离散数学(本科)(

离散数学(本科)(
离散数学(本科)(

《离散数学》复习资料 2014年12月

一、单项选择题(每小题3分,本题共15分)

1.若集合A ={1,2},B ={1,2,{1,2}},则下列表述正确的是( A ).

A . A ?

B ,且A ∈B B .B ?A ,且A ∈B

C .A ?B ,且A ?B

D .A ?B ,且A ∈B 2.设有向图(a )、(b )、(c )与(d )如图一所示,则下列结论成立的是 ( D ).

图一 A .(a )是强连通的 B .(b )是强连通的

C .(c )是强连通的

D .(d )是强连通的 3.设图G 的邻接矩阵为

???????

?????????0101010010000011100100110 则G 的边数为( B ).

A .6

B .5

C .4

D .3

4.无向简单图G 是棵树,当且仅当( A ).

A .G 连通且边数比结点数少1

B .G 连通且结点数比边数少1

C .G 的边数比结点数少1

D .G 中没有回路. 5.下列公式 ( C )为重言式.

A .?P ∧?Q ?P ∨Q

B .(Q →(P ∨Q )) ?(?Q ∧(P ∨Q ))

C .(P →(?Q →P ))?(?P →(P →Q ))

D .(?P ∨(P ∧Q )) ?Q

6.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={, },R 2={, , },R 3={, },则( B )不是从A 到B 的函数.

A .R 1和R 2

B .R 2

C .R 3

D .R 1和R 3

7.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 ( B ).

A .8、2、8、2

B .无、2、无、2

C .6、2、6、2

D .8、1、6、1

8.若集合A 的元素个数为10,则其幂集的元素个数为( A ). A .1024 B .10 C .100 D .1

9.设完全图K n 有n 个结点(n ≥2),m 条边,当( C )时,K n 中存在欧拉回路.

A .m 为奇数

B .n 为偶数

C .n 为奇数

D .m 为偶数 10.已知图G 的邻接矩阵为

则G 有( D ).

A .5点,8边

B .6点,7边

C .6点,8边

D .5点,7边

11.无向完全图K 3的不同构的生成子图的个数为( C ) (A) 6 (B) 5 (C) 4 (D) 3

12 n 阶无向完全图K n 中的边数为( A )

(A)

2)1(-n n (B) 2

)

1(+n n (C) n (D)n (n +1) 13.在图G =中,结点总度数与边数的关系是( C )

A deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ C

∑∈=V

v E v 2)deg( D ∑∈=V

v E v )deg(

二、填空题(每小题3分,本题共15分)

1.命题公式)(P Q P ∨→的真值是 1 .

2.若A ={1,2},R ={|x ∈A , y ∈A , x +y <4},则R 的自反闭包为 {<1,1>,<2,2>,<1,2>,<2,1>} .

3.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 5 .

4.(?x )(P (x )→Q (x )∨R (x ,y ))中的自由变元为 R (x ,y )中的y . 5.设集合A ={a ,b },那么集合A 的幂集是 {?,{a ,b },{a },{b }} 6.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有 2 个. 7.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树.

8.无向图G 存在欧拉回路,当且仅当G 所有结点的度数全为偶数且 连通 9.设连通平面图G 的结点数为5,边数为6,则面数为 3 .

10.设个体域D ={a , b },则谓词公式(?x )A (x )∧(?x )B (x )消去量词后的等值式为 (A (a )∧A (b ))∧(B (a )∨B (b )) .

三、逻辑公式翻译(每小题6分,本题共12分)

1.将语句“雪是黑色的.”翻译成命题公式.

设P :雪是黑色的, (2分)

则命题公式为:P .

2.将语句“他不去学校.”翻译成命题公式.

解:设P :他去学校, 则命题公式为: ? P .

3.将语句“小王是个学生,小李是个职员,而小张是个军人.”翻译成命题公式.

设P :小王是个学生,Q :小李是个职员,R :小张是个军人. (2分) 则命题公式为:P ∧Q ∧R .

4.将语句“如果所有人今天都去参加活动,则明天的会议取消.”翻译成命题公式. 解:设P :所有人今天都去参加活动,

Q :明天的会议取消, 则命题公式为: P → Q .

5.将语句“他去旅游,仅当他有时间.”翻译成命题公式. 解:设 P :他去旅游,Q :他有时间,

则命题公式为: P →Q .

6.将语句“41次列车下午五点开或者六点开.”翻译成命题公式.

解:设P :41次列车下午五点开,Q :41次列车下午六点开, (2分)

命题公式为:(P ∧?Q )∨(?P ∧Q ) 7.将语句“小张学习努力,小王取得好成绩.”翻译成命题

设P :小张学习努力,Q :小王取得好成绩, (2分) 则命题公式为:P ∧Q .

8.将语句“有人去上课.” 翻译成谓词公式.

解:设P (x ):x 是人,Q (x ):x 去上课, (1分) (?x )(P (x) ∧Q (x )

9.将语句“所有的人都学习努力.”翻译成命题公式. 解:设P (x ):x 是人,Q (x ):x 学习努力,

?x )(P (x )→Q (x )).

四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.

1.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.

(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2)f ={<1, 6>, <3, 4>, <2, 2>};

(3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.

答:(1)不构成函数 因为3A ∈,但()3f 没有定义,所以不构成函数 (2)不构成函数 因为4A ∈,但()4f 没有定义,所以不构成函数 (3)满足。 因为任意x A ∈,都有()f x B ∈且结果唯一。 2.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则

(1) R 是自反的关系; (2) R 是对称的关系. 答:(1)错误 因为33R ?,,所以R 不是自反的

(2)错误 因为12R ∈,,但是21R ?,,所以R 不是对称的

3.如果R 1和R 2是A 上的自反关系,判断结论:“R -

11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由.

答:成立 因为任意a A ∈,有12,,,a a R a a R ∈∈ 所以1,a a R -∈,1

2,a a R R ∈,12,a a R R ∈ R -11、R 1∪R 2、R 1∩R 2是自反的

4.若偏序集的哈斯图如图一所示, 则集合A 的最大元为a ,最小元不存在. 答:错误,集合A 没有最大元,也没有最小元

其中a 是极大元

5.若偏序集的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.

解:正确

对于集合A 的任意元素x ,均有∈R (或xRa ),所以a 是集合A 中的最大元.按照最小元的定义,在集合A 中不存在最小元.

6.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路..

答:错误 如果图G 是无向图,且图G 是连通的,同时结点度数都是偶数 7.设G 是一个连通平面图,且有6个结点11条边,则G 有7个面.

答案:正确

定理,连通平面图G 的结点数为v ,边数是e ,面数为r ,则欧拉公式v-e+r=2

成立

所以r=2-v+e=2-6+11=7

则G 存在一条欧拉回路

8.设G 是一个有6个结点14条边的连通图,则G 为平面图. 解:错误,不满足“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.” 9.命题公式?P ∧(P →?Q )∨P 为永真式.

ο

ο ο ο

a b c d 图一

ο

ο ο g e f h

ο

可知,该命题公式为永真式.

五.计算题(每小题12分,本题共36分)

1.设集合A ={a , {b }, c },B ={{a }, c },试计算

(1)(A ∩B ); (2)(B - A ); (3)(A ∩B )×B . 解(1)(A ∩B )={c };

(2)(B - A )={{a }}; (3)(A ∩B )×B={, < c ,c >}

2.设A ={0,1,2,3,4,5,6},R ={|x ∈A ,y ∈A 且x +y <1},S ={|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R ?S ,R -1,S -1,r (R ).

解:R ={<0,0>} S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} R ?S ={<0,0>,<0,1>,<0,2>,<0,3>}

R -1={<0,0>} S -1= S ) r (R )=I A .

3.图G =,其中V ={ a ,

b ,

c ,

d ,

e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试

(1)画出G 的图形; (2)写出G 的邻接矩阵;

(3)求出G 权最小的生成树及其权值.

解:(1)G 的图形表示为:

(3分)

(2)邻接矩阵:

???

??

??

?

????????0111110110110011100110110 (6分)

(3)粗线表示最小的生成树,

权为7:

4.设图G =,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试

(1) 画出G 的图形表示; (2) 求出每个结点的度数; (3) 画出图G 的补图的图形. 解:(1)关系图

(2)deg(v 1)=2 deg(v 2)=3 deg(v 3)=4

deg(v 4)=3 deg(v 5)=2

(3)补图

5.设集合A ={1,2,3,4},R ={|x , y ∈A ;|x -y |=1或x -y =0},试

(1)写出R 的有序对表示; (2)画出R 的关系图;

(3)说明R 满足自反性,不满足传递性.

解:(1)R ={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<2,3>,<3,2>,<3,4>,<4,3>} (3分) (2)关系图为

(3)因为<1,1>,<2,2>,<3,3>,<4,4>均属于R ,即A 的每个元素构成的有序对均在R 中,故R 在A 上是自反的。

因有<2,3>与<3,4>属于R ,但<2,4>不属于R ,所以R 在A 上不是传递的。

??

? ? 1 2 3

4 v 1

v 2

v 3

v 4

v 5 ο

ο

ο

ο

ο

v 1 v 2 v 3

v 4 v 5

ο

ο

ο ο ο

6.设集合A ={1, 2, 3},R ={<1,1>, <2,1>,<3,1>},S ={<1,2>, <2,2>}试计算 (1)R ?S ; (2)R -1; (3)r (R ).

解: (1)R ?S =={<1,2>, <2,2>,<3,2>}; (4分)

(2)R -1={<1,1>, <1,2>, <1,3> }; (8分) (3)r (R )={<1,1>, <2,2> , <3,3>, <2,1>,<3,1>}

7、求出如图一所示赋权图中的最小生成树(要求写出求解步骤),并求此最小生成树

的权.

解 用Kruskal 算法求产生的最小生成树.步骤为:

1),(71=v v w 选711v v e = 3),(43=v v w 选432v v e = 4),(72=v v w 选723v v e = 9),(73=v v w 选734v v e =

18),(54=v v w 选545v v e =

22),(61=v v w 选616v v e = (6分)

最小生成树如图四所示:

(9分)

图四

最小生成树的权为:w (T )=22+1+4+9+3+18=57. (12分)

8.试画一棵带权为2, 3, 3, 4, 5,的最优二叉树,并计算该最优二叉树的权. 解: 最优二叉树如图二所示.

(10分)

图二

ο ο

ο ο ο ο ο ο ο 2 3 3 4 5 5 10 7 17

权为2?3+3?3+3?2+4?2+5?2=39

9.设谓词公式),()),,(),((z y yC z y x zB y x A x ?∧?∧?,试

(1)写出量词的辖域; (2)指出该公式的自由变元和约束变元.

(1)?x 量词的辖域为)),,(),((z y x zB y x A ?∧, (2分)

?z 量词的辖域为),,(z y x B , (4分) ?y 量词的辖域为),(z y C . (6分) (2)自由变元为)),,(),((z y x zB y x A ?∧中的y ,以及),(z y C 中的z (9分) 约束变元为)),,(),((z y x zB y x A ?∧中的x 与(,,)B x y z 中的z ,以及(,)C y z 中的y . 10.设谓词公式),,()(),()(z y x Q z y x P x ?→?,试

(1)写出量词的辖域; (2)指出该公式的自由变元和约束变元. (1)?x 量词的辖域为),(y x P , (3分)

?z 量词的辖域为),,(z y x Q , (6分) (2)自由变元为公式中的y 与),,(z y x Q 中的x , (9分)

约束变元为),(y x P 的x 与),,(z y x Q z .

11.求命题公式(P ∨Q )→(R ∨Q ) 的主析取范式、主合取范式. 解:

主析取范式(极小项析取):

(?P ∧?Q ∧?R )∨(?P ∧?Q ∧R )∨(?P ∧Q ∧?R )∨(?P ∧Q ∧R )

∨(P ∧?Q ∧R )∨(P ∧Q ∧?R )∨(P ∧Q ∧R )

主合取范式(极大项合取):?P ∨Q ∨R

12.求(P ∨Q )→(R ∨Q )的析取范式,合取范式.

解:(P ∨Q )→(R ∨Q )

??(P ∨Q )∨(R ∨Q ) (4分) ?(?P ∧?Q )∨(R ∨Q )

?(?P ∨R ∨Q )∧(?Q ∨R ∨Q )

?(?P∨R∨Q) 析取、合取范式

六、证明题(本题共8分)

1.试证明集合等式A? (B?C)=(A?B) ? (A?C).

证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x∈A 且x∈B或x∈A且x∈C,

也即x∈A∩B或x∈A∩C,即x∈T,所以S?T.

反之,若x∈T,则x∈A∩B或x∈A∩C,

即x∈A且x∈B 或x∈A且x∈C

也即x∈A且x∈B∪C,即x∈S,所以T?S.

因此T=S.

2.试证明(?x)(P(x)∧R(x))?(?x)P(x)∧(?x)R(x).

证明:

(1)(?x)(P(x)∧R(x))P

(2)P(a)∧R(a)ES(1)

(3)P(a)T(2)I

(4)(?x)P(x)EG(3)

(5)R(a)T(2)I

(6)(?x)R(x)EG(5)

(7)(?x)P(x)∧(?x)R(x)T(5)(6)I

华南农业大学 离散数学 期末考试2013试卷及答案

华南农业大学期末考试试卷(A 卷) 2013-2014学年第 一 学期 考试科目: 离散结构 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 ①本试题分为试卷与答卷2部分。试卷有四大题,共6页。 ②所有解答必须写在答卷上,写在试卷上不得分。 一、选择题(本大题共 25 小题,每小题 2 分,共 50 分) 1、下面语句是简单命题的为_____。 A 、3不是偶数 B 、李平既聪明又用功 C 、李平学过英语或日语 D 、李平和张三是同学 2、设 p:他主修计算机科学, q:他是新生,r:他可以在宿舍使用电脑,下列命题“除非他不是新生,否则只有他主修计算机科学才可以在宿舍使用电脑。”可以符号化为______。 A 、r q p →?∧? B 、r q p ?→∧? C 、r q p →?∧ D 、r q p ∧→ 3、下列谓词公式不是命题公式P →Q 的代换实例的是______。 A 、)()(y G x F → B 、),(),(y x yG y x xF ?→? C 、))()((x G x F x →? D 、)()(x G x xF →? 4、设个体域为整数集,下列公式中其值为 1的是_____。 A 、)0(=+??y x y x B 、)0(=+??y x x y C 、)0(=+??y x y x D 、)0(=+???y x y x

2 5、下列哪个表达式错误_____。 A 、 B x xA B x A x ∧??∧?)())(( B 、B x xA B x A x ∨??∨?)())(( C 、B x xA B x A x →??→?)())(( D 、)())((x xA B x A B x ?→?→? 6、下述结论错误的是____。 A 、存在这样的关系,它可以既满足对称性,又满足反对称性 B 、存在这样的关系,它可以既不满足对称性,又不满足反对称性 C 、存在这样的关系,它可以既满足自反性,又满足反自反性 D 、存在这样的关系,它可以既不满足自反性,又不满足反自反性 7、集合A 上的关系R 为一个等价关系,当且仅当R 具有_____。 A 、自反性、对称性和传递性 B 、自反性、反对称性和传递性 C 、反自反性、对称性和传递性 D 、反自反性、反对称性和传递性 8、下列说法不正确的是:______。 A 、R 是自反的,则2R 一定是自反的 B 、R 是反自反的,则2R 一定是反自反的 C 、R 是对称的,则2R 一定是对称的 D 、R 是传递的,则2R 一定是传递 9、设R 和S 定义在P 上,P 是所有人的集合,=R {x P y x y x ∧∈><,|,是y 的父亲},=S {x P y x y x ∧∈><,|,是y 的母亲},则关系{y P y x y x ∧∈><,|,是的x 外祖父}的表达式是:______。 A 、11--R R B 、11--S R C 、11--S S D 、11--R S 10、右图描述的偏序集中,子集},,{f e b 的上界为_____。 A 、c b , B 、b a , C 、b D 、c b a ,, 11、以下整数序列,能成为一个简单图的顶点度数序列的是_____。 A 、1,2,2,3,4,5

吉林大学离散数学精品试卷

2006-2007学年第2学期 2005级《离散数学2》期末考试试题(A卷) 考试时间:2007年6月班级_______________________ 学号_____________________ 姓名_____________________ 请将答案写在答题纸上,写明题号,不必抄题,字迹工整、清晰; 请在答题纸和试题纸上都写上你的班级,学号和姓名,交卷时请将试题纸、答题纸和草纸一并交上来。 一.综合体(30分,每题3分) 1. 求( 1 3 5 ) (2 5 4 ) (3 4 ) 2. 只有两个生成元的循环群一定是有限循环群吗?并说明理由。 3. 有限循环群中是否一定存在周期与群的元数相等的元素? 4. 下面哪个是域GF( 16)的真子域 (A)GF (6) ;(B)GF ⑷;(C)GF(8);(D)GF(16) 5. 有限布尔代数的元素个数必定是如下哪个形式? (A)2n;(B)n 2 ;(C)2 n;(D)4n. 6. 下列代数系统(S, *)中,哪个是群? (A) S={0,1,3,5},* 是模7的乘法;(B) S是有理数集合,*运算是普通乘法; (C) S是整数集合,*是普通乘法;(D) S={1,3,4,9},* 是模11的乘法。 7. 设A={0,1,2,3,4},运算为模5加法,请给出A的所有子群。 8. n元恒等置换是奇置换还是偶置换?对换呢? 9?请给出一个有余,但不是分配格的例子。 10.设R是模12的整数环,R={0,1,2,…,11},下面哪一个是极大理想: (A) 6R; (B)2R; (C)4R; (D)8R 二.计算题(25分,每题5分) 1. 计算分圆多项式①24(X). 2. 设(Z,+)为整数加法群,(C*,??)为非零复数的乘法群,令 f: n -i n ,是Z到C*中的同态映射,请求出f的同态核。 3. 在R上求出x+2除2X5+4X3+3X2+1所得的商式和余式。 4. 设G是3次对称群,H是由I和(13)作成的子群,求H得所有右陪集。 5. 设A={0,1,2,3,4,5}, 运算为模6加法,请给出A中所有元素的周期。 三.(10分)证明或者反驳:f(x)=3x 5+5X2+1 四.(10分)设(G, *)是群,(A, *)和(B,*)是它的两个子群,C={a*b|a € A, b€ B}.证明:若*满足交换律,则(C, *)也是(G,*)的子群。 五.(10分)设Z是整数集合,X={(a,b)|a,b € Z},定义X上的二元运算①和。 如下:对任意(ab) ,(a 2,b2)€ X,有: (a1b"e (a2,b2)= (a+a?,b1+b2), (a1bJ O (a2,b2)= (ax a2,b 1X b),其中,+,x分别是整数加法与乘法。 证明:(X,?,O)是环,如果此环有零因子请给出它们

离散数学(本科)(

《离散数学》复习资料 2014年12月 一、单项选择题(每小题3分,本题共15分) 1.若集合A ={1,2},B ={1,2,{1,2}},则下列表述正确的是( A ). A . A ? B ,且A ∈B B .B ?A ,且A ∈B C .A ?B ,且A ?B D .A ?B ,且A ∈B 2.设有向图(a )、(b )、(c )与(d )如图一所示,则下列结论成立的是 ( D ). 图一 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 3.设图G 的邻接矩阵为 ??????? ?????????0101010010000011100100110 则G 的边数为( B ). A .6 B .5 C .4 D .3 4.无向简单图G 是棵树,当且仅当( A ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 5.下列公式 ( C )为重言式. A .?P ∧?Q ?P ∨Q B .(Q →(P ∨Q )) ?(?Q ∧(P ∨Q )) C .(P →(?Q →P ))?(?P →(P →Q )) D .(?P ∨(P ∧Q )) ?Q 6.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={, },R 2={, , },R 3={, },则( B )不是从A 到B 的函数. A .R 1和R 2 B .R 2 C .R 3 D .R 1和R 3 7.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 ( B ). A .8、2、8、2 B .无、2、无、2 C .6、2、6、2 D .8、1、6、1 8.若集合A 的元素个数为10,则其幂集的元素个数为( A ). A .1024 B .10 C .100 D .1 9.设完全图K n 有n 个结点(n ≥2),m 条边,当( C )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题 一、填空题(每空2分,共20分) 1、集合A上的偏序关系的三个性质是、 和。 2、一个集合的幂集是指。 3、集合A={b,c},B={a,b,c,d,e},则A?B= 。 4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。 5、若A是2元集合, 则2A有个元素。 6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则 2*3= 。 7、设A={a, b,c,d }, 则∣A∣= 。 8、对实数的普通加法和乘法,是加法的幂等元, 是乘法的幂等元。 9、设a,b,c是阿贝尔群的元素,则-(a+b+c)= 。 10、一个图的哈密尔顿路是。 11、不能再分解的命题称为,至少包含一个联结词的命题称 为。 12、命题是。 13、如果p表示王强是一名大学生,则┐p表示。 14、与一个个体相关联的谓词叫做。 15、量词分两种:和。 16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B 的。 17、集合上的三种特殊元是、 及。 18、设A={a, b},则ρ(A) 的四个元素分别 是:,,,。

19、代数系统是指由及其上的或 组成的系统。 20、设是代数系统,其中是*1,*2二元运算符,如果*1,*2都满 足、,并且*1和*2满足,则称是格。 21、集合A={a,b,c,d},B={b },则A \ B= 。 22、设A={1, 2}, 则∣A∣= 。 23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示 以。 24、一个图的欧拉回路是。 25、不含回路的连通图是。 26、不与任何结点相邻接的结点称为。 27、推理理论中的四个推理规则 是、、、。 二、判断题(每题2分,共20分) 1、空集是唯一的。 2、对任意的集合A,A包含A。 3、恒等关系不是对称的,也不是反对称的。 4、集合{1,2,3,3}和{1,2,2,3}是同一集合。 5、图G中,与顶点v关联的边数称为点v的度数,记作deg(v)。 6、在实数集上,普通加法和普通乘法不是可结合运算。 7、对于任何一命题公式,都存在与其等价的析取范式和合取范式。 8、设(A,*)是代数系统,a∈A,如果a*a=a,则称a为(A,*)的等幂元。 9、设f:A→B,g:B→C。若f,g都是双射,则gf不是双射。 10、无向图的邻接矩阵是对称阵。 11、一个集合不可以是另一个集合的元素。 12、映射也可以称为函数,是一种特殊的二元关系。 13、群中每个元素的逆元都不是惟一的。

离散数学期末考试试卷(A卷)

离散数学期末考试试卷(A卷) 一、判断题:(每题2分,共10分) (1) (1) (2)对任意的命题公式, 若, 则 (0) (3)设是集合上的等价关系, 是由诱导的上的等价关系,则。(1) (4)任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价。 (0) (5)设是上的关系,分别表示的对称和传递闭包,则 (0) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为()。 (2) 写出的对偶式()。 (3)设是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(),同学小王所在 的等价类为()。 (4)设是上的关系,则满足下列性质的哪几条:自反的,对称的,传递的,反自反的,反对称的。 () (5)写出命题公式的两种等价公式( )。 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题(4)(5)(6)。(12分) (1)(1)仅当今晚有时间,我去看电影。 (2)(2)假如上午不下雨,我去看电影,否则就在家里读书。 (3)你能通你能通过考试,除非你不复习。 (4)(4)并非发光的都是金子。 (5)(5)有些男同志,既是教练员,又是国家选手。 (6)(6)有一个数比任何数都大。 四、设,给定上的两个关系和分别是

(1)(1)写出 和 的关系矩阵。(2)求 及 (12分) 五、求 的主析取范式和主合取范式。(10分) 六、设 是 到 的关系, 是 到 的关系,证明: (8分) 七、设 是一个等价关系,设 对某一个 ,有 ,证明: 也是一个等价关系。(10分) 八、(10分)用命题推理理论来论证 下述推证是否有效? 甲、乙、丙、丁四人参加比赛,如果甲获胜,则乙失败;如果丙获胜,则乙也获 胜,如果甲不获胜,则丁不失败。所以,如果丙获胜,则丁不失败。 九、(10分) 用谓词推理理论来论证下述推证。 任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑 自行车(可能这两种都喜欢)。有的人不爱骑自行车,因而有的人不爱步行 (论 域是人)。 十、(8分) 利用命题公式求解下列问题。 甲、乙、丙、丁四人参加考试后,有人问他们,谁的成绩最好, 甲说:“不是我,”乙说:“是丁,”丙说:“是乙,” 丁说:“不是我。” 四人的回答只有一人符合实际,问若只有一人成绩最 好,是谁? 离散数学期末考试试卷答案(A 卷) 一、判断题:(每题2分,共10分) (1)}}{{}{x x x -∈ ( ∨) (2) 对任意的命题公式C B A ,,, 若 C B C A ∧?∧, 则B A ? ( ? ) (3)设R 是集合A 上的等价关系, L 是由 R A 诱导的A 上的等价关系,则L R =。 ( ∨ ) (4) 任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等 价。 ( ? ) (5)设R 是A 上的关系,)(),(R t R s 分别表示R 的对称和传递闭包,则 )()(R st R ts ? ( ? ) 二、填空题:(每题2分,共10分)

大学本科高等数学《离散数学》试题及答案

本科高等数学离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

大学离散数学期末重点知识点总结(考试专用)

1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (?x)((Ax)∨(Bx)) <=>( ?x)(Ax)∨(?x)(Bx) (?x)((Ax)∧(Bx)) <=>(?x)(Ax)∧(?x)(Bx) —┐(?x)(Ax) <=>(?x)┐(Ax) —┐(?x)(Ax) <=>(?x)┐(Ax) (?x)(A ∨(Bx)) <=>A ∨(?x)(Bx) (?x)(A ∧(Bx)) <=>A ∧(?x)(Bx) (?x)((Ax)→(Bx)) <=>(?x)(Ax)→(?x)(Bx) (?x)(Ax) →B <=>(?x) ((Ax)→B) (?x)(Ax) →B <=>(?x) ((Ax)→B) A →(?x)(Bx) <=>(?x) (A →(Bx)) A →(?x)(Bx) <=>(?x) (A →(Bx)) (?x)(Ax)∨(?x)(Bx) =>(?x)((Ax)∨(Bx)) (?x)((Ax)∧(Bx)) =>(?x)(Ax)∧(?x)(Bx) (?x)(Ax)→(?x)(Bx) =>(?x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f og=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f og 也是单射; ②如果f,g 都是满射,则f og 也是满射; ③如果f,g 都是双射,则f og 也是双射; ④如果f og 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:,,满足f(a*b)=f(a)^f(b),则f 为由的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b => c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度; ②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n =n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;

太原理工大学离散数学试题

一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=__{3}__________________; ρ(A) - ρ(B)=___________________{3},{1,3},{2,3},{123}______ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = _____2^(n^2)_____________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是__自反,对称,传递 ____________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。 16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公

中央电大离散数学(本科)考试试题

,. 中央电大离散数学(本科)考试试题 一、单项选择题(每小题3分,本题共15分) 1.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( a ). A.A?B,且A∈B B.B?A,且A∈B C.A?B,且A?B D.A?B,且A∈B 2.设有向图(a)、(b)、(c)与(d)如图一所示,则下列结论成立的是( d ). 图一 A.(a)是强连通的B.(b)是强连通的 C.(c)是强连通的D.(d)是强连通的 3.设图G的邻接矩阵为 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 1 1 1 则G的边数为( b ). A.6 B.5 C.4 D.3 4.无向简单图G是棵树,当且仅当( a ). A.G连通且边数比结点数少1 B.G连通且结点数比边数少1 C.G的边数比结点数少1 D.G中没有回路. 5.下列公式( c )为重言式. A.?P∧?Q?P∨Q B.(Q→(P∨Q)) ?(?Q∧(P∨Q)) C.(P→(?Q→P))?(?P→(P→Q)) D.(?P∨(P∧Q)) ?Q 1.若集合A={a,b},B={ a,b,{ a,b }},则( a ). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R的性质为( b ).A.自反的B.对称的 C.传递且对称的D.反自反且传递的 3.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有( b )个. A.0 B.2 C.1 D.3 4.如图一所示,以下说法正确的是( d ) . A.{(a, e)}是割边B.{(a, e)}是边割集 C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集 图一 5.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为( c ).A.(?x)(A(x)∧B(x)) B.┐(?x)(A(x)∧B(x)) C.┐(?x)(A(x) →B(x)) D.┐(?x)(A(x)∧┐B(x)) 1.设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={, },R2={, , },R3={, },则( b )不是从A到B的函数. A.R1和R2B.R2C.R3D.R1和R3 2.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( b ). A.8、2、8、2 B.无、2、无、2 C.6、2、6、2 D.8、1、6、1 3.若集合A的元素个数为10,则其幂集的元素个数为( a ). A.1024 B.10 C.100 D.1 4.设完全图K n 有n个结点(n≥2),m条边,当( c )时,K n 中存在欧拉回路.

相关文档
最新文档