器原理 1.1935年卡尔-费休(KarlFischer)首先提出了利用容量分析测定水分的方法,这种方法即是GB6283《化工产品中水分含量的测定》中的目测法。目测法只能测定无色液体物质的水分。后来,又发展为电量法。随着科技的发展,继而又将库仑计与容量法结合起来推出库仑法。这种方法即是GB7600《运行中变压器油水分含量测定法(库仑法)》中的测试方法。现在的分类目测法和电量法统称为容量法。卡氏方法分为卡氏容量法和卡氏库仑法两大方法。两种方法都被许多国家定为标准分析方法,用来校正其他分析方法和测量仪器。 2.卡氏库仑法测定水分是一种电化学方法。其原理是仪器的电解池中的卡氏试剂达到平衡时注入含水的样品,水参与碘、的氧化还原反应,在吡啶和甲醇存在的情况下,生成氢碘酸吡啶和甲基硫酸吡啶,消耗了的碘在阳极电解产生,从而使氧化还原反应不断进行,直至水分全部耗尽为止,依据法拉第电解定律,电解产生碘是同电解时耗用的电量成正比例关系的,其反应如下: H2O+I2+SO2+3C5H5N 2C5H5N HI+C5H5N SO3 C5H5N SO3+CH3OH C5H5N HSO4CH3

水分测定-练习题

水分测定-练习题 一、填空题: 1. 食品中水分存在的形式有和两种。 2. 食品中水分测定干燥法可分为_ 和两大类。 3. 在减压干燥法中,在真空泵与真空烘箱之间的硅胶有作用,粒状苛性钠柱有作用。 4. 干燥时间的确定有和两种方法。 5. 用烘干法测定食品中水分含量,要求样品必须具备(1); (2); (3)三个条件。 6. 对浓稠态样品,在测定前加精制海砂或无水硫酸钠的作用是。 7. 食品中水分的含量在_ __被称为安全水分。 二、选择题: 1.哪类样品在干燥之前,应加入精制海砂() (1)固体样品(2)液体样品(3)浓稠态样品(4)气态样品 2.减压干燥常用的称量皿是() (1)玻璃称量皿(2)铝质称量皿 3.常压干燥法一般使用的温度是() (1)95~105℃(2)120~130℃(4)500~600℃(4)300~400℃ 4.确定常压干燥法的时间的方法是() (1)干燥到恒重(2)规定干燥一定时间 (3)95~105度干燥3~4小时(4)95~105度干燥约小时 5.水分测定中干燥到恒重的标准是() (1)1~3mg (2)1~3g (3)1~3ug 6.采用二次干燥法测定食品中的水分样品是() (1)含水量大于16%的样品(2)含水量在14%以上 (3)含水量小于14%的样品(4)含水量小于2%的样品

7.下列哪种样品可用常压干燥法(),应用减压干燥的样品是()应用蒸馏法测定水分的样品是() (1)饲料(2)香料(3)味精 (4)麦乳精(5)八角(6)桔柑(7)面粉 8. ()是唯一公认的测定香料中水分含量的标准。 (1)直接干燥法(2)减压干燥法(3)蒸馏法(4)卡尔费休法9. 称样数量,一般控制在其干燥后的残留物质量在( )。 (1)10-15g (2)5-10(3) 1.5-3g 10. 在减压干燥时,可选用()称量皿,它的规格以样品置于其中平铺后厚度不超过皿高的()。 (1)玻璃(2)铝质(3)1/5 (4)1/3 (5)1/2 11. 在蒸馏法中,可加入()防止乳浊现象。 (1)苯(2)二甲苯(3)戊醇(4)异丁醇 12.样品烘干后,正确的操作是() (1)从烘箱内取出,放在室内冷却后称重 (2)从烘箱内取出,放在干燥器内冷却后称量 (3)在烘箱内自然冷却后称重 13.蒸馏法测定水份时常用的有机溶剂是() (1)甲苯、二甲苯(2)乙醚、石油醚 (3)氯仿、乙醇(4)四氯化碳、乙醚 14.减压干燥装置中,真空泵和真空烘箱之间连接装有硅胶、苛性钠干燥其目的是() (1)用苛性钠吸收酸性气体,用硅胶吸收水分 (2)用硅胶吸收酸性气体,苛性钠吸收水分 (3)可确定干燥情况 (4)可使干燥箱快速冷却 15.测定食品样品水分的方法主要有是() (1)常压干燥法(2)卡尔、费休滴定法 (3)溶剂萃取+卡尔费休滴定法(4)减压干燥法

食品中水分的测定实验

食品中水分的测定实验 一、实验目的: 熟练掌握常压干燥法的原理、操作,使用范围及注意事项。二、原理 食品中的水分一般是指在100摄氏度左右直接干燥的情况下,所失去物质的总量。将样品置于常压恒温干燥箱内,在95~105℃下干燥至恒量。失去的重量为样品中水分的量。 三、试剂和材料 1.仪器 电热恒温干燥箱、干燥器、分析天平、研皿、扁形铝制或玻璃制称量瓶 2.样品 面包:热狗面包墨西哥 蛋糕:柠檬水果 干点:牛奶饼 四、操作及实验步骤 取洁净玻璃制称量瓶两个,置于95~105℃干燥箱中,瓶盖斜盖于瓶口或放置在旁边,加热30~60分钟,盖好取出,置于干燥其内冷却30分钟,称量,并重复干燥至恒量。取切细或磨细的两份样品,放入这两个称量瓶中(以下以“瓶1”、“瓶2”标号)加盖,精密称量后,记下称量结果。再置于95~105℃干燥箱中,瓶盖斜盖于瓶口或放置在旁边,干燥2~4h后,盖好取出,放入干燥器内冷却30分钟后称量并记录结果。然后再放入95~105℃干燥箱中干燥1h左右,取出,放干燥器内冷却30分钟后再称量。至前后两次称量差不超过2mg,即为恒量。 五、实验数据记录 整理数据

计算: X=[(M总-M总’)/(M总-m瓶)] ×100%式中: X ——样品中水分的含量(%) m瓶——称量瓶的质量(g) M总——称量瓶和样品的总质量(g) M总’ ——称量瓶和样品干燥后的总质量(g) 六、结果 1.热狗面包: =[ / – ] ×100%=% 瓶1: X 1 瓶2: X =[ – / – ] ×100%=% 2 平均值:X=%

2.墨西哥: =[ / – ] ×100%=% 瓶1: X 1 =[ – / – ] ×100%=% 瓶2: X 2 平均值:X=% 3.柠檬水果: =[ /– ] ×100%=% 瓶1: X 1 =[ – / – ] ×100%=% 瓶2: X 2 平均值:X=% 4.牛奶饼: =[ – ] ×100%=% 瓶1: X 1 =[ – / – ] ×100%=% 瓶2: X 2 平均值:X=% 七、结论 通过对两个样品水分含量的测量结果数据分析表明:两个称量瓶中所装样品一样,之所以得出的水分含量不同,除了实验仪器引起的系统误差外,还与操作的的熟练程度产生的误差有关。可能是由于两个样品放进干燥箱中的时间快慢有差别,从干燥箱取出移入天平室干燥器的途中吸收了空气中的微量水分。因此取两个样品水分含量的平均值比较接近面包、蛋糕和干点水分含量的真实值,但永远达不到其真实值。

食品中水分测定方法

方法有如下几种: 1、有损检测 则是指在测量的过程中待测物粉碎或发生了化学变化,致使其不能保持原有的形状、结构或组分。在这两类中,无损检测的方法更经济、快捷,发展也最为迅速,是当今世界水分检测的主流。 2、直接干燥法 直接干燥法是指将待测样品置于烘箱中,根据ASAE标准,在130℃的温度下保持19h,测量前后的质量差,即为其水分含量。 3、红外线加热干燥法 红外线加热干燥法是利用红外线加热样品使其失水,从而达到测量水分含量的目的。代表仪器为SFY-20,测量精度为±0.1%,测量时间为1200s,测水范围为0~100%,主要影响因素为温度和加热时间。该法不能进行在线测量。 4、微波加热法 微波加热法是利用微波炉的磁控管所产生的2450MHz或915MHz的超高频率微波快速振荡粮食中的水分子,使分子相互碰撞和摩擦,进而去除粮食中的水分。代表仪器为MMA30,测量精度≤0.01%,测量时间为100s,测水范围为12%~100%,主要影响因素为微波炉的功率、谷物质量、密度和介电特性。该法不能进行在线测量。与传统干燥法相比,这两种方法缩短了测量周期、减少了能耗。其中,红外法不需加热介质,提高了热能利用率;微波法操作方便,并可同时测量多种样品,但它存在温层效应和棱角效应,造成微波的不均匀,从而影响测量精度。 5、电容法 电容法是根据水分的介电常数远远大于粮食中其它成分的介电常数,水分含量的变化势必引起电容量变化的原理,通过测量与样品中水分变化相对应的电容变化即可知粮食的水分含量。代表仪器为SCY-1A,其测量精度≤0.3%,测量时间为5s,测水范围为10%~20%,主要影响因素为温度、品种和紧实度。该法可进行在线测量。以上两种方法的测量原理非常简单,技术相对来说也比较成熟,但都存在不足之处:直接干燥法. 测量周期较长,人为干扰因素多,并且不能进行在线测量;电容法的影响因素较多,在精度和重复性等方面难以达到国家规定标准。随着人工智能和数据融合技术的发展,为数据综合处理提供了新的途径,目前也取得了一些可喜的结果。 6、介电损失角法 研究表明:谷物含水率不同,介电损失角也不同,并且呈单值分段线性关系。该方法经济实用、测量精度高,尤为适合测量高水分谷物。代表仪器为MSA6450,测量时间为0.1s,测水范围为1%~30%,主要影响因素为温度和品种。该法可进行在线测量。 7、复阻抗分离电容法 复阻抗分离电容法通过复阻抗分离电路的设计,有效消除电阻参量的影响,而只保留电容参量的变化。这种方法对提高电容式水分计测量精度具有重要意义。 8、高频阻抗法 高频阻抗法是依据在敏感频带(100k~250kHz)施以外加电场的情况下粮食水分与其交流阻抗呈现对数关系这一理论来测量其水分的。代表仪器为LSK-1,测量精度≤0.5%,测量时间为1.2s,主要影响因素为温度、品种、紧实度与电极间距。该法不能进行在线测量。

水分测定方法总结

水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下: 1、热干燥法:①常压干燥法(此法用的广泛); ②真空干燥法(有的样品加热分解时用); ③红外线干燥法; ④真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。 ⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言): ⑴水分是唯一挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵水分挥发要完全 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。 例:还原糖+氨基化合物△→ 变色(美拉德反应)+H2O↑ 还有 H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2

发酵糖(NaHCO3+KHC4H4O6)△→H2O+CO2+ NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘1.5小时→于干燥器冷却→称重→ 再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) *油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。 *对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。

灰分检测操作规程

11.灰分的检测 11.1 仪器和设备 11.1.1 天平:感量为 0.1 mg。 11.1.2 马弗炉:温度≥600 ℃。 11.1.3 干燥器(内附有有效硅胶为干燥剂)。 11.1.4 石英坩锅或瓷坩埚。 11.1.5 电热板。 11.1.6 水浴锅。 11.2 分析步骤 11.2.1 坩埚的灼烧:取大小适宜的石英坩埚或瓷坩埚置马弗炉中,在 550℃±25℃下灼烧 0.5 h,冷却至200 ℃左右,取出,放入干燥器中冷却 30 min,准确称量。重复灼烧至前后两次称量相差不超过 0.5 mg为恒重。 11.2.2 称样:灰分大于 10 g/100 g 的试样称取 2 g~3 g(精确至 0.0001 g);灰分小于 10 g/100 g 的试样称取 3 g~10 g(精确至 0.0001 g)。 11.2.3 测定 液体和半固体试样应先在沸水浴上蒸干。固体或蒸干后的试样,先在电热板上以小火加热使试样充分炭化至无烟,然后置于马弗炉中,在 550 ℃±25℃灼烧 4 h。冷却至 200 ℃左右,取出,放入干燥器中冷却 30 min,称量前如发现灼烧残渣有炭粒时,应向试样中滴入少许水湿润,使结块松散,蒸干水分再次灼烧至无炭粒即表示灰化完全,方可称量。重复灼烧至前后两次称量相差不超过 0.5 mg 为恒重。按式(1)计算。 11.3 分析结果的表述 试样中灰分按式(1)计算: 式中:X1——试样中灰分的含量,单位为克每百克(g/100 g); m1 ——试样灼烧后坩埚和灰分的质量,单位为克(g); m2 ——坩埚的质量,单位为克(g); m3 ——试样灼烧前坩埚和试样的质量,单位为克(g)。 试样中灰分含量≥10 g/100 g 时,保留三位有效数字;试样中灰分含量<10 g/100 g 时,保留二位有效数字。 11.4精密度 在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的 5 %。

水分活度,水活性

水分活度的测定 随着食品科学技术的发展,食品水分活性的重要性愈来愈受到人们的重视,各国科学家正在研究通过控制水分活性来达到免杀菌保存食品的新途径。 1理想公式计算法 根据水分活性(以下简称A w )的定义,它可近似等于食品在密封容器内的水蒸汽压(P )与在相同温度下的纯水蒸汽压(Po )之比: o W P P A = 根据拉乌尔定律,若立项溶液的溶质和溶剂摩尔数分别为m 1和m 2,则: 2 12m m m P P A o W +== 设一摩尔理想溶质溶于一千克水(计55.51摩尔),则此理想溶液的水分活性为: A w =55.51/1+55.51=0.9823 在含电介质的非理想溶液的A w 值可根据下式计算: ln A w =-υm φ/55.51 式中υ为1分子溶质产生的离子数,m 为溶液的摩尔浓度,φ是由溶质决定的常数。 但是大多数食品是由多种组分构成的复杂系统,它的a w 值难以用一般公式法计算,虽然也有许多推荐公式,但都有一定适用范围,主要在食品的可溶性成分以及数量已经明确的条件下适用。比如配制微生物培养基以及研制新的中间水分食品推荐下面公式较为适用: A w =A w1×A w2×A w3×…… 即总的水分活性A w 等于各组分水分活性值的乘积。 一般说来,实际上测定食品水分活性都采用直接测定法。 2直接测定法 根据蒸汽压、湿度动力学等原理相应出现了不少直接测定仪器。国外也发展了许多测定水分活性的电子仪器,其测定原理有的是根据二电极中吸湿性物质的电导变化,也有的是直接依靠气体热传导的湿度传感器来检测。这类仪器具有快速、灵敏、精确度高的优点,我国可加强这类仪器的研制。在目前情况下,这种电子仪器的造价高,有些尚需进口,不利于推广。下面介绍一种坐标内插法,它不需要特殊的仪器装置。一般实验室都可采用。 2.1仪器及用具 康维皿容器,分析天平,恒温箱。

水分测定方法有许多种分析

水分测定方法有许多种,常采用的水份测定方法如下: 1、热干燥法: ①常压干燥法(此法用的广泛); ②真空干燥法(有的样品加热分解时用); ③红外线干燥法; ④真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。 ⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言): ⑴水分是唯一挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵水分挥发要完全 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。

例:还原糖+氨基化合物△→ 变色(美拉德反应)+H2O↑ 还有H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2 发酵糖(NaHCO3+KHC4H4O6) △→H2O+CO2+ NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘 1.5小时→于干燥器冷却→称重→再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) *油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。

水分的测定方法

水分的测定方法 国标法(直接干燥法): 一、原理 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去物质的总量。 直接干燥法适用于在101~105℃下,不含或含其他挥发性物质甚微的食品。 二、试剂 海砂:购买80目海砂,用前经105℃干燥1小时备用。 三、操作方法 1 粉体样品:取洁净铝制或玻璃制的扁形称量瓶,置于101~105℃(一般设置为103℃)干燥箱中,瓶盖斜支于瓶边,加热0.5~1.0h,取出盖好,置干燥器内冷却0.5h后称量,记数。(必要时重复干燥至恒重)。精确称取2g样品(精确至0.0001克),放入此称量瓶中,样品厚度约为5mm,加盖,精密称量后,记数。置101~105℃干燥箱中,瓶盖斜支于瓶边,干燥4h后,盖好取出,放入干燥器内冷却0.5h后称量。然后再放入101~105℃干燥箱中干燥1h,取出,放干燥器内冷却0.5h后再称量。至前后两次质量差不超过0.002g,即为恒重。 2 膏体样品:取洁净铝制或玻璃制的扁形称量瓶,内加10.0±2.0克海砂及一根小玻棒,置于101~105℃(一般设置为103℃)干燥箱中,干燥0.5~1.0h后取出,放入干燥器内冷却0.5h后称量记数。(必要时重复干燥至恒重)。然后精密称取

2g样品(精确至0.0001克),放入此称量瓶中,加盖连同玻璃棒一起精密称量后,记数。接着用小玻棒搅匀海砂和样品,置101~105℃干燥箱中干燥6h后盖好取出,放入干燥器内冷却0.5h后称量。(验证:长时间不做的产品或新产品按以上粉体检测方法对此6h检测结果进行验证)。 四、计算: 式中:X——样品中水分的含量,% ——称量瓶(或加海砂、玻棒)和样品的质量,g m 1 ——称量瓶(或加海砂、玻棒)和样品干燥后的质量,g m 2 ——称量瓶(或加海砂、玻棒)的质量,g m 3 五、注意事项: 1.盐、味精称取5g样品于恒重后的称量瓶内,置103±2℃烘箱干燥2小时 后,不需恒重,冷却30min后直接称重计算。 2.白砂糖检称取20g-30g(a法)或9.5-10.5g(b法)于干燥30min并冷却 到室温的称量瓶中,放入105℃(a法)或130℃(b法)的干燥箱中,干 燥3h(a法)或18min(b法),不必恒重,直接取出冷却到室温称重后计 算。 3.CMC测定称取4g试验样品(精确值0.001g)置于干燥至恒重的称量瓶中, 于105±2℃干燥箱干燥2h,取出冷却到室温,称量,不必恒重。

食品水分活度的测定-标准文本(食品安全国家标准)

食品安全国家标准 食品水分活度的测定 1 范围 本标准规定了康卫氏皿扩散法和水分活度仪扩散法测定食品中的水分活度。 本标准适用于预包装谷物制品类、肉制品类、水产制品类、蜂产品类、薯类制品类、水果制品类、蔬菜制品类、乳粉、固体饮料的食品水分活度的测定。 本标准不适用于冷冻和含挥发性成分的食品。 本标准的康卫氏皿扩散法适用食品水分活度的范围为0.00~0.98;水分活度仪扩散法为0.60~0.90。 第一法康卫氏皿扩散法 2 原理 在密封、恒温的康卫氏皿中,试样中的自由水与水分活度(A w)较高和较低的标准饱和溶液相互扩散,达到平衡后,根据试样质量的变化量,求得样品的水分活度。 3 试剂和材料 3.1 试剂 所有试剂均使用分析纯试剂;分析用水应符合GB/T 6682规定的三级水规格。 3.2 试剂配制 按表1配制各种无机盐的饱和溶液。 表1 饱和盐溶液的配制 (续)

4 仪器和设备 4.1 康卫氏皿(带磨砂玻璃盖):见图1。 4.2 称量皿:直径35 mm,高10 mm。 4.3 天平:感量0.0001 g和0.1 g。 4.4 恒温培养箱:0℃~40℃,精度± 1℃。 4.5 电热恒温鼓风干燥箱。

l1—外室外直径,100 mm; l2—外室内直径,92 mm; l3—内室外直径,53 mm; l4—内室内直径,45 mm; h1—内室高度,10 mm; h2—外室高度,25 mm。 5 分析步骤 5.1 试样的制备 5.1.1 粉末状固体、颗粒状固体及糊状样品 取有代表性样品至少200 g,混匀,置于密闭的玻璃容器内。 5.1.2 块状样品 取可食部分的代表性样品至少200 g。在室温18 ℃~25 ℃,湿度50% ~ 80%的条件下,迅速切成约小于3 mm× 3 mm× 3 mm的小块,不得使用组织捣碎机,混匀后置于密闭的玻璃容器内。 5.1.3 瓶装固体、液体混合样品 可取液体部分 5.1.4 质量多样混合样品 取有代表性的混合均匀样品 5.1.5 液体或流动酱汁样品 可直接采取均匀样品进行称重

(完整word版)水分测定法

水分测定法 1 简述 1.1烘干法系指测定供试品在规定的条件下(100~105℃)经于燥后所减失水分的重量,主要指水分,也包括其他挥发性物质。根据减失的重量和取样量计算供试品的含水量(%)。 1.2本法适用于不含或少含挥发性成分的品种。 2 仪器与用具 2.1分析天平感量0.1mg。 2.2扁形称量瓶。 2.3烘箱,控温精度士l℃。 2.4干燥器(普通)。 3 试药与试剂 干燥剂常用的干燥剂为硅胶、五氧化二磷或硫酸。 4 操作方法 4.1 称量瓶恒重取洁净的称量瓶,置烘箱内105℃干燥数小时(一般2小时以上),取出,置干燥器中室温放置30分钟,精密称定重量,再置烘箱内105℃干燥1小时,取出,置干燥器中室温放置30分钟,精密称定重量,直至连续两次干燥后称重的差异在0.3mg以下为止。 4.2称取供试品将供试品破碎成直径不超过3mm的颗粒或碎片,取2~5g(或该品种项下所规定的重量),平铺于干燥至恒重的扁形称量瓶中,厚度不超过5mm,疏松供试品不超过l0mm,精密称定。 4.3干燥、称重除另有规定外,将称取供试品后的称量瓶置已升温至105℃的烘箱内, 应将瓶盖取下,置称量瓶旁,在100~105℃干燥5小时。盖好瓶盖,取出,移置干燥器中,室温冷却30分钟,精密称定重量。

4.4再干燥、称重 将称量瓶再在上述条件下干燥1小时,移置干燥器中,室温冷却30分钟,精密称定重量。至连续两次称重的差异不超过5mg 为止。 5 记录与计算 5.1记录水分测定方法、称量用天平的型号、天平室温、湿度、干燥时的温度、干燥剂的种类,干燥和放冷至室温的时间,称量及恒重数据,计算和结果等。 5.2计算 水分(%)= 123 1 100%w w w w +-? 式中 W l 为供试品的重量(g); W 2为称量瓶恒重的重量(g); W 3为(称量瓶十供试品)称量至恒重的重量(g)。 6 结果与判定 计算结果,按有效数字修约规则修约,使与标准中规定限度有效位一致,其数值小于或等于限度时判为符合规定,其数值大于限度时判为不符合规定。 7 注意事项 7.1用烘干法测定水分时,往往几个供试品同时进行,因此称量瓶宜先用适宜的方法编码标记,瓶与瓶盖的编码一致;称量瓶放入烘箱的位置,取出冷却、称重的顺序,应先后一致。 7.2干燥剂应保持在有效状态。 8 报告格式 检验项目 标准规定 检验结果 单项判定 水分 不得过15.0% 9.3% 符合规定 第三法 减压干燥法 1 简述 1.1减压干燥法系指测定供试品在规定的压力条件下干燥后所减失水分的重量,

水分测定法第一法烘干法

水分测定法第一法烘干 法 The manuscript was revised on the evening of 2021

水分测定法 目的: 制定水分测定标准规程,使检验人员的操作规范,确保检验结果的准确、可靠。 范围: 适用于进行水分测定的原辅料、中间体(半成品)、成品等。 内容: 测定用的供试品: ①一般先破碎成直径不超过3mm的颗粒或碎片。 ②直径和长度在3mm以下的花类、种子和果实类药材,可不破碎。 ③减压干燥法需先经二号筛。 烘干法适用范围:不含或少含挥发性成分的药品。 仪器与试剂:扁形称量瓶、干燥器(普通)、电子天平(0.0001g)、 烘箱(100~105℃,控温精度±0.1℃)、 干燥剂(硅胶、五氧化二磷,硫酸) 烘箱干燥法的测定要点 ⑴取样(称样) ⑵干燥条件的选择: 三个因素:①温度;②压力(常压、真空)干燥;③时间(一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃)操作方法 1操作步骤 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘小时→于干燥器冷却→称重→再烘小时→称至恒重(两次重量差不超过0.003g即为恒重)

(1)称量瓶恒重 清洗称量瓶→烘至恒重(烘箱、105℃、烘2小时以上,取出--干燥器中放置室温(约30分钟)---精称—于烘箱中,烘1小时,干燥器中放置室温(约30分钟)精称G1--如此重复,至连续两次干燥后称重△m≤0.003g) (2)称取试样 ①精密称定供试品2~5g(±0.5g)(或该品种下规定的重量W) ②平铺于干燥至恒重的扁形称瓶中,厚度不超过5mm,疏松供试品不超过10mm, (3)烘样 ①在100~105℃干燥5小时(打开瓶盖,半斜于称量瓶上),将瓶盖盖好,移置干燥器中,冷却30分钟,精密称定重量, ②再在上述温度干燥1小时,冷却,称重G2,至连续两次称量的差异不超过5mg (0.005g)为止。 ③计算:根据减失的重量,计算供试品中含水量(%) 计算 恒重后称量皿和样品重量(g)--恒重后称量皿重量(g) 水分=---------------------------------------------------------------------------- 样品重量(g) (即水分= G2 - G1 / W) 固形物(%)=100 -水分% G1 ——恒重后称量皿重量(g) G2 ——恒重后称量皿和样品重量(g) W ——样品重量(g)

实验五 食品中总灰分含量的测定

实验五食品中总灰分含量的测定 1.实验目的 (1)学习食品中总灰分测定的意义和原理; (2)掌握称重法测定灰分的基本操作技术及测定条件的选择; (3)学会用减重法称取试样。 2.实验原理 将样品炭化后置于500~600 ℃高温炉内灼烧,样品中的水分及挥发物质以气体放出,有机物质中的碳、氢、氮等元素与有机物质本身的氧及空气中的氧生成二氧化碳、氮氧化物及水分而散失,无机物以硫酸盐、磷酸盐、碳酸盐、氧化物等无机盐和金属氧化物的形式残留下来,这些残留物即为灰分,称重残留物的质量即可计算出样品中总灰分的含量。 3.仪器及材料 3.1仪器 高温电炉(马福炉);坩埚钳;瓷坩埚;分析天平;干燥器 3.2材料 面包(高筋面粉制作)、饼干(低筋面粉制作) 3.3试剂 1:1盐酸 4.实验步骤 4.1瓷坩埚的准备 将坩埚用体积分数为20﹪的盐煮1~2h,洗净晾干后,用铅笔在坩埚外壁及盖上写上编号。置于马福炉中,在(550±25)℃下灼烧0.5 h,冷至200℃一下后,取出。放入干燥器中冷却至室温,准确称量,并反复灼烧至恒重(两次称重之差不超过0.5mg)。 4.2样品的处理 用分析天平准确称取5.00g面包两份,以及相同质量的两份饼干,放入之前标好号码的瓷坩埚中,以小火加热使试样充分炭化至无烟。 4.3样品的灰化 炭化后的试样置马福炉中,在(550±25)℃下灼烧4h。冷至200℃以下后取出,放入干燥器中冷却30min。在称量前如灼烧残渣有碳粒时,应向试样中滴入少许水湿润,使结块松散,蒸出水分再次灼烧至无碳粒即灰化完全,冷至200℃以下,取出放入干燥器中冷却30min后,准确称量。反复灼烧至前后两次称量相差不超过0.5mg即为恒重。 5.实验结果及分析

实验一、食品水分活度的测定要点

实验一、食品水分活度的测定 1、目的要求 1.1 水分活度的概念和扩散法测定水分活度的原理。 1.2 测定食品中水分活度的操作技术。 1.3 水分活度仪法测定食品中水分活度的方法。 第一法坐标插入法(康威微时扩散法) 1、实验原理 食品中的水分,都随环境条件的变动而变化。当环境空气的相对湿度低于食品的水分活度时,食品中的水分向空气中蒸发,食品的质量减轻;相反,当环境空气的相对湿度高于食品的水分活度时,食品就会从空气中吸收水分,使质量增加。不管是蒸发水分还是吸收水分,最终是食品和环境的水分达到平衡为止。据此原理,采用标准水分活度的试剂,形成相应湿度的空气环境,在密封和恒温条件下,观察食品试样在此空气环境中因水分变化而引起的质量变化,通常使试样分别在A w较高、中等和较低的标准饱和盐溶液中扩散平衡后,根据试样质量的增加(即在较高A w标准饱和盐溶液达平衡)和减少(即在较低A w标准饱和盐溶液达平衡)的量,计算试样的A w值,食品试样放在以此为相对湿度的空气中时,既不吸湿也不解吸,即其质量保持不变。 2、实验器材 2.1 分析天平 2.2 恒温箱 2.3 康维氏微量扩散皿 2.4 小玻璃皿或小铝皿(直径25mm~28mm、深度7mm) 2.5 凡士林 2.6 各种水果、蔬菜等食品。 3、实验试剂 至少选取3种标准饱和盐溶液。标准饱和盐溶液的A w值(25 ℃)见表-1。 表-1 标准饱和盐溶液的A w值(25 ℃)

4.1 在3个康维皿的外室分别加入A w高、中、低的3种标准饱和盐溶液 5.0mL, 并在磨口处均匀涂一层凡士林。 4.2 将3个小玻皿准确称重,然后分别称取约1 g的试样于皿内(准确至毫克数,每皿试样质量应相近)。迅速依次放入上述3个康维皿的内室中,马上加盖密封,记录每个扩散皿中小玻皿和试样的总质量。 4.3 在25℃的恒温箱中放置(2±0.5)h后,取出小玻皿准确称重,以后每隔30 min 称重一次,至恒重为止。记录每个扩散皿中小玻皿和试样的总质量。 5、结果处理 5.1 计算每个康维皿中试样的质量增减值。 5.2 以各种标准饱和盐溶液在25 ℃时的A w值为横座标,被测试样的增减质量Δm为纵座标作图。并将各点连结成一条直线,此线与横座标的交点即为被测试样的A w值。图 中A点表示试样与MgCl 2·6H 2 O标准饱和溶液平衡后质量减少20.2 mg,B点表示试样与 Mg(NO 3) 2 ·6H 2 O标准饱和溶液平衡后质量减少5.2 mg,C点表示试样与NaCl标准饱和 溶液平衡后质量增加11.1 mg。3种标准饱和盐溶液的A w分别为0.33、0.53、0.75。3点连成一线与横座标相交于D,D点即为该试样的A w,为0.60。 6、注意事项 6.1 称重要精确迅速。 6.2 扩散皿密封性要好。 6.3 对试样的A w值范围预先有一估计,以便正确选择标准饱和盐溶液。 测定时也可选择2种或4种标准饱和盐溶液(水分活度大于或小于试样的标准盐溶液各1种或2种)。

水分测定

水分的测定 第一节 概述 水是食品的重要组成成分,不同种类的食品,水分含量差别大。水分是食品分析的重要项目之一。水分测定对于计算生产中的物料平衡,和实行工艺监督等方面,有很重要的意义。 一、食品中水分的存在形式:食品中水分可分为结合水和自由水两大类。 一)自由水(游离水) 特点:游离水主要存在植物细胞间隙,具有水的一切特性,也就是说100℃时水要沸腾,0℃以下要结冰,并且易汽化。游离水是食品的主要分散剂,可以溶解糖、酸、无机盐等,可用简单的热力方法除掉。 二)结合水 :这种水是与食品中脂肪、蛋白质、碳水化合物等物质结合。它是以氢键的形式与有机物的活性基团结合在一起,故称束缚水。注意:束缚水不具有水的特性,所以要除掉这部分水是困难的。特点:①不易结冰(冰点为-40℃);②不能作为溶质的溶剂。 结合水和食品的构成成分结合,稳定食品的活性基,自由水促使腐蚀食品的微生物繁殖和酶促作用,并加速非酶褐变或脂肪氧化等化学劣变。 三)水分活度 1、水分活度:从食品保藏的角度出发,食品的含水量不用绝对含量(%)表示,而用活度表示W A 。定义:食品所显示的水蒸气压P 对在同一湿度下最大水蒸气压0P 之比。 即: W 0H A P /P R /100== P :食品中水蒸气分压;0P :纯水的蒸气压;H R :平衡相对湿度。 2、水分活度的意义:(1)W A 反映了食品与水的亲和能力程度,它表示了食品中所含的水分作为微生物化学反应和微生物生长的可用价值。(2)所以按水分含量多少难以判断食品的保存性,只有测定和控制水分活度才对于食品保藏性具有重要意义。 食品水分检测方法分在线检测和离线检测两类,离线检测指的是常规取样分析法,在线检测指在物料处理过程中的检测,此方法又分为在线取样检测和在线无损检测。 食品加工中最理想的水分测定方法应该是在线无损检测,它有着比常规检测方法更为突出的特:非破坏性、随机性、远距离探测、现场检测、且检测数据可连续性采集,并通过数理分析和逻辑判断,能够比较准确地推定出质量的状况,使监督检测的结果更具有真实性、科学性和权威性,对食品加工过程实施实时、在线、全程检测,既节约时间、保护环境、又降低成本。 二、水分的测定方法 ①直接法——利用水分本身的物理性质、化学性质测定水分:重量法、蒸馏法、卡尔·费休法、化学方法。 ②间接法——利用食品的物理常数通过函数关系确定水分含量。

食品中灰分的测定

实验2 食品中灰分的测定 一、实验原理 对于食品行业来说,灰分是一项重要的质量指标。例如,在面粉加工中,常以总灰分含量来评定面粉等级,因为小麦麸皮 的灰分含量比胚乳高20倍左右,因此,面粉的加工精度越高,灰分含量越低。在生产果胶、明胶等胶质产品时,总灰分可说明这些制品的胶冻性能;水溶性灰分则在很大程度上表明果酱、果冻等水果制品中的水果含量;而酸不溶性灰分的增加则预示着污染和掺杂。这对保证食品质量是十分重要的。 总灰分采取简便、快速的干灰化法测定。即先将样品中的水分去掉,然后再尽可能低的温度下将样品小心地加热炭化和灼 烧,除尽有机质,称取残留的无机物,即可求出总灰分的含量。本方法适用于各类食品中灰分含量的测定。 二、试剂和器材 高温电炉(马弗炉) 坩埚:测定食品中的灰分含量时,通常采用瓷坩埚(30mL ),可耐1200℃高温,理化性质稳定且价格低廉,但它的抗碱 能力较差。 三、实验步骤 1、总灰分的测定 (1)样品预处理 1)样品称量 以灰分量10-100mg 来决定试样的采取量。通常奶粉、大豆粉、调味料、鱼类及海产品等取1-2g ;谷类食 品、肉及肉制品、糕点、牛乳取3-5g ;蔬菜及其制品、糖及糖制品、淀粉及其制品、奶油、蜂蜜等取5-10g ;水果及其制品取20g ;油脂取50g 。 2)样品处理 谷物、豆类等含水量较少的固体试样,粉碎均匀备用;液体样品需先在沸水浴上蒸干;果蔬等含水分较多 的样品则采用先低温(66-70℃)后高温(95-105℃)的方法烘干,或采用测定水分后的残留物作样先提取脂肪后再进行分析。 3)瓷坩埚处理 将坩埚用体积分数为20%的盐酸煮1-2h ,洗净晒干后,用氯化铁与蓝墨水的混合液或铅笔在坩埚外壁、 底部及盖上写上编号。置于马弗炉中,在600℃灼烧0.5h 。取出,冷却至200℃以下时,移入干燥器内冷却至室温后称重。重复灼烧至恒重。 (2)称取适量样品于坩埚中;在电炉上小心加热,使样品充分炭化至无烟。然后将坩埚移至高温电炉中,在500-600℃灼 烧至无炭粒(即灰化完全)。冷却到200℃以下时,移入干燥器中冷却至室温后称量,重复灼烧至前后两次称量相差不超过0.5mg 为恒重。 (3)结果计算 100*02011m m m m x 式中 x 1——样品中灰分的质量分数,% m 0——坩埚的质量,g m 1——坩埚和总灰分的质量,g m 2——坩埚和样品的质量,g 2、水溶性灰分与水不溶性灰分的测定 在总灰分中加水约25mL ,盖上表面皿,加热至近沸,用无灰滤纸过滤,以25mL 热水洗涤,将滤纸和残渣置于原坩埚中, 按总灰分测定方法再行干燥、炭化、灼烧、冷却、称量。以下式计算水溶性灰分与水不溶性灰分的含量: 100*02032m m m m x --= 式中 x 2——样品中水不溶性灰分的质量分数,% m 0——坩埚的质量,g

相关文档
最新文档