单键触摸感应芯片 SJT5101

单键触摸感应芯片 SJT5101
单键触摸感应芯片 SJT5101

●1个电容式触摸感应按键

●工作电压:2.5V~5.5V

●功率消耗:VDD=3V无负载

典型值1.5uA,最大值3.0uA

●按键的灵敏度均可通过外部电容自由调节

●提供直接模式和触发模式,输出状态可选

●环境温度湿度变化自动适应功能SJT5101SOT-23

●超强的抗EMC干扰能力

1、应用范围:

家用电器、消费类电子产品、安防和楼宇产品、医疗保健产品、手持装置、工业控制、照明产品、玩具以及计算机周边等等。用于取代薄膜、按钮以及普通开关。

2、简介:

SJT5101是一颗低成本高可靠度的电容式触摸感应IC,提供1个触摸感应通道;

外围元件少,设计简单,只需极少的元件即可完成硬件设计。提供2种输出模式,输出高/低电平可选。触摸感应按键的灵敏度,可根据需要通过调节外部电容(CS)的容值进行调整,增加了产品的可操作性,使设计更加灵活多变。

SJT5101具备环境温度及湿度的自动适应能力,不会受天气变化影响其灵敏度及工作稳定性。超低的工作电流使产品更加省电,特别适合于要求省电的产品。涵盖了低EMI/EMC及高抗噪声电路设计,可防止来自外界的无线电、磁场、高压等干扰源,增强抗干扰能力。

3、引脚说明:

管脚序号名称类型功能描述

1OUT O输出端口

2VSS P接地端

3SNS I/O感应检测脚

4OPNA I-PL有效电平选项输入脚

5VDD P电源接入脚

6OPNB I-PL功能选项输入脚

4、极限参数:

电源供应电压:VSS-0.3V~VSS+6.0V储存温度:-50oC~+125oC

端口输入电压:VSS-0.3V to VDD+0.3V工作温度:-40oC~+85oC

CS感应电容范围:0pF~20pF抗静电强度HBM:4KV(min)5、直流电气特性(Ta=25oC):

符号参数

测试条件

最小值典型值最大值单位VDD条件

VDD工作电压—— 2.0 3.3 5.5V

IDD工作电流3V

无负载— 1.5 3.0

uA

5V— 2.0 4.0

VIL输入口高电压—0—0.2V VIH输入口低电压—0.8— 1.0V

IOL输出口灌电流3V

VOL=0.6V 48—mA

5V1020—mA IOH输出口源电流3V VOL=2.4V-2-4—mA

5V-5-10—mA

6、参考设计图:

输出模式设置:

OPNB OPNA OUT输出状态

悬空悬空直接模式,平时为低,触摸生效时输出高电平

悬空VDD直接模式,平时为高,触摸生效时输出低电平

VDD悬空触发模式,上电状态为0,触摸一次电平翻转一次VDD VDD触发模式,上电状态为1,触摸一次电平翻转一次

7、设计注意事项

7.1、在PCB 上,感应焊盘距离IC 管脚的连线(感应线)越短越好,感应线应距离覆

铜或其他走线要有1mm 以上,线径选0.15mm~0.2mm。触摸板尽量覆铜。7.2、感应焊盘的大小需依照面板材质、面板厚度等参数设定,可参下述对应表:

7.3、覆盖在PCB 上的面板不能是导电类材料或金属成分,包括表面的涂料。更不能将

整个金属壳作为感应电极。

7.4、VDD 及VSS 必须用电容器C2做滤波,在布线时C2必须靠近SJT5101放置。7.5、灵敏度调节电容CS 的取值范围是0pF~20pF;CS 的值越小,灵敏度则越高,其选

择要根据PCB 的实际应用进行适度调节。

7.6、灵敏度电容CS 必须使用温度系数小且稳定性佳的电容,如X7R、NPO 等。对于触

摸应用,推荐使用NPO 材质电容,以减少因温度变化对灵敏度产生的影响。在布线时,灵敏度调节电容一定要远离功率元器件、发热体等。

7.7、覆铜注意事项:若触摸板附近会有无线电信号或高压器件或磁场,请用20%的网状接地

铜箔覆铜,但感应焊盘下面、SJT5101附近尽量避免覆铜。覆铜需距离感应焊盘4mm ,距离感应线2mm 以上。

7.8、感应焊盘可是不规则形状,比如:椭圆形、三角形及其他不规则形状。感应焊盘中间允

许穿孔,装饰LED 指示灯等用途。若感应焊盘无法靠近面板,可用弹簧将感应线牵引到面壳上,弹簧上方需加一金属片作为感应电极。不可用普通导线连接感应线和感应电极。

感应电极面积亚克力普通玻璃ABS 6mm ×6mm 1.0mm 2.0mm 1.0mm 7mm ×7mm 2.0mm 3.0mm 2.0mm 8mm ×8mm 3.0mm 4.0mm 3.0mm 10mm ×10mm 4.5mm 6.0mm 4.5mm 12mm ×12mm 6.0mm 8.0mm 6.0mm 15mm ×15mm

8.0mm

12mm

8.0mm

8、封装信息

9、附图:

9.1、参考应用原理图(单键触摸开关):

9.2、金属片/金属体的参考电路:

触摸感应按键设计指南

触摸感应按键设计指南 张伟林 2009-12-09 sales@soujet.com http://www.soujet.com

1. 概述 对触摸屏与触摸按键在手机中的设计与应用进行介绍,对设计的经验数据进行总结。达到设计资料和经验的共享,避免低级错误的重复发生。 2. 触摸按键设计指导 2.1 触摸按键的功能与原理 2.1.1触摸按键的功能 触摸按键起keypad 的作用。与keypad 不同的是,keypad 通过开关或metaldome 的通断发挥作用,触摸按键通过检测电容的变化,经过触摸按键集成芯片处理后,输出开关的通断信号。 2.1.2触摸按键的原理 如下图,是触摸按键的工作原理。在任何两个导电的物体之间都存在电容,电容的大小与介质的导电性质、极板的大小与导电性质、极板周围是否存在导电物质等有关。PCB 板(或者FPC )之间两块露铜区域就是电容的两个极板,等于一个电容器。当人体的手指接近PCB 时,由于人体的导电性,会改变电容的大小。触摸按键芯片检测到电容值大幅升高后,输出开关信号。 在触摸按键PCB 上,存在电容极板、地、走线、隔离区等,组成触摸按键的电容环境,如下图所示。 Finger Time Capacitance C

2.1.3 触摸按键的按键形式 触摸按键可以组成以下几种按键 z单个按键 z条状按键(包括环状按键) z块状按键 单个按键 条状按键块状按键 2.1.4触摸按键的电气原理图如下:

在PCB板上的露铜区域组成电容器,即触摸按键传感器。传感器的信号输入芯片,芯片经过检测并计算后,输出开关信号并控制灯照亮与否。灯构成触摸按键的背光源。 2.2 触摸按键的尺寸设计 按键可以是圆形、矩形、椭圆形或者任何其他的形状。其中以矩形和圆形应用最为普遍,如图所示: 通常在按键的中间挖空,使PCB下方的光线可以通过挖空导到PCB上方,照亮LENS上的字符。根据ADI公司的推荐,按键大小尺寸如下表: 按键的挖空尺寸与按键的大小相关,如下表

触摸式按键的原理

现在市场上有不少的MP3都采用了触摸式的按键,带给消费者“飞”同寻常的操作体验,例如苹果公司的iPod系列,魅族公司的mini系列,台电的C280、新品T39以及微星的8890T。 这些触摸式操作的MP3在按键上的最大的区别是有些是只有轻轻点触就有反应并伴着或红或蓝的背光点触式触摸键,有些是要在按键上滑动才可以选择菜单而且没有背光的滑动式触摸键。 这些差别的原因是它们的工作原理不同,触摸式按键可分为两大类:电阻式触摸按键与电容式感应按键,即滑动式按键和点触式按键。 ●电阻式按键 电阻式的触摸按键原理非常类似于触摸屏技术,需要由多块导电薄膜上面按照按键的位置印制成的,因此这种按键需要在设备表面贴一张触摸薄膜。电阻式触摸屏一直由于其低廉的价格而深受厂商的喜爱,但是由于导电薄膜的耐用性较低,并且也会降低透光性,因此已经被越来越多的厂家所抛弃。 ●电容式按键 电容式触摸按键主要是为了克服电阻屏的耐用性所提出的,电容式触摸按键的结构与电阻式的相似,但是其采用电容量为判断标准。简单来说,就是一个IC控制的电路,该电路包括一个能放置在任何介质面板后的简单阻性环形电极组件,因此,按键的操作界面可以是一整块普通绝缘体(如有机玻璃一般材料都可),不需要在界面上挖孔,按键在介质下面,人手接近界面和下面的电极片形成电容,靠侦测电容量的 变化来感应。温度,静电,水,灰尘等外界因素一般不会影响,界面没有太多要求,可以加上背光,音效等,靠人手感应,整个界面没有按键的存在,便于清洁,让产品在外观上更加高档美观,由于按键没有接点,使用寿命也是非常的长久,一般来说是半永久性。

根据其原理,该按键对外观工艺方面有一些特别的要求: 1、因为按键和lens是一个整体,而按键又必须透光,所以整个Lens必须是透明件,所以一般就是用PMM A或PC; 2、Lens上不能有金属件或者带有金属效果的喷漆,以免影响按键的灵敏度; 3、按键必须做的足够的宽大,做小了很容易产生误操作。因为它不像机械式的按键,只要避免联动就可以了,它只要感应到了就产生动作。另外还要考虑到打电话的时候,按键正好贴在人脸上,也会有感应动作,需要相应的方案解决; 4、因为是一大片Lens,所以必须考虑Lens的工艺,一般为正面IML,因为背面肯定有结构。这就限制了Lens上的一些开孔的大小和Lens的厚度要求。 另外,在按键的结构上还要考虑感应PCB的贴装方式对感应效果、整机装配的影响以及按键符号的透光的解决方案。

电容式触摸感应IC工作原理

电容式触摸感应IC工作原理 任何两个导电的物体之间都存在着感应电容,一个按键即一个焊盘与大地也可构成一个感应电容,在周围环境不变的情况下,该感应电容值是固定不变的微小值。当有人体手指靠近触摸按键时,人体手指与大地构成的感应电容并联焊盘与大地构成的感应电容,会使总感应电容值增加。电容式触摸按键IC在检测到某个按键的感应电容值发生改变后,将输出某个按键被按下的确定信号。电容式触摸按键因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰会更加敏感,因此触摸按键设计、触摸面板的设计以及触摸IC的选择都十分关键。 一,触摸PAD设计 1. 触摸PAD材料 触摸PAD可以用PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等。不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。当用平顶圆柱弹簧时,触摸线和弹簧连接处的PCB,镂空铺地的直径应该稍大于弹簧的直径,保证弹簧即使被压缩到PCB板上,也不会接触到铺地。 2. 触摸PAD形状 原则上可以做成任意形状,中间可留孔或镂空。作者推荐做成边缘圆滑的形状,可以避免尖端放电效应。一般应用圆形和正方形较常见。 3. 触摸PAD面积大小 按键感应盘面积大小:最小4mm×4mm,最大30mm×30mm。实际面积大小根据灵敏度的需求而定,面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状和面积应该相同,以保证灵敏度一致。通常在绝大多数应用里,12mm×12mm是个典型值。

4. 触摸PAD之间距离 各个触摸PAD间的距离要尽可能的大一些(大于5mm),这样可以减少它们形成的电场之间的相互干扰。当用PCB铜箔做触摸PAD时,若触摸PAD间距离较近(5mm~10mm),触摸PAD必须用铺地隔离。如果各个触摸PAD距离较远,也应该尽可能的铺地隔离。适当拉大各触摸PAD间的距离,对提高触摸灵敏度有一定帮助。 三、触摸面板选择 1. 触摸面板材料 面板必须选用绝缘材料,可以是玻璃、聚苯乙烯、聚**乙烯(pvc)、尼龙、树脂玻璃等,按键正上方1mm以内不能有金属,触摸按键50mm以内的金属必须接地,否则金属会影响案件的灵敏度。在生产过程中,要保持面板的材质和厚度不变,面板的表面喷涂必须使用绝缘的涂料。 2. 触摸面板厚度 通常面板厚度设置在0~10mm之间。不同的材料对应着不同的典型厚度,例如亚克力材料一般设置在2mm~4mm之间,普通玻璃材料一般设置在3mm~6mm之间。 3. 双面胶 触摸按键PCB与触摸面板通过双面胶粘接,双面胶的厚度取0.1~0.15mm比较合适,推荐采用3M468MP,其厚度0.13mm。要求PCB与面板之间没有空气,因为空气的介电系数为1,与面板的介电系数差异较大。空气会对触摸按键的灵敏度影响很大。所以双面胶与面板,双面胶与PCB粘接,都是触摸按键生产装配中的关键工序,必须保证质量。

FTC334E 触摸芯片

F T C334E触控按键芯片 概述: 触摸感应检测按键是近年来迅速发展起来一种新型按键。它可以穿透绝缘材料外壳(玻璃、塑料等等),通过检测人体手指带来的电荷移动,而判断出人体手指触摸动作,从而实现按键操作。电容式触摸按键不需要传统按键的机械触点,也不再使用传统金属触摸的人体直接接触金属片而带来的安全隐患以及应用局限。电容式感应按键做出来的产品可靠耐用,美观时尚,材料用料少,便于生产安装以及维护,取代传统机械按钮键以及金属触摸。 F T C334E是专业的电容式触摸按键处理芯片,采用最新高精度数字电容测量技术,能做到防各种干扰、防面板水珠影响、适应各种电源供电等。能支持6个触摸按键功能,输出采用6通道独立输出,带灵敏度选项口。采用专用电路处理信号,能够轻松过E M S(C/S)方面的测试!。适用各种E M S测试要求高的电子产品的应用。 特点: —超强抗E M C干扰,能防止功率大到5W的对讲机等发射设备天线靠近触摸点干扰。 —极简单外围电路,最简单的应用外围只需要一颗参考电容。(视客户要求如需要提高E S D 和E M C则需每个按键接1颗电阻) —防水淹干扰,成片水珠覆盖在触摸面板上不影响按键的有效识别。 —超宽工作电压范围3.0V—5.5V,能应用在目前广泛应用的3.3V系统和3.0V电池系统。—电源电压变化适应功能,内置电压补偿电路,电源电压在工作范围内变化时自动补偿,不影响芯片正常工作。 —环境温度湿度变化自动适应,环境缓慢适应技术的应用,使得芯片无限长时间连续工作不会出现灵敏度差异。 —可调灵敏度,可以通过外接电容容量来调整灵敏度以适应不同的设计。 —提供二进制编码直接输出接口,方便用户系统对接。 —上电快速初始化,在300m S左右内芯片就可以检测好环境参数包括自动适应,按键检测功能开始工作。 —灵敏度自动适应,各按键引线如果因为长短不一造成寄生电容大小不同,能够自动检测并适应,不同按键灵敏度做到一致。 —S O P16L封装

ti触摸屏控制芯片使用技巧

TOUCH SCREEN CONTROLLER TIPS By Skip Osgood, CK Ong, and Rick Downs Burr-Brown makes a number of specialized analog-to-digi-tal converters for touch screen applications. The ADS7843,ADS7845, and the new ADS7846 converters all are de-signed for specific touch screen applications. Applications using these devices can benefit greatly from the tips pre-sented in this application bulletin. Most of the examples discuss the ADS7843, but the techniques shown are appli-cable to all of the devices. We begin by looking at the theory of operation of a resistive touch screen, and using these specialized A/D converters with such a screen. Techniques are presented for improving accuracy and minimizing errors; the operation of the pen interrupt line (PENIRQ) is explored, ESD protection meth-ods for the converters, and issues surrounding interfacing these converters to popular microprocessors are discussed.RESISTIVE TOUCH SCREENS A resistive touch screen works by applying a voltage across a resistor network and measuring the change in resistance at a given point on the matrix where a screen is touched by an input stylus, pen, or finger. The change in the resistance ratio marks the location on the touch screen. The two most popular resistive architectures use 4-wire or 5-wire configurations (as shown in Figure 1). The circuits determine location in two coordinate pair dimensions, al-though a third dimension can be added for measuring pres-sure in 4-wire configurations. THE 4-WIRE TOUCH SCREEN COORDINATE PAIR MEASUREMENT A 4-wire touch screen is constructed as shown in Figure 2.It consists of two transparent resistive layers. The 4-wire touch screen panel works by applying a voltage across the vertical or horizontal resistive network. The A/D converts the voltage measured at the point the panel is touched. A measurement of the Y position of the pointing device is made by connecting the X+ input to a data converter chip, turning on the Y+ and Y– drivers, and digitizing the voltage seen at the X+ input. The voltage FIGURE 1. 4-Wire and 5-Wire Touch Screen Circuits. Four-Wire Five-Wire FIGURE 2. 4-Wire Touch Screen Construction.

电容式触摸按键PCB布线

`电容式触摸按键 1. 电源 A.优先采用线性电源,因为开关电源有所产生的纹波对于触摸芯片来说影响比较大 B.触摸IC的电源采用开关电源时,尽量控制纹波幅度和噪声。在做电源变化时,如果纹波不好控制, 可采用LDO经行转换 C.触摸芯片的电源要与其他的电源分开,可采用星型接法,同时要进行滤波处理。 如果电源干扰的纹波比较大时可以采用如下的方式: 2.感应按键 A. 材料 根据应用场合可以选择PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等 但在安装时不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。 B. 形状: 原则上可以做成任意形状,中间可留孔或镂空。我们推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应 C. 大小 最小4mmX4mm, 最大30mmX30mm,有的建议不要大于15mmX15mm,太大的话,外界的干扰相应的也会增加 D. 灵敏度 一般的感应按键面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状、面积应该相同,以保证灵敏度一致。 灵敏度与外接CIN电容的大小成反比;与面板的厚度成反比;与按键感应盘的大小成正比。 CIN电容的选择: CIN电容可在0PF~50PF选择。电容越小,灵敏度越高,但是抗干扰能力越差。电容越大,灵敏度越低,但是抗干扰能力越强。通常,我们推荐5PF~20PF E. 按键的间距 各个感应盘间的距离要尽可能的大一些(大于5mm),以减少它们形成的电场之间的相互干扰。当用PCB铜箔做感应盘时,若感应盘间距离较近(5MM~10MM),感应盘周围必须用铺地隔离。 如图:各个按键距离比较远,周围空白的都用地线隔开了。但注意地线要与按键保持一定的距离

电容式触摸按键设计指南

Capacitive Touch Sensor Design Guide October 16, 2008 Copyright ? 2007-2008 Yured International Co., Ltd.1YU-TECH-0002-012-1

(3) (3) (5) (9) (11) (11) (17) (20) Copyright ? 2007-2008 Yured International Co., Ltd.2YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.3 YU-TECH-0002-012-1 1. 2. ( ) 3M 468MP NITTO 500 818

Copyright ? 2007-2008 Yured International Co., Ltd.4 YU-TECH-0002-012-1 3. 4. Front Panel Sensor Pad Sensor Pad Electroplating Or Spray Paint Nothing

Copyright ? 2007-2008 Yured International Co., Ltd.5 YU-TECH-0002-012-1 1. (FPC) ITO (Membrane) ITO ITO ( 10K ) FPC ITO MEMBRANE PCB

Copyright ? 2007-2008 Yured International Co., Ltd.6 YU-TECH-0002-012-1 2.ITO LCD ITO ( 10K ) 3. 1mm 8mm ( 8mm X 8mm ) 1mm 8mm X 8mm 2mm 10mm X 10mm 3mm 12mm X 12mm 4mm 15mm X 15mm 5mm 18mm X 18mm ( ) 196.85 mil (5mm) 0.254mm(10mil) 2mm 5mm 2mm

单片机实现触摸按键

感应按键电路分析 感应按键电路分析: 感应按键是刚刚在电磁炉上运用的一种新技术,其主要特点是使电磁炉易清洁,防水性能好。目前在电磁炉上用的感应按键主要有天线感应式及电容式,我们目前用的是利用人体电容的电容式感应按键 感应按键原理如下面的图式; 感应按键电路包括信号产生、信号整形2个单元:首先由信号产生单元产生约几百KHz的高电平占空比约50%的信号;然后信号整形单元对所产生的信号进行整形,整形过程类似于开关电源工作过程;最后将信号送至MCU 的AD口。 当有人体靠近感应按键时,将会形成一个对地的电容在信号整形的高电平期间分流一部分电流,致使整形后的信号下降,并在人体离开前一直维持在下降的电位上;而当人体离开后,整流后的信号又会上升到原来的电位水平。 由于存在电路耦合及寄生电容,所以一般用下降沿和上升沿来识别感应按键的响应动作。

*************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** ************************************************************************************************** 原理图:示意图1,按键AD每个单独检测,不用切换

电容式触摸按键解决方案模板

电容式触摸按键解 决方案

电容式触摸按键解决方案 一、方案简介 在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸按键已被广泛采用。由于其具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统机械按键转向触摸式按键。 触摸按键方案优点: 1、没有任何机械部件,不会磨损,无限寿命,减少后期维护成本。 2、其感测部分能够放置到任何绝缘层(一般为玻璃或塑料材料)的后面,很容易制成与周围环境相密封的键盘。以起到防潮防水的作用。 3、面板图案随心所欲,按键大小、形状任意设计,字符、商标、透视窗等任意搭配,外型美观、时尚,不褪色、不变形、经久耐用。从根本上解决了各种金属面板以及各种机械面板无法达到的效果。其可靠性和美观设计随意性,能够直接取代现有普通面板(金属键盘、薄膜键盘、导电胶键盘),而且给您的产品倍增活力! 4、触摸按键板可提供UART、IIC、SPI等多种接口,满足各种产品接口需求。 二、原理概述 如图1所示在PCB上构建的电容器,电容式触摸感应按键实际上只是PCB上的一小块“覆铜焊盘”,触摸按键与周围的“地信号”构成一个感

应电容,当手指靠近电容上方区域时,它会干扰电场,从而引起电容相应变化。根据这个电容量的变化,能够检测是否有人体接近或接触该触摸按键。 接地板一般放置在按键板的下方,用于屏蔽其它电子产品产生的干扰。此类设计受PCB上的寄生电容和温度以及湿度等环境因素的影响,检测系统需持续监控和跟踪此变化并作出基准值调整。 基准电容值由特定结构的PCB产生,介质变化时,电容大小亦发生变化。 图1 PCB上构建开放式电容器示意图 三、方案实现 该系列电容式触摸按键方案,充分利用触摸按键芯片内的比较器特性,结合外部一个电容传感器,构造一个简单的振荡器,针对传感器上电容的变化,频率对应发生变化,然后利用内部的计时器来测量出该变化,

感应按键原理

电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间内张弛振荡器的周期数。如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。

◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N) 电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x 之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。 ?PCB上开关的大小、形状和配置 ?PCB走线和使用者手指间的材料种类 ?连接开关和MCU的走线特性 我们测试了下图中这12种不同开关。目的是为了发现开关的形状尺寸会如何影响开关的空闲和被接触的状态,还可以发现哪一种开关的空闲电容最大,就不容易被PCB上的寄生电容而影响。测试结果表明,在特定区域中的开关越大且走线越多,则此开关的闲置电容便越高。图中的环状开关具有最低的电容,所以当开关动作时,可显现最大的电容相对变化。

触摸IC在应用上的技术解决办法

触摸IC在应用上的技术问题解决办法 随着科技的发展和现代80-90后对时尚生活的追求,原来绝大部分电子产品如:家用电器,生活电器,环境电器以及其他电子产品的机械式开关正逐渐被新型的触摸开关所代替,原先的电阻式触摸开关也正日益被新型的电容式触摸IC所代替。 但是电子产品的触摸效果是否如我们预想中使用那么便利性和稳定性,其中有很多方面正阻扰它的使用稳定性.比如:无线电波的干扰,触摸屏的厚度太厚,微波炉上的微波干扰,静电干扰,二次上电稳定性差的问题,生活电器里的水渍以及盐水干扰,对讲机辐射干扰,手机辐射干扰,电机马达干扰,高低温环境损坏,湿抹布的误触发。。。。。等等问题都会使得触摸功能的失效和稳定性很差。 但是我们的工程师除了碰到以上硬性的技术问题外,我们还碰到诸如:按键乱码,按键失

灵和失效等等技术问题,在碰到如上问题时,还有另外就是我们工程师做好了测试版以及开模出样品时,还会出现很多问题,这样的问题种类很多,在这里就不一一赘述了,主要还是总结为以下两个问题, 1、按键失灵,发挥不了触摸的效果,这个时候其实已经是对触摸功能的宣判死刑了,如果是机械按揭,可能在机械上修修就能恢复功能,能够继续使用,但是触摸IC却不行,如果要修理一定得把整台机器拆卸后由专业人士才能修理。 2、按键失效,有的时候功能有用,有的时候功能无用,这个时候主要就可能是由于以上测试的结果,可能不能防水或者受了电讯的干扰,原因和种类也比较多。需要我们一个一个得去分析。 本人在从事家电行业触摸按板设计工作8年本人QQ:76581074713189769580的工作经验当中。把在工作当中的一些触摸IC设计经验分享给大家,希望能够帮助更多的电子工程师一起携手共进,解决更多的技术难题。 我们很多工程师除了要选用质量比较可靠和稳定性比较好的IC生产厂家外,在硬件的基础上要做好以下工作: 1、电路设计以IC规格书内的范例电路为基础即可。 2、必须利用稳压IC来确保IC的电源是干净没有杂讯的。 3、感应电极附属的电阻与电容要尽量靠近IC,如果是双面板或是多层板,在电阻与电容 的下方尽量避免通过高频线路、铺设地线、或是比较宽的线路。 4、如果是单层板,感应电极附近不要有高频线路,其它线路也尽量远离感应电极及其连线。如果选用的IC有AKS功能,请尽量采用此功能以减少邻近的感应电极互相干扰。 5、如果没有开启AKS功能,在感应电极及其连线之间加一条地线,也可以减少邻近的感应电极之间的互相干扰,地线必须放置在邻近的两个感应电极的中央,线宽不要超过两个感应电极间距的1/5,或是用地线将感应电极及其连线围绕隔开,但是原则上围绕的地线离的越远越好。 6、从感应电极的附属零件到感应电极的之间的线路以最小线宽来铺设即可,感应电极的连线与其它线路至少简距线宽的5倍以上,感应电极的连线与另一个感应电极的连线之间的距离则是越远越好,最近距离为线宽的2倍以上。

电容触摸式按键设计规范及注意事项

电容触摸式按键设计规范及注意事项 技术研发中心查达新 所有电容式触摸传感系统的核心部分都是一组与电场相互作用的导体。在皮肤下面,人体组织中充满了传导电解质(一种有损电介质)。正是手指的这种导电特性,使得电容式触摸式按键应用于电路中,替代传统的机械式按键操作。 关于电容触摸式按键设计,有下列要求: 1.PCB触摸焊盘 ①.感应按键面积,即焊盘接触面积应不小于手指面积的2/3,可大致设计为5*6mm、6*7mm;且按键间的距离不小于5mm,如下图: ②.连接触摸按键的走线,若是双面板尽可能走按键的背面,走在正面的画需保证离其他按键2mm以上间距; ③.感应按键与覆铜的距离不小于2mm,减少地线的影响; 2.感应按键面壳或外壳 ①.面壳材料只要不含有金属都可以,如:塑胶,玻璃,亚克力等。若面壳喷漆,需保证油漆中不含金属,否则会对按键产生较大影响,可用万用表电阻档测量

油漆表面导电程度,正常不含金属油漆的面壳电阻值应为兆欧级别或无穷大。通常面壳厚度设置在0~10mm之间。不同的材料对应着不同的典型厚度,例如亚克力材料一般设置在2mm~4mm之间,普通玻璃材料一般设置在3mm~6mm之间。 ②.可以用3M胶把按键焊盘与面壳感应端黏连、固定,或者通过弹簧片方式焊接在PCB焊盘的过孔上与面壳感应端相连;如下图: ③.触摸按键PCB与触摸面板通过双面胶粘接,双面胶的厚度取0.1~0.15mm 比较合适,推荐采用3M468MP,其厚度0.13mm。要求PCB与面板之间没有空气,因为空气的介电系数为1,与面板的介电系数差异较大。空气会对触摸按键的灵敏度影响很大。所以双面胶与面板,双面胶与PCB粘接,都是触摸按键生产装配中的关键工序,必须保证质量。

触摸灯触摸开关芯片解决方案

触摸灯、触摸开关芯片解决方案 一、触摸开关的原理: 触摸开关的原理是当手指接触或接近到触摸开关的感应部位时,触摸开关将会根据手指接触的不同距离输出幅值不同的电压信号,根据触摸开关输出的不同电压信号来控制其他电路的工作状态。 二、触摸开关的优点: 触摸开关没有金属触点,不放电不打火,大量的节约铜合金材料,同时对于机械结构的要求大大减少。它直接取代传统开关,操作舒适、手感极佳、控制精准且没有机械磨损。 三、触摸开关芯片简介: 触摸及接近感应开关,其用途是替代传统的机械型开关。系列芯片采用CMOS工艺制造,结构简单,性能稳定,可用于玻璃、陶瓷、塑料等介质表面,防止普通开关产品过久使用后容易出现的机械性故障,并帮助设计时造型更方便,产品外观更美观,使用时人体感觉更舒适、轻便。 系列芯片通过引脚可配置成多种模式,可广泛应用于灯光控制、玩具、家用电器等产品。 四、触摸开关芯片可调设置: 1、可选择快速和省电(低功耗)模式:低功耗模式下触摸检测响应时间将变长。 2、可设计多种输出模式: 1)输出高电平有效 2)输出低电平有效 3、可设置采样时间,通常为1.5ms或3ms 4、感应灵敏度可通过外围电容调节 5、可选择保持模式和同步模式: 选择同步模式,此时PIN脚OUT及ODO的状态与触摸响应同步:只有检测到触摸时有输出响应; 当触摸消失时,OUT及ODO的状态恢复为初始状态。 选择保持模式,此时PIN脚OUT及ODO的状态受在触摸响应控制下保持,当触摸消失后仍保持为响应状态;再次触摸并响应后恢复为初始状态,如下图所示。 <同步模式示意图>

<保持模式示意图> 注:Td1为TOUCH响应延迟时间,Td2为TOUCH撤销延迟。 五、单键触摸开关芯片简单应用示意图: <单键应用电路示意图> PCB供应参考说明: .1 Cj指调节灵敏度的电容,电容值大小0pF~75pF。 .2 VDD与GND间需并联滤波电容C0以消除噪声,建议值10uF或更大。供电电源必须稳定,如果电源电压漂移或者快速变化,可能引起灵敏度漂移或者检测错误。 .3 TOUCH PAD的形状与面积、以及与TCH引脚间导线长度,均会对触摸感应灵敏度产生影响。 .4从TOUCH PAD到IC管脚TCH不要与其他快速跳变的信号线并行或者与其他线交叉。TOUCH PAD需用GROUND保护,请参考下图: 六、市场系列芯片介绍 Cj TOUCH PAD GND VDD OUT ODO Touch Pad TCH OUT Td1 TOUCH TOUCH TOUCH TOUCH Td1 Td1 Td1 ~ O ~ O ~ O

触摸按键设计要求教案资料

触摸按键设计要求

触摸按键画板法 (以下所提到的芯片为HT45R34) ●Sensor pad形状: Sensor pad形状可以为圆形,方形,三角形(实心型),抑可以线条构成此类圆形(镂空型),前者用于覆盖板较厚的情况。后者则用于覆盖板较薄的情况下。推荐用圆形,感应效果更佳。 ●Sensor pad尺寸: Sensor pad面积越大灵敏度越大,但超过手指按压范围的部分对增加灵敏度没有作用。以圆形为例,一般设计为10m m~15mm的直径,符合成人手指的大小。 ●Sensor pad与ground plane之间的间隔: 间隔越大,touch swith的基础电容越小,RC震荡的频率越大,灵敏度也越大,但间隔太大,地对电场的约束越小,干扰越大;间隔太小,基础电容太大,灵敏度太小,且地对电场的约束太大,不利于电场穿透覆盖板,使得覆盖板只能较薄。推荐的间隔为0.5m m~ 1.0mm,例如10mm直径的sensor pad配合0.5mm的间隔。 ●布局要求: Sensor pad 要靠近MCU,每一个Sensor Pad到MCU的距离要尽量一致。IN,RREF,CREF引出脚要短,该RC模块要靠近MCU。另外,复位电路,晶振电路要靠近MCU。 布线要求:

由MCU的RC1~RC16PIN到touch swith的连线,要尽量的短,尽量远离其他走线或元件,线宽尽量窄(7~10mil).要避免touch swith的连线临近高频的通信线(例如I2C SPI通信线),在没有办法避免的情况下,请让两者直交布线。尽量将到touch swith的连线布在与S ensor Pad不同的Layer (采用双面板时),使其受到人体的影响降低,且这些线与线之间的也要尽量互相远离,线周围也要铺上地,以保证其尽量少受到其他信号的干扰。 ●覆盖板的材料: 覆盖板为一些坚固,易安装的绝缘材料,介电常数在2.5~10之间,Demo Board 上采用的是压克力板材,还有很多可采用的板材,例如:普通玻璃,徽晶板等,覆盖板的介电常数越小,Sensor Padde的感应范围越小。安装要求覆盖板紧贴Sensor Pad的表面,用粘胶将其贴在Sensor Pad的表面(排掉它们之间的空气)则效果更佳。 ●覆盖板的厚度: 覆盖板的厚度一般为1mm~5mm,厚度越大touch swith的灵敏度越小,信噪比也越低。Sensor Pad的面积越小,覆盖板要越薄。

电容触摸感应原理与应用

电容触摸感应原理与应用 1.电容触摸感应基本知识 首先,人体是具有一定电容的。当我们把PCB上的铜画成如下形式的时候,就完成了一个最基本的触摸感应按键。 上图左边,是一个基本的触摸按键,中间圆形绿色的为铜(我们可以称之为“按键”),在这些按键中会引出一根导线与MCU相连,MCU通过这些导线来检测是否有按键“按下”(检测的方法多种多样,这将在后面章节中谈到);外围的绿色也是铜,不过外围的这些铜是与GND大地相连的。在“按键”和外围的铜之间是空隙(我们可以称为空隙d)。上图右边是左图的截面图,当没有手指接触时,只有一个电容Cp ,当有手指接触时,“按键” 通过手指就形成了电容Cf 。由于两个电容是并联的,所以手指接触“按键” 前后,总电容的变化率为

C% = ((Cp+Cf)-Cp)/Cp = Cf/Cp ………………公式1 下图更简单的说明了上述原理。 2.电容感应触摸器件的参数选择 弄清楚了上述原理后很自然的就会想到下面两个问题: ①空隙d的大小应该为多少呢?即“按键”与地之间的距离为多少?d 的大小会不会影响“按键”的性能? ②“按键”的大小应该为多少呢?它的形状、大小会不会影响“按键”的性能呢? 为了弄清楚这两个问题,我们首先介绍公式2:

在这个公式中d就是我们所说的空隙的间距,A表示的“按键”面积的大小,C表示没有手指接触按键时电容的大小Cp。显然,空隙间距d越大,Cp越小;面积A越大,Cp越大。已知手指触摸产生的电容范围为5~15pf,这是一个非常小的容值。当Cp非常小时,公式1中的C%将会比较大,也就是说MCU更加容易检测到这个电容值的变化。基于这种考虑,对于FR4 材料的PCB(1~1.5mm 厚度)板来说我们一般选取d=0.5mm,按键的面积A一般选取成人手指大小即可。 3.电路板底层的覆铜处理 前面我们说的都是在电路板的顶层如何绘制触摸按键。下面我们来看看电路板的底层如何覆铜。 首先,在电路板底层覆铜是很有必要的,这些接地的覆铜能够最大限度的降低触摸按键的噪声以及外部环境对触摸按键的影响。对于底层覆铜的方法一般有四种:完全不覆铜、25%网格覆铜、50%网格覆铜、100%实心覆铜。

三通道电容式触摸键芯片XC2863规格书

三通道电容式触摸键控制芯片 XC2863

目录 1概述 (3) 1.1 特性 (3) 1.2 系统框图 (4) 2管脚定义 (5) 3功能描述 (6) 4电气特性 (7) 5关键特性 (8) 5.1 环境自适应能力 (8) 5.1.1环境漂移跟随 (8) 5.1.2环境突变校准 (8) 6应用指南 (9) 7PCB设计 (10) 7.1 触摸键设计 (10) 7.1.1触摸键 (10) 7.1.2触摸键的常用结构 (10) 7.1.3触摸键设计 (11) 7.2 PCB布线 (11) 8封装 (12)

1概述 XC2863是矽励微电子推出的一款支持宽工作电压范围的三输入三输出电容式触摸键控制芯片。 XC2863内部集成高分辨率触摸检测模块和专用信号处理电路,以保证芯片对环境变化具有灵敏的自动识别和跟踪功能,且内置特殊算法以实现防水、抗干扰等需求。该芯片可满足用户在复杂应用中对稳定性、灵敏度、功耗、响应速度、防水、带水操作、抗震动、抗电磁干扰等方面的高体验要求。 XC2863为方便用户在应用中可对触摸键的灵敏度进行自主控制,特设置了灵敏度控制位。用户只需在PCB设计中对这个管脚的逻辑电平值进行设置,就能自由选择在具体应用中芯片体现出的检测灵敏度。 XC2863还内置了上电复位及电源保护电路,在典型应用中可无需任何外部器件,也无需软件、程序或参数烧录。芯片应用的开发过程非常简单,最大限度的降低了方案成本。 XC2863可广泛适用于遥控器、灯具调光、各类开关以及小家电和家用电器控制界面等应用中。 1.1特性 工作电压:2.5V~5.5V 三个高灵敏度的触摸检测通道 无需进行参数烧录 响应速度快 抗电磁干扰能力强 防水及带水操作功能 独特的环境跟踪和自适应能力 低功耗(典型工作电流< 25uA) 内置上电复位(POR)和电源保护电路 C MOS电平输出

基于STM8的触摸按键方案

基于STM8的电容感应式触摸按键方案在 电磁炉中的应用 1、引言 相较于机械式按键和电阻式触摸按键,电容式触摸按键不仅耐用,造价低廉,结构简单易于安装,防水防污,而且还能提供如滚轮、滑动条的功能。但是电容式触摸按键也存在很多的问题,因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰敏感得多。ST 针对家电应用特别是电磁炉应用,推出了一个基于 STM8系列8位通用微控制器平台的电容式触摸感应方案,无需增加专用触摸芯片,仅用简单的外围电路即可实现电容式触摸感应功能,方便客户二次开发。 2、方案介绍 ST的电容式触摸按键方案通过一个电阻和感应电极的电容CX构成的阻容网络的充电/放电时间来检测人体触摸所带来的电容变化。如图1所示,当人手按下时相当于感应电极上并联了一个电容CT,增加了感应电极上的电容,感应电极进行充放电的时间会增加,从而检测到按键的状态。而感应电极可以直接在PCB板上绘制成按键、滚轮或滑动条的应用样式,也可以做成弹簧件插在PCB板上,即使隔着绝缘层(玻璃、树脂)也不会对其检测性能有所影响。 图1 STM8S电容式触摸按键的工作原理电磁炉是采用磁场感应电流的加热原理对食物进行加热。加热时,通过面板下方的线圈产生强磁场,磁力线穿过导磁体做的锅的底部时,锅具切割交变磁力线而在锅具底部产生涡流使锅底迅速发热,达到加热食物的目的。在本解决方案中采用44pin的STM8S105S4做按键显示板的主控芯片,控制13个按键的扫描、24个LED及一个4位数码管的显示、I2C与主板的通讯,并留有一个SWIM接口方便工程师调试之用(如图2)。

图2 电磁炉按键板原理 STM8S105S4采用的是ST高级STM8内核,具备3级流水线的哈佛结构,3.0~5.5V工作电压,内部16MHz RC可提供MCU 16MHz工作频率,提供低功耗模式和外设时钟关闭功能,共有34个I/O可用。 STM8S105S4 具有2KB的RAM和16KB的FLASH,还有可达30万次擦写次数的1KB EEPROM数据存储器。 3、电磁炉工作环境中的干扰 ①电磁干扰 电磁炉在加热锅的同时,也会在电路板上感应电极正向或反向的电流,从而会缩短或增长按键充放电时间,会对按键的检测造成很大影响,甚至产生误动作,常见的方法采用硬件屏蔽和过零点检测来消除电磁辐射对按键的影响。 硬件屏蔽 在STM8S的解决方案中,ST提供了感应电极和走线的设计规范和如图3所示的Driven Shield功能(在Shield线上提供与按键管脚相同的驱动信号,电极与Shield之间的寄生电容就不会被充放电),能有效地减少感应电极走线的寄生电容对按键灵敏度的影响。 图3 Driven Shield 过零点检测

基于ARM的触摸屏控制要点

基于ARM的触摸屏控制 摘要:本文介绍了基于ARM的触摸屏控制的设计思路、原理和实现方法。硬件电路主要由PHILIPS公司的ARM7TDMI-S微控制器LPC2290,FM7843控制器和SID13503控制器构成。利用C语言编写驱动和用户程序,通过触摸屏的FM7843控制器将触摸信号进行A/D转换,进而利用ARM芯片和彩色液晶屏SID13503控制器,将触摸动作在液晶屏上进行显示,最终实现了触摸屏和液晶屏的控制。该设计操作直观、简单、功耗小、提高了人机交互的友好性。 关键词:触摸屏; 液晶屏; ARM The Control of Touch-screen Based on ARM Abstract: This paper introduced the designing of thought and the achievement methods of the control of ARM touch-screen based on ARM. The hardware circuit consists of ARM7TDMI-S LPC2290 controller, FM7843 controller and SID13503 controller which are all produced by PHILIPS Corporation. The researchers compose driven and user program in C language ,and utilize FM7843 controller of the touch-screen to proceed A/D converter, then use ARM chips and SID13503 controller of LCD screen to show the action of touching on the LCD screen, ultimately realize the control of touch-screen and LCD screen. This design is direct-viewing、simple、as well as costs less power and can improve the friendliness of human-computer interaction. Key word: touch-screen; LCD;ARM

相关文档
最新文档