直升机套件原理图

四轴飞行控制原理

四轴(1)-飞行原理 总算能抽出时间写下四轴文章,算算接触四轴也两年多了,从当初的模仿到现在的自主创作经历了不少收获了也不少。朋友们也经常问我四轴怎么入门,今天就简单写下四轴入门的基本知识。尽量避开专业术语和数学公式。 1、首先先了解下四轴的飞行原理。 四轴的一般结构都是十字架型,当然也有其他奇葩结构,比如工字型。两种的力学模型稍微有些不一样,建议先从常规结构入手(其实是其他结构我不懂)。 常规十字型结构其他结构 常规结构的力学模型如图。 力学模型 对四轴进行受力分析,其受重力、螺旋桨的升力,螺旋桨旋转给机体的反扭矩力。反扭矩影响主要是使机体自旋,可以想象一下直升机没有尾桨的情况。螺旋桨旋转时产生的力很复杂,

这里将其简化成只受一个升力和反扭矩力。其它力暂时先不管,对于目前建模精度还不需要分析其他力,顶多在需要时将其他力设为干扰就可以了。如需对螺旋桨受力进行详细研究可以看些空气动力学的书,推荐两本, 空气螺旋桨理论及其应用(刘沛清,北航出版社) 空气动力学基础上下册(徐华舫,国防科技大学) 网易公开课:这个比麻省理工的那个飞行器构造更对口一些。 荷兰代尔夫特理工大学公开课:空气动力学概论 以上这些我是没看下去,太难太多了,如想刨根问底可以看看。 解释下反扭矩的产生: 电机带动螺旋桨旋转,比如使螺旋桨顺时针旋转,那么电机就要给螺旋桨一个顺时针方向的扭矩(数学上扭矩的方向不是这样定义的,可以根据右手定则来确定方向)。根据作用力与反作用力关系,螺旋桨必然会给电机一个反扭矩。 在转速恒定,真空,无能量损耗时,螺旋桨不需要外力也能保持恒定转速,这样也就不存在扭矩了,当然没有空气也飞不起来了。反扭矩的大小主要与介质密度有关,同样转速在水中的反扭矩肯定比空气中大。 因为存在反扭矩,所以四轴设计成正反桨模式,两个正桨顺时针旋转,两个反桨逆时针旋转,对角桨类型一样,产生的反扭矩刚好相互抵消。并且还能保持升力向上。六轴、八轴…类似。 我们控制四轴就是通过控制4个升力和4个反扭矩来控制四轴姿态。 如力学模型图,如需向X轴正方向前进,只需增加桨3的转速,减少桨1的转速,1、3桨的反扭矩方向是一样的,一个加一个减总体上来说反扭矩没变。此时飞机已经有向X轴方向的分力,即可前行。 如需向X轴偏Y轴45°飞行,那么增加桨2、3的转速,减少桨1、4的转速,即可实现。 如果将X正作为正前方,那么就是”十”模式,如果将X轴偏Y45°作为正前方向,那就是”×”模式。理论上这两种都可以飞行,”十”模式稍微比”×”模式好计算,但是”十”模式不如”×”模式灵敏。 四轴如需向任意方向飞行只需改变电机的转速,至于电机转速改变的量是多少,增量之比是多少就需要算法了。对于遥控航模,不需要知道具体到度级别的方向精度,飞行时手动实时调节方向即可。 四轴除了能前后左右上下飞行,还能自旋,自旋靠的就是反扭矩,如需顺时针旋转,只需增加桨1、3转速,减少2、4转速,注意不能只增加桨1、3而不减少2、4,这样会造成总体升力增加,飞机会向上飞的。 理想情况下,四轴结构完全对称,电机转速一样,飞机就可以直上直下飞行。但事实和理想还是有差距的,不存在完全对称的结构,也没有完全一样的电机螺旋桨。所以需要飞控模块进行实时转速调节,这样才能飞起来,不像直升机,螺旋桨加速就能飞。 2、分析完飞行原理,接下来分析四轴飞行器系统的主要部件。

四旋翼飞行器结构和原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图1.1所示。 .工作原理 四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。 (1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。 (2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图b 的原理相同,在图c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。 (4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图d中,当电机1和电机3 的转速上升,电机2 和电机4 的转速下降时,旋翼1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在

基于stm32的四轴飞行器

基于stm32设计的四轴飞行器 引言 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通的飞行器相比具有结构简单,故障率低和单位体积能够产生更大升力等优点,在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。因此四旋翼飞行器具有广阔的应用前景,吸引了众多科研人员,成为国内外新的研究热点。 本设计主要通过利用惯性测量单元(IMU)姿态获取技术、PID电机控制算法、2.4G无线遥控通信技术和高速空心杯直流电机驱动技术来实现简易的四轴方案。整个系统的设计包括飞控部分和遥控部分,飞控部分采用机架和控制核心部分一体设计增加系统稳定性,遥控部分采用模拟摇杆操作输入使操作体验极佳,两部分之间的通信采用2.4G无线模块保证数据稳定传输。飞行控制板采用高速单片机STM32作为处理器,采用含有三轴陀螺仪、三轴加速度计的运动传感器MPU6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终根据PID控制算法通过PWM方式驱动空心杯电机来达到遥控目标。 1、系统总体设计 系统硬件的设计主要分要遥控板和飞控板两个部分,遥控板采用常见羊角把游戏手柄的外形设计,控制输入采用四向摇杆,无线数据传输采用2.4G无线模块。飞控板采用控制处理核心和机架一体的设计即处理器和电机都集成在同一个电路板上,采用常规尺寸能够采用普通玩具的配件。系统软件的设计同样包括遥控板和飞控板两部分的工作,遥控板软件的设计主要包括ADC的采集和数据的无线发送。飞控板的软件的设计主要包括无线数据的接收,自身姿态的实时结算,电机PID增量的计算和电机的驱动。整个四轴飞行器系统包括人员操作遥控端和飞行器控制端,遥控端主控制器STM32通过ADC外设对摇杆数据进行采集,把采集到的数据通过2.4G无线通信模块发送至飞控端。飞控板的主要工作就是通过无线模块进行控制信号的接收,并且利用惯性测量单元获得实时系统加速度和角速度原始数据,并且最终解算出当前的系统姿态,然后根据遥控板发送的目标姿态和当姿态差计算出PID电机增量,然后通过PWM驱动电机进行系统调整来实现飞行器的稳定飞行。系统的总体设计框图如图1所示。

四轴飞行器知识简介

四轴飞行器知识 什么是四轴飞行器? 四轴飞行器也叫四旋翼飞行器。通俗点说就是拥有四个独立动力旋翼 的飞行器,有四个旋翼来悬停、维持姿态及平飞。四轴飞行器是多轴 飞行器其中的一种,常见的多轴飞行器有两轴,三轴,四轴,六轴, 八轴或者更多轴。 四轴飞行器飞行原理 重心的距离相等, 当对角两个轴产生的升力相同时能够保证力矩的 平衡, 四轴不会向任何一个四轴飞行器有四个电机呈十字形排列, 驱动四片桨旋转产生推力; 四个电机轴距几何中方向倾转; 而四个 电机一对正转,一对反转的方式使得绕竖直轴方向旋转的反扭矩平衡, 保证了四轴航向的稳定. 此飞行控制板规定四轴电机的排布方式相 对应。1,4号电机顺时针方向旋转, 2,3号电机逆时针方向旋转. 四个电机的转速做相应的变化即可实现四轴横向、纵向、竖直方向 和偏航方向上的运动: 当四轴需要向前方运动时, 2,3号电机 保持转速不变, 1号电机转速下降, 4号电机转速上升, 此时4号电 机产生的升力大于1号电机的升力, 四轴就会沿几何中心向前倾转, 桨叶升力沿纵向的分力驱动四轴向前运动. 当四轴要转向左转 向时, 1,4号电机转速上升, 2,3号电机转速下降, 使向左的反扭距 大于向右的反扭矩, 四轴在反扭距的作用下向左旋转.四个桨产生的 推力, 超过或者低于四轴本身重力的时候能够实现竖直方向上升与 下降的运动, 当桨的升力与四轴本身的重力相等的时候即实现悬停。

其他方式的运动原理与以上过程类似. 四轴飞行原理虽然简单, 但实现起来还需很多工作要做. 四轴飞行器需要的零件 无刷电机(4个)、电子调速器(简称电调,4个,)、螺旋桨(4个,需要2个正浆,2个反浆)、飞行控制板(常见有瑞伯达、KK等品牌)、电池(11.1v航模动力电池)、遥控器(最低四通道遥控器)、机架(非必选)、充电器(尽量选择平衡充电器) 怎样知道是否能正常起飞? 一切准备完毕,怎么知道可以试飞了呢,我个人建议为了避免匆忙上马,秒炸。先拿手上试飞比较好,但要注意离身体距离。 拿手上通电,加油门,如果一切正常,四轴是不会大幅度的晃动的,而是比较平稳。还可以故意左右晃动一下,会感觉到四轴保持平衡的反力量,只要达到这个效果,就基本达到了试飞的条件。RBD飞控我复位了好几次,只要没有意外,是基本都能成功的。 试飞场地建议选宽阔的地方,建议是草坪,这样的不容甩坏。 马达选择有刷马达,原因很简单,要需要复杂的电调,直接用MOS 管就可以驱动了。而且响应速度又快,价格也便宜。也可以选择减速组配高转速马达。只是成本高了点。而且实际的测试结果是马达里面火化直冒也无法将四轴自身拉离地面。原因就是马达转速和减速组搭配不合理,转速过快但拉力不够。经历过失败后,决定不在冒险,于是选择了大众配置:瑞伯达 2212,1000KV外转子无刷马达,瑞伯达30A电调(好赢兼容的程序),在解决了如何安装的问题后,终于可

四轴飞行器原理、设计与控制

四轴飞行器原理、设计与控制 四轴飞行器设计与用途 学院:广东白云技师学院 专业:电子信息工程与电气技术(技师本科) 制作学生:邹剑平 指导老师:廖高灵 四轴飞行器简介 配置: 单片机AVRATMEGA168PA 三轴数字陀螺仪MPU—3050电机(无刷)XXD22121000KV电子调速器(无刷)好盈天行者40A螺旋桨1045 电池格氏2200mAh11.1V25C机架DIY 机架材料玻璃纤维铝合金 四轴飞行器飞行原理 重心的距离相等,当对角两个轴产生的升力相同时能够保证力矩的平衡,四轴不会向任何一个四轴飞行器有四个电机呈十字形排列,驱动四片桨旋转产生推力;四个电机轴距几何中方 向倾转;而四个电机一对正转,一对反转的方式使得绕竖直轴方向旋转的反扭矩平衡,保证了四轴航向的稳定. 此飞行控制板规定四轴电机的排布方式如图所示:前(1号),后(4号),右(3号),左(2号). 1,4号电机顺时针方向旋转,2,3号电机逆时针方向旋转.四个电机的转速做相应的变化即可实现四轴横向、纵向、竖直方向和偏航方向上的运动:

当四轴需要向前方运动时,2,3号电机保持转速不变,1号电机转速下降,4号电机转速上升,此时4号电机产生的升力大于1号电机的升力,四轴就会沿几何中心向前倾转,桨叶升力沿纵向的分力驱动四轴向前运动. 当四轴要转向左转向时,1,4号电机转速上升,2,3号电机转速下降,使向左的反扭距大于向右的反扭矩,四轴在反扭距的作用下向左旋转. 四个桨产生的推力,超过或者低于四轴本身重力的时候能够实现竖直方向上升与下降的运动,当桨的升力与四轴本身的重力相等的时候即实现悬停. 其他方式的运动原理与以上过程类似.四轴飞行原理虽然简单,但实现起来还需很多工作要做. 四轴飞行器控制流程图 四轴飞行器的优点 四轴飞行器与其他飞机比较相对稳定性高;四轴飞行器与其他飞机比较相对抗风能力强;载重量大(本机最大安全载重1100g);姿态灵活,反应速度快;可超低空飞行; 四轴飞行器主要用途 可做无人侦察机,空中航拍(FPV),可作为新型微型机器人。娱乐飞行表演 四轴飞行器的特点及魅力除了深受DIY爱好者的青睐之外,还有几点供大家品味: 1、是它的相对简单地机械构造。正因为简单,安全指数大大提高。 无论是作为航空模型还是作为遥控平台,安全永远是第一位的。 2、是它的相对稳定性。飞行姿态平滑稳定,机械振动被仅可能地减小是四轴的又一魅力,装载图像设备再好不过了。 3、是它的相对成本低廉,花尽可能少的钱获取最大的性价比是我们追求的境界,为工业开发其商业用途奠定了必要的基础。

四轴飞行器作品说明书

四轴飞行器作品说明书

四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。 关键词:四轴飞行器;姿态;控制

1.引言 (1) 2.飞行器的构成 (1) 2.1.硬件构成 (1) 2.1.1.机械构成 (1) 2.1.2.电气构成 (3) 2.2.软件构成 (3) 2.2.1.上位机 (3) 2.2.2.下位机........... . (4) 3.飞行原理........... ................................ (4) 3.1. 坐标系统 (4) 3.2.姿态的表示 (5) 3.3.动力学原理 (5) 4.姿态测量........... ................................ (6) 4.1.传感器校正 (6) 4.1.1.加速度计和电子罗盘 (6) 5.姿态控制 (6) 5.1.欧拉角控制 (6) 5.2.四元数控制 (7) 6.姿态计算 (7) 7.总结 (8) 参考文献 (9)

1.引言 四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。 目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低。 本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。 2.飞行器的构成 四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要内容是软件的实现。 2.1.硬件构成 飞行器由机架、电机、螺旋桨和控制电路构成。 2.1.1.机械构成 机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装。 CA D设计机架如图:

四轴飞行器作品说明书

. . . 四轴飞行器 作品说明书

摘要 四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。 关键词:四轴飞行器;姿态;控制

目录 1.引言 (1) 2.飞行器的构成 (1) 2.1.硬件构成 (1) 2.1.1.机械构成 (1) 2.1.2.电气构成 (3) 2.2.软件构成 (3) 2.2.1.上位机 (3) 2.2.2.下位机........... . (4) 3.飞行原理........... ................................ (4) 3.1. 坐标系统 (4) 3.2.姿态的表示 (5) 3.3.动力学原理 (5) 4.姿态测量........... ................................ (6) 4.1.传感器校正 (6) 4.1.1.加速度计和电子罗盘 (6) 5.姿态控制 (6) 5.1.欧拉角控制 (6) 5.2.四元数控制 (7) 6.姿态计算 (7) 7.总结 (8) 参考文献 (9)

1.引言 四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS 传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。 目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低。 本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。 2.飞行器的构成 四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要容是软件的实现。 2.1.硬件构成 飞行器由机架、电机、螺旋桨和控制电路构成。 2.1.1.机械构成 机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的形,正桨反桨交错安装。 C AD设计机架如图:

四轴飞行器飞控原理

四轴飞行器飞控原理 四轴飞行器飞控原理 (1) 一、六种姿态控制原理示意 (3) 二、四轴翼飞行器系统建模 (4) 2.1假设条件: (4) 2.2建立坐标系: (5) 2.3转换矩阵推导: (6) 2.4非线性模型 (7) 2.5模型线性化 (11) 三、基于PID的飞行控制 (15) 四、硬件设计与实现 (17)

4.1四轴飞行器硬件电路 (17) 五、国内外四轴飞行器 (17) 5.1 Kesterl (17) 5.2 Unav3500 (18) 5.3 MikroKoper (18) 5.4 ArduPilot (19) 5.5 Crazyflie (20)

一、六种姿态控制原理示意 图1 上下(高度)控制,就是四个螺旋桨同时增加(减小)转速; 图2 前进、后退

图3 左飞、右飞 图4 类似打方向盘,改变航向 二、四轴翼飞行器系统建模 2.1假设条件: 微小型四旋翼飞行器在三维空间中可视为刚体,飞行器在空间

中的运动具有六个自由度,即飞行器质心在空间中的三个平移自由度和三个旋转自由度。由于该飞行器一般为低空低速飞行,因此可以对其动力学模型的建立做如下假设: 1)微小型四旋翼飞行器在研究中视为刚体,忽略其弹性影响,总质量m 为常数; 2)将地球视为惯性系统,忽略地球自转和公转对飞行器的影响; 3)假设地面为水平平面,忽略地球曲率的影响; 4)重力加速度g为常数,不随地理位置和飞行高度的变化而变化; 5)飞行器机机体几何外形完全对称且质量分布均勻,质心与几何中心重合。 2.2建立坐标系:

图5机体坐标系B、地面坐标系E Ф绕X轴方向的横滚角(rad); θ绕轴方向的俯仰角(rad); ψ绕Z轴方向的偏航角(rad): 2.3转换矩阵推导: (可以查阅高等数学方向余弦,矩阵论中的旋转矩阵等资料)

四轴飞行器原理、设计与控制

四轴飞行器设计与用途 学院:广东白云技师学院 专业:电子信息工程与电气技术(技师本科)制作学生:邹剑平 指导老师:廖高灵 四轴飞行器简介 配置: 单片机A VR ATMEGA168PA

三轴数字陀螺仪MPU—3050 电机(无刷)XXD 2212 1000KV 电子调速器(无刷)好盈天行者40A 螺旋桨1045 电池格氏2200mAh 11.1V 25C 机架DIY 机架材料玻璃纤维铝合金 四轴飞行器飞行原理 重心的距离相等, 当对角两个轴产生的升力相同时能够保证力矩的平衡, 四轴不会向任何一个四轴飞行器有四个电机呈十字形排列, 驱动四片桨旋转产生推力; 四个电机轴距几何中方

向倾转; 而四个电机一对正转,一对反转的方式使得绕竖直轴方向旋转的反扭矩平衡, 保证了四轴航向的稳定. 此飞行控制板规定四轴电机的排布方式如图所示: 前(1号), 后(4号), 右(3号), 左(2号). 1,4号电机顺时针方向旋转, 2,3号电机逆时针方向旋转. 四个电机的转速做相应的变化即可实现四轴横向、纵向、竖直方向和偏航方向上的运动: 当四轴需要向前方运动时, 2,3号电机保持转速不变, 1号电机转速下降, 4号电机转速上升, 此时4号电机产生的升力大于1号电机的升力, 四轴就会沿几何中心向前倾转, 桨叶升力沿纵向的分力驱动四轴向前运动. 当四轴要转向左转向时, 1,4号电机转速上升, 2,3号电机转速下降, 使向左的反扭距大于向右的反扭矩, 四轴在反扭距的作用下向左旋转. 四个桨产生的推力, 超过或者低于四轴本身重力的时候能够实现竖直方向上升与下降的运动, 当桨的升力与四轴本身的重力相等的时候即实现悬停. 其他方式的运动原理与以上过程类似. 四轴飞行原理虽然简单, 但实现起来还需很多工作要做.

多旋翼飞行器原理

多旋翼飞行器原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图 1.1所示。 2.工作原理 四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机 1和电机 3逆时针旋转的同时,电机 2和电机 4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 在上图中,电机 1和电机 3作逆时针旋转,电机 2和电机 4作顺时针旋转,规定沿 x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。

(1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿 z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。 (2)俯仰运动:在图(b)中,电机 1的转速上升,电机 3 的转速下降(改变量大小应相等),电机 2、电机 4 的转速保持不变。由于旋翼1 的升力上升,旋翼 3 的升力下降,产生的不平衡力矩使机身绕 y 轴旋转,同理,当电机 1 的转速下降,电机 3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图 b 的原理相同,在图 c 中,改变电机 2和电机 4的转速,保持电机1和电机 3的转速不变,则可使机身绕 x 轴旋转(正向和反向),实现飞行器的滚转运动。(4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图 d中,当电机 1和电机 3 的转速上升,电机 2 和电机 4 的转速下降时,旋翼 1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在富余反扭矩的作用下绕 z轴转动,实现飞行器的偏航运动,转向与电机 1、电机3的转向相反。 (5)前后运动:要想实现飞行器在水平面内前后、左右的运动,必须在水平面内对飞行器施加一定的力。在图 e中,增加电机 3转速,使拉力增大,相应减小电机 1转速,使拉力减小,同时保持其它两个电机转速不变,反扭矩仍然要保持平衡。按图 b的理论,飞行器首先发生一定程度的倾斜,从而使旋翼拉力产生水平分量,因此可以实现飞行器的前飞运动。向后飞行与向前飞行正好相反。(在图 b 图 c中,飞行器在产生俯仰、翻滚运动的同时也会产生沿 x、y 轴的水平运动。) (6)倾向运动:在图 f 中,由于结构对称,所以倾向飞行的工作原理与前后运动完全一样。 首先声明本人也是菜鸟,此教程就是从一个菜鸟的角度来讲解,现在论坛上的帖子都突然冒很多名词出来,又不成体系,我自己开始学的时候往往一头雾水,相信很多新手也一样。所以在这个帖子里面,我都会把自己遇到的疑惑逐一讲解。 【概述】 1、diy四轴需要准备什么零件 无刷电机(4个)

四轴飞行器的设计

深圳大学 本科毕业论文(设计) 题目: 四轴飞行器的设计 姓名: * * * 专业: 机械设计制造及其自动化 学院: 机电工程学院 学号: 12880008 指导教师:* * * 职称: 2016年 4月 19日

深圳大学本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的毕业论文(设计),题目《》是本人在指导教师的指导下,独立进行研究工作所取得的成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式注明。除此之外,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果。本人完全意识到本声明的法律结果。 毕业论文(设计)作者签名: 日期:年月日

目录 一.综述 (7) (一)产品发展历史 (7) (二)项目研究现状 (7) (三)研究目的 .......................................................................... 错误!未定义书签。(四)主要研究内容 . (8) 二.产品工作原理 (9) (一)产品技术方案的提出 (9) (二)产品总体结构 (9) (三)产品工作原理 (9) 三.产品结构设计 (11) (一)产品性能要求 (15) (二)产品设计计算 (15) 1.参数选择 (15) 2.估算整机重量 (16) 3.功率计算 (17) 4.上下平板连接使用螺纹连接类型及连接件选择 (17) 5.机身支架与马达底座之间控轴公差与配合 (18) (三)产品结构设计 (21) 1.产品装配图 (21) 机架装配 (22) 电机装配 (23) 脚架装配 (24) 2.产品零件图 (25) 缓冲套 (25) 脚架 (25)

相关文档
最新文档