实验直流仿真和建立电路模型

实验直流仿真和建立电路模型
实验直流仿真和建立电路模型

实验三、直流仿真和建立电路模型

概述

本章将介绍参数的子网络,在分层设计中如何创建和使用它们。我们将从一个元件建模开始。对于性能较好的元件模型,最低层的子网络应包括封装寄生参数。一个测试模板将用来对一个可以计算,建立并检验的偏置网络的响应进行仿真并输出响应曲线。该实验中的电路是本教材中其它实验使用的放大器基础。

任务

●建立一个考虑寄生参数的通用BJT模型,并保存在自电路中。

●设置并运行大量DC仿真来确定其性能。

●在数据显示中计算偏置电阻。

●在DC仿真基础上建立一个偏置网络。

●测试偏置网络。

目录

1.新建任务:amp_1900 (37)

2.设置一个通用BJT符号和模型卡 (37)

3.对电路添加寄生参数和连接部分 (39)

4.观察缺省符号 (39)

5.设置设计参数和内建符号 (40)

6.用曲线指示模板测试bjt_pkg的子电路 (42)

7.修改参数扫描模板 (43)

8.在Beta=100和160时仿真 (44)

9.打开一个新设计,并在主窗口中查看你的所有文件 (45)

10.对直流偏置的参数扫描进行设置并仿真 (46)

11.计算共射电路偏置电阻Rb, Rc的值 (49)

12.偏置网络 (50)

13.对直流解作仿真和注释 (51)

14.选学:温度扫描 (52)

步骤

1、新建任务:amp_1900

a. 如果你还没有创建该任务,就请现在创建。然后在该信任务amp_1900中打

开一个新的原理图窗口并以bjt_pkg为名保存它,并在Option→preferences 中进行你希望的设置。

2、设置一个通用BJT符号和模型卡

a. 在原理图窗口中,选择面板Devices-BJT.。选择BJT-NPN放入原理图中,

如下所示。

b. 插入BJT_Model模型元件,如下所示。

c. 双击BJT-Model卡。出现对话框后,点击Component Options,在下一对话框中,点击Clear All使参数可见。然后点击Apply,该操作会删掉原理图中的Gummel-Poon参数表。不要关闭该对话框。

关于Binning的备注:你可以插入多模型组卡,用Binning元件改变模型元件的变量值。这些变量可作为例如温度、长度、宽度等参数。Binning元件允许你创建一个参考模型的矩阵。

d. 接着,在BJT_Mode对话框中选择Bf参数,并输入Beta如下图所示。并在Display parameter on schematic前面打上勾。然后,点击Apply。Beta此时成为该电路的一个参数,接下来你就可以按调整变量的方法对其进行调整。

e. 设置Vaf(预置电压)=50,并显示。

f. 令Ise(E、B漏电流)=0.02e-12。并显示。然后点击OK关闭Bipolar Transistor Model:1对话框。现在该元件就有了更多的实际参数。

g. 去掉BJT元件的一些不希望显示的参数(例如,面积、区域、温度和模式)。方法是双击BJT1,在打开的对话框中选中不希望显示参数选项。然后去掉

display parameter on schematic前面的勾。

3、为电路加入寄生参量和电路连接部分

下图为考虑寄生和接头的完整的电路图。注意使用旋转图标把元件调

整到合适的方向。

放置元件的步骤如下:

a.放置集总参数L、C元件:插入三个320pH的引线电感和两个120fF的结

电容。注意使用正确的单位(P、F),否则电路不会得到正确的相应。(提示:如果你已经输入过L或C,可在元件历史栏中直接输入L或C。可不通过面板而直接获得元件)

b.为基极引线电感连接一个R=0.01Ω的电阻,并显示其值(如下图所示)。

c.放置端口接头:点击端口接头图标。然后,务必按如下顺序放置接头:

1)集电极C;2)基极B;3)发射极E。只有如此,接头才能与ADS BJT 符号有相同的顺序。

d.编辑端口名:如:改P1为C,P2为B,P3为E。

e.整理原理图:摆放元件使原理图看起来有序——这是一种很好的实践。按

F5键,选中元件,移动鼠标,可把元件文本框移动到需要位置。

4、观察缺省符号

有三种方法为电路创建符号:1)使用默认符号;2)绘制符号;3)使用ADS 内建符号。本练习中,你将使用一个内建的BJT符号。此前,应删除ADS赋给电路的缺省符号。其步骤如下:

a.点击View>Create / EditSchematicSymbol,可以找到找到默认符号。如果

系统中没有电路的缺省符号。点击View>Create / EditSchematicSymbol 后出现下面的对话框,点OK,默认符号就会出现。

b.接着,产生一个三端矩形框。这是默认符号。如果系统中有电路的缺省符

号。点击View>Create / EditSchematicSymbol后直接会出现下面的三端矩形框。用命令Select>Select All,点击删除图标或按Del键可删除默认符号。

c.点击View>Create / Edit Schematic回到原理图。

5、设置设计参数和内建符号

a.点击File>Design Parameters, 出现下面的对话框。

b.在General标签中,作如下修改:1)把元件范例名改为Q,2)点下拉箭头选择符号为SYS_BJT_NPN(内建符号),3)在布线图模型中选择Fixed 和SOT23,如图所示。

c.点击Save AEL File,写入修改值,但不要关闭对话框。你好要用它设置其它参数。

d.点击Parameter标签,在参数名(Parameter Name)框中输入beta,默认值设为100,点击Add按钮。如下图所示,确认Display Parameter框被选中。点击OK保存新的设定并关闭对话框。

e.在原理图窗口中,保存设计,不要丢失创建的字电路。下一步,我们将介

绍如何使用设计参数。

6、用曲线测试模板测试bjt_pkg子电路

a.在当前bjt_pkg的原理图中,点击File>New Design。对话框出现后,输入名称:dc_curves并选择BJT_curve_tracer模板。如下图所示。点击OK,会生成一个新原理图,就可以放置bjt_pkg了。

b.保存设计并点击元件库(Library)图标。

c.出现对话框后,选择任务amp_1900,并点击bjt_pkg子电路,放入原理图,如下图所示。你创建的每一个电路,作为子电路在任务重都是有效的。

d.按图连接bjt_pkg的元件。你可能要调整线和文本框(F5键)是视图看起来跟合理。现在即可关闭元件库窗口。再次保存dc_curves设计。注意,要养成经常保存设计的好习惯。

关于模板的备注:除了用前面的方法插入模板外,我们也可以用原理图窗口命令Insert>Templates插入模板。许多模板都有预设置、节点名(线符号)和变量。因此,必须修改后才能用于你的电路。这些模板也有数据显示模版,在预设格式下自动绘图。这些数据显示模版,在预设格式下自动绘图。这些数据显示模版在数据显示窗口也有效。通常来说,如果你熟悉ADS,运用模板是非常有效和省时的。

7、调整参数扫描模板

a.可从0μA至100μA以10μA步长改变扫描参数IBB的值,如图所示。

但不要改变DC仿真控制器中关于VCE扫描的默认值,它们是正确的不需要修改。注意变量V AR(VCE=0,IBB=0)是不需要修改的,因

为它们只需要在仿真器中对变量进行初始化。

8、在Beta=100和Beat=160时仿真

a.在Beta=100时仿真(F7键)。仿真完成后,显示数据会与绘图结果一起生成(数据显示窗口)。试着移动标记并观察生成的新值。

b.再次对Beta=160仿真,直接在原理图上修改即可。注意仿真值的变化。

c.验证Beta=160,VCE=3V时的仿真值,此时假设输入功率为10mW,IBB=40μA,IC=3mA。如果不正确就检查你的设计。

9、打开一个新的设计并在主窗口中查看你所有的文件

a.保存当前原理图:dc_curves。在同一窗口中。创建一个新的设计(无模板),

命名为dc_bias,点击图标保存设计。该设计就被写入ADS的数据库。

b.现在,查看ADS主窗口。你的网络目录里应该有3个设计:bjt_pkg,dc_curves和dc_bias。在此之前,你可能需要在文件浏览器上双击network,来刷新浏览器。

c.在文件浏览(File Browser)窗口中,点击+或-号框和向上箭头,你就可以查找你所创建的任务中的文件。记住:你只能同时在一个任务中操作,但你可以把文件从其它任务中拷贝过来插入。

d.最后,在主窗口试着通过按键显示/隐藏所有的窗口部件。该操作是为了设计安全或找到其它非ADS的窗口。在此情况下,只有主窗口可见。

使用按键可以恢复显示所有的窗口部件。

10、对直流偏置的参数扫描进行设置并仿真

关于参数扫描的备注:如果我们只对一个参数扫描,可使用仿真控制器中的的扫描标签(Sweep Tab)。但是如果对多个参数扫描,就需要参数扫描控制组件了。例如我们刚才使用过的模板。一般来说,所有的仿真控制器,都只允许你对单个参数(变量)进行扫描。

不使用模板建立电路的步骤如下:

a.用library图标放置bjt_pkg,进入bjt_pkg子电路。现在,点击File>Parameters,重置Beta参数缺省值为160,退出子电路,删除bjt_pkg,再重新插入它。此后不管你何时使用该模型电路,Beta值便始终为160了。

b.从探测元件(Probe component)面板或从历史元件栏中放置I_Probe,并重命名为IC(如下图所示)。

c.从频域源(Sources-Frequency domain)面板或历史元件栏中放置一个直流电压源和一个电流源,并设置其值为V_DC=3V,I_DC=1BB,如下图所示。

d.把元件连接起来并接地(使用接地图标)。

e.放置DC仿真控制器或DC。编辑:双击控制器,进入Sweep标签栏中令IBB从10μA到100μA,以10μA步长变化(输入值分别为:10 uA;100 uA;

和10 uA;)。然后,再Display标签栏中检查将要显示的设置,如下图。

点击Apply和OK。

f.设置一个V AR(点击图标)变量方程。用鼠标直接在屏幕上设置IBB=0 A为变量扫描的初始值。

g.在基极放置线符号VBE(点击图标)。该节点电压会在数据组生成,用于计算偏置电阻值最后的原理图如下所示。

h.对数据仿真,绘图。数据显示窗口出现后,应放置VBE与IC.i的列表值。

因为你是通过IBB扫描得到这些值,所以IBB已自动包括在内了。

关于结果的备注:正如你所见,3V电压加于元件,产生40μA电流使VBE 电压为799mV,集电极电流为3.3mA。

i.保存设计与显示数据。

11、计算共射电路偏置电阻Rb,Rc电阻值。

a.在数据显示窗口,放入方程Rb=(3-VBE)/IBB。

b.在数据显示窗口,选中刚刚输入的Rb方程,并用Ctrl+C键拷贝该方程,用Ctrl+V把它粘贴到数据显示窗口。此时,粘贴的方程由Rb变为Rb1。

c.使Rb1方程变为高亮(见下图),并将其值修改为Rc=2/IC.i。全部直流电压为5V,因此,3V加于VCE,剩下2V加在集电极电阻上。

d.插入一张新的列表,点击图标,在对话框拖动滚动条到Equations菜单(如下图所示)。并把Rb和Rc添加到输出列表。

e.在输出列表中Rb和Rc后面加入[3],此时输出表格变为下面的形式。它只显示第3行的内容(注意:此时行的计数从0开始,即:0,1,2,3等等)。然后,你用数据显示窗口的文字选项(Insert>text或快捷键)为列表添加说明符号,如下图所示。

12、设置偏置网络

现在你已经有计算出的偏置的电阻值,可以测试偏置网络。

a.保存设计(dc_bias)。并以新名dc_net另存该设计。同时,保存并关闭dc_bias的数据显示窗口。

b.对设计dc_net的原理图做如下修改。先删除IBB,I_probe和Var。

c.从集总元件面板(Lumped components)添加基极电阻Rb(Rb=56KOhm)和集电极电阻Rc(Rc=60KOhm)。

d.设置直流电压源Vdc=5V。

e.删除直流仿真控制器,在其位置上放置一个新的直流仿真控制器。(你也可以通过对原来的直流进行修改实现上述功能,即,删除扫描变量,去掉对扫描变量的显示。只是上面的方法更快)。整理后的电路如下图所示

关于放置具有布线功能元件的备注:随后(本节最后一个试验后),你可以很容易地通过改变元件名,形成具有布线功能的集总元件。例如,在选择元件

时,把集总元件面板(Lumped-Components)中的换成带工艺安装尺寸的集总元件面板(Lumped-With Artwork)中的;把换成;把换

成,等等。你就可以原理图的电路板了(Layout)。现在,图中使用的都是无布线功能的集总参数元件。

13、对DC解作仿真和注释

a.使用菜单命令Simulate>Simulation Setup,在出现的对话框中去掉“open data display when simulation completes”前面的勾。

b.然后,点击“Simulate”键进行仿真(或按F7键)。仿真会以与原理图同名(默认的)的数据组名进行。你可以通过阅读状态窗口进行检验。

c.点击菜单命令Simulate>Annotate DC Solution,为电流电压注释。有必要的话,移动一下元件或使用F5键移动文本框。使电流、电压易于观察。

你设置的值应合下图所示一样。如果不一样,就要检查你的工作,包括子电路。

d.清除注释:使用菜单命令Simulate>Clear DC Annotation,然后保存所有工作。如果不学后面的内容,就关闭所有窗口。

14、温度扫描(选学)

a.编辑DC控制器——双击DC图标。

b.在Sweep标签栏中,输入ADS的全局变量temp(默认单位为摄氏度)。

把温度范围设置为-55至125,以5为步长(如下图所示)。然后,在Display 标签栏中,选中在控制器中需要显示的注释复选框。然后点击Apply,并察看。再点击OK,关闭对话框。

c.插入VC和VBE的节点/引脚符号。

d.使用菜单命令Simulate>Simulation Setup,把仿真数据组名设置为dc_temp,选择对话框打开数据显示dc_net,点击Apply,然后开始仿真。

e.在矩形图中给出结果绘图。以VC与temp的关系和VBE与temp的关系作图。

f.每根曲线上可以以Delta模式设两个标记,观察电压随温度的变化。曲线应与下图相似,随温度上升集电极电压VC的下降速度应为VBE的一半。

该温度扫描法(扫描全局变量)适用于所有的ADS仿真。

附加练习:

1、在bjt_pkg的所有偏置点使用SP_NWA_T模板来产生S参数。这是一个很有

用的模板。

2、用探头(probe)绘电流(IC.i)随温度影响图。或试着设置一个温度的传递

参数(选项控制器中temp=25)。每个仿真面板中都有选项控制器。它们可以用来为DC设置收敛点和设置固定仿真温度。

3、用另一个模型(Mextram)代替Gummel-Poon模板卡,并重新仿真。完成以

后,比较仿真结果。

模拟电子电路仿真和实测实验方案的设计实验报告111-副本

课程专题实验报告 (1) 课程名称:模拟电子技术基础 小组成员:涛,敏 学号:0,0 学院:信息工程学院 班级:电子12-1班 指导教师:房建东 成绩: 2014年5月25日

工业大学信息工程学院课程专题设计任务书(1)课程名称:模拟电子技术专业班级:电子12-1 指导教师(签名): 学生/学号:涛 0敏0

实验观察R B 、R C 等参数变化对晶体管共射放大电路放大倍数的影响 一、实验目的 1. 学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及R B 、R C 等参数对放大倍数的影响。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 SS —7802 3、 交流毫伏表 V76 4、 模拟电路实验箱 TPE —A4 5、 万用表 VC9205 四、实验容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? I E =E BE B R U U -≈Ic U CE = U CC -I C (R C +R E )

图1 晶体管放大电路实验电路图 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 根据实验结果可用:I C ≈I E = E E R U 或I C = C C CC R U U U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 五.晶体管共射放大电路Multisim仿真 在Multisim中构建单管共射放大电路如图1(a)所示,电路中晶体管采用FMMT5179 (1)测量静态工作点 可在仿真电路中接入虚拟数字万用表,分别设置为直流电流表或直流电压 表,以便测量I BQ 、I CQ 和U CEQ ,如图所示。

直流电路设计实验报告

3.6直流电路设计性实验 3.6.4实验数据的记录、电路分析及数据处理 1将微安表改装成为多量程电流表。 改装电路为图3.6.1 ①用惠斯通电桥测i R并求i R ?。设计电路如图3.6.2 lim 0.2%(500)0.2%(2130500) 5.26 E CR C =+=?+= 6.55 Ri ?===Ω () 21307 Ri ∴=±Ω ②用数字电压表及电阻箱测量微安表满偏时实际电流值Im。见图3.6.3

当微安表满偏时,数字电压表和电阻箱上的示值如下: ③ 根据Ri 、M I 估算出12R R 、的值 由()4 221/10 M M R R I R I ++= ()312/10i M M R I R R I ++= 可得:() 33 1/10102130100.67/10(10100.67)23.8i M M R R I I =-=?-=Ω 219214.6R R ==Ω ④ 对改装好的量程进行初较。见图3.6.4(a )(b ) 每个量程均在20、40、60、80、100等5格刻度处进行校准,根据数据判断改装后的双量程是否符合1.5级标准。(R 为精密电阻,视校正量程而定 测量数据如下表:

从上表可以看出改装后的双量程表符合1.5级标准 2用多种方法测微安表内阻 ① 比较法。见图3.6.5 双置开关分别放于C1、C2上即可分别测出电阻箱和微安表两端电压。比较如下 注:i i R R R i i R U R U U R R R U ?=?= 不确定度推导:ln ln ln ln i i R R R U U R =-+ ln ln 11 ,i i i i R R R R i i R R U U U U R R ??? ==-???? =

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

模拟电路实验报告.doc

模拟电路实验报告 实验题目:成绩:__________ 学生姓名:李发崇学号指导教师:陈志坚 学院名称:专业:年级: 实验时间:实验室: 一.实验目的: 1.熟悉电子器件和模拟电路试验箱; 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影 响; 3.学习测量放大电路Q点、A V、r i、r o的方法,了解公发射极电路特 性; 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.三极管及单管放大电路工作原理: 2.放大电路的静态和动态测量方法:

四.实验内容和步骤 1.按图连接好电路: (1)用万用表判断试验箱上三极管的好坏,并注意检查电解电容 C1,C2的极性和好坏。 (2)按图连接好电路,将Rp的阻值调到最大位置。(注:接线前先 测量电源+12V,关掉电源后再连接) 2.静态测量与调试 按图接好线,调整Rp,使得Ve=1.8V,计算并填表 心得体会:

3.动态研究 (一)、按图连接好电路 (二)将信号发生器的输入信号调到f=1kHz,幅值为500mVp,接至放大电路A点。观察Vi和V o端的波形,并比较相位。 (三)信号源频率不变,逐渐加大信号源输出幅度,观察V o不失真时的最大值,并填表: 基本结论及心得: Q点至关重要,找到Q点是实验的关键, (四)、保持Vi=5mVp不变,放大器接入负载R L,在改变Rc,R L数值的情况下测量,并将计算结果填入表中:

实验总结和体会: 输出电阻和输出电阻影响放大效果,输入电阻越大,输出电阻越小,放大效果越好。 (1)、输出电阻的阻值会影响放大电路的放大效果,阻值越大,放大的倍数也越大。 (2)、连在三极管集电极的电阻越大,电压的放大倍数越大。 (五)、Vi=5mVp,增大和减小Rp,观察V o波形变化,将结果填入表中: 实验总结和心得体会: 信号失真的时候找到合适Rp是产生输出较好信号关键。 (1)Rp只有在适合的位置,才能很好的放大输入信号,如果Rp阻值太大,会使信号失真,如果Rp阻值太小,则会使输入信号不能被

电子科技大学集成电路原理实验CMOS模拟集成电路设计与仿真王向展

实验报告 课程名称:集成电路原理 实验名称: CMOS模拟集成电路设计与仿真 小组成员: 实验地点:科技实验大楼606 实验时间: 2017年6月12日 2017年6月12日 微电子与固体电子学院

一、实验名称:CMOS模拟集成电路设计与仿真 二、实验学时:4 三、实验原理 1、转换速率(SR):也称压摆率,单位是V/μs。运放接成闭环条件下,将一个阶跃信号输入到运放的输入端,从运放的输出端测得运放的输出上升速率。 2、开环增益:当放大器中没有加入负反馈电路时的放大增益称为开环增益。 3、增益带宽积:放大器带宽和带宽增益的乘积,即运放增益下降为1时所对应的频率。 4、相位裕度:使得增益降为1时对应的频率点的相位与-180相位的差值。 5、输入共模范围:在差分放大电路中,二个输入端所加的是大小相等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范围。 6、输出电压摆幅:一般指输出电压最大值和最小值的差。 图 1两级共源CMOS运放电路图 实验所用原理图如图1所示。图中有多个电流镜结构,M1、M2构成源耦合对,做差分输入;M3、M4构成电流镜做M1、M2的有源负载;M5、M8构成电流镜提供恒流源;M8、M9为偏置电路提供偏置。M6、M7为二级放大电路,Cc为引入的米勒补偿电容。 其中主要技术指标与电路的电气参数及几何尺寸的关系:

转换速率:SR=I5 I I 第一级增益:I I1=?I I2 I II2+I II4=?2I I1 I5(I2+I3) 第二级增益:I I2=?I I6 I II6+I II7=?2I I6 I6(I6+I7) 单位增益带宽:GB=I I2 I I 输出级极点:I2=?I I6 I I 零点:I1=I I6 I I 正CMR:I II,III=I II?√5 I3 ?|I II3|(III)+I II1,III 负CMR:I II,III=√I5 I1+I II5,饱和 +I II1,III+I II 饱和电压:I II,饱和=√2I II I 功耗:I IIII=(I8+I5+I7)(I II+I II) 四、实验目的 本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。其目的在于: 根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。 学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。 五、实验内容 1、根据设计指标要求,针对CMOS两级共源运放结构,分析计算各器件尺寸。 2、电路的仿真与分析,重点进行直流工作点、交流AC和瞬态Trans分析,能熟练掌握各种分析的参数设置方法与仿真结果的查看方法。 3、电路性能的优化与器件参数调试,要求达到预定的技术指标。

直流稳压电源电路的设计实验报告

直流稳压电源电路的设计实验报告 一、实验目的 1、了解直流稳压电源的工作原理。 2、设计直流稳压电路,要求输入电压:220V 市电,50Hz ,用单变压器设计并制作能够输出一组固定+15V 输出直流电压和一组+1.2V~+12V 连续可调的直流稳压电源电路,两组输出电流分别I O ≥500mA 。 3、了解掌握Proteus 软件的基本操作与应用。 二、实验线路及原理 1、实验原理 (1)直流稳压电源 直流稳压电源是一种将220V 工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下: 图2-1 直流稳压电源的原理框图和波形变换 其中: 1)电源变压器:是降压变压器,它将电网220V 交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定,变压器副边与原边的功率比为P2/P1=n ,式中n 是变压器的效率。 2)整流电路:利用单向导电元件,把50Hz 的正弦交流电变换成脉动的直流电。 3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。滤波电路滤除较大的波纹成分,输出波纹较小的直流电压U1。 4)稳压电路:其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 (2)整流电路 常采用二极管单相全波整流电路,电路如图2-2所示。在u2的正半周,二极管D1、D2导通,D3、D4截止;u2的负半周,D3、D4导通,D1、D2截止。正负半周部都有电流流过的负载电阻RL ,且方向是一致的。电路的输出波形如图2-3所示。 t

电路仿真实验报告

单片机原理及接口技术电路仿真实验报告 实验一:独立式键盘与LED显示示例 例4—17: 功能:数码管的数据端与P0口引脚采用正序,试编写程序,分别实现功能:上电后数码管显示“P”,按下任何键后,显示从“0”开始每隔1秒加1,加至“F”后,数码管显示“P”,进入等待按键状态。 Keil编程: 电路图: 初始状态时:

3 秒后:程序: TEMP EQU 30H ORG 0000H JMP START ORG 0100H START:MOV SP,#5FH MOV P0,#8CH MOV P3,#0FFH NOKEY:MOV A,P3 CPL A JZ NOKEY MOV TEMP,P3 CALL D10ms MOV A,P3 CJNE A,TEMP,NOKEY MOV R7,#16 MOV R2,#0 LOOP:MOV A,R2 MOV DPTR,#CODE_P0 MOVC A,@A+DPTR MOV P0,A INC R2 SETB RS0 CALL D_1S CLR RS0 DJNZ R7,LOOP JMP START D_1S:MOV R6,#100 D10:CALL D10ms DJNZ R6,D10 RET D10ms:MOV R5,#10 D1ms:MOV R4,#249 DL:NOP NOP DJNZ R4,DL DJNZ R5,D1ms RET CODE_P0:DB 0C0H,0F9H,0A4H,0B0H,99H, 92H,82H,0F8H DB 80H,90H,88H,83H,0C6H,0A1 H,86H,8EH END 例4—18: 功能:执行程序时,先显示“P” 1、按键K0按下后,数码管显示拨动开关S3~S0对应的十进制值; 2、按键K1按下后,P0口数码管显示拨动开关S3~S0对应的十六进制值; 3、按键K2按下后,P2口数码管显示拨动开关S3~S0对应的十六制值;

完整版模拟电子电路实验报告

. 实验一晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R 和R组成的分压电路,并在发射极中接有电阻R,以稳定放大器的静态工EB1B2作点。当在放大器的输入端加入输入信号u后,在放大器的输出端便可得到一i个与u相位相反,幅值被放大了的输出信号u,从而实现了电压放大。0i 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R和R 的电流远大于晶体管T 的 B2B1基极电流I时(一般5~10倍),则它的静态工作点可用下式估算B教育资料.. R B1U?U CCB R?R B2B1 U?U BEB I??I EC R E

)R+R=UU-I(ECCCCEC电压放大倍数 RR // LCβA??V r be输入电阻 r R/// R=R/beiB1 B2 输出电阻 R R≈CO由于电子器件性能的分散性比较大,因此在设计和制作晶 体管放大电路时, 为电路设计提供必离不开测量和调试技术。在设计前应测量所用元器件的参数,还必须测量和调试放大器的静态工作点和各要的依据,在完成设计和装配以后,因此,一个优质放大器,必定是理论设计与实验调整相结合的产物。项性能指标。除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。消除干扰放大器静态工作点的测量与调试,放大器的测量和调试一般包括:与自激振荡及放大器各项动态参数的测量与调试等。、放大器静态工作点的测量 与调试 1 静态工作点的测量1) 即将放大的情况下进行,=u 测量放大器的静态工作点,应在输入信号0 i教育资料. . 器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位U、U和U。一般实验中,为了避 ECCB免断开集电极,所以采用测量电压U或U,然后算出I的方法,例如,只要 测CEC出U,即可用E UU?U CECC??II?I,由U确定I(也可根据I),算出CCC CEC RR CE同时也能算出U=U-U,U=U-U。EBEECBCE为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I(或U)的调整与测试。 CEC静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u的负半周将被削底,O 如图2-2(a)所示;如工作点偏低则易产生截止失真,即u的正半周被缩顶(一 O般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端 加入一定的输入电压u,检查输出电压u的大小和波形是否满足要求。如不满Oi

电工直流电路实验报告

电工直流电路实验报告 实验报告 课程名称: 实验时间: 天津城市建设学院 控制与机械工程学院 注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 电工学、电子技术实验报告 课程名称:高级电工电子实验 实验名称:高级电子实验一、二、三 姓名:蒋坤耘

学号: 班级:安全 指导老师: xx Axx0920 1101 刘泾 年12月23日 实验一晶体管单管放大电路的测试 一、实验目的: 1.学会放大器静态工作点的测量和测试方法,分析静态工作点对放大器性能的影响 2.掌握放大器电压放大倍数的测试方法

3.进一步掌握输出电阻、输入电阻、最大步失真输出电压的测试方法二、实验原理 1.实验电路 2.理论计算公式 三、实验内容与步骤: (1)照图用专用导线接好电路(2)静态工作点测试 接通电源,并按实验电路图接好函数发生器和示波器,函数发生器调整为 1kHz,4V左右。用实验法调好静态工作点,使Vi?0,测试并记下VB,VE,VC及VRb2?RW。填入表一中(3)放大倍数测试 在上一步基础上,用示波器或毫伏表分别测量RL?OO及RL?2.4k Ω时输出电压Vi和输出电压V0,并计算放大倍数,填入表二中(4)观察工作点对输出波形V0的影响 保持输入信号不变,增大和减小RW,观察V0波形变化,测量并记录

表一 表三 四、实验设备 1.晶体管直流稳压电源(型号DH1718) 2.调节输出电压+12V 3.低频信号发生器 4.双踪示波器 5.交流毫伏表 6.数字万用表 7.晶体三极管 8.电位器 9.电阻、电解电容器 五、误差分析 下面从静态工作点、电压放大倍数、输入电阻、输出电阻之值与理论计算值比较(取一组数据进行比较),分析产生误差原因。 基准电压Vb太高,使得Ve=Vb增高而使Uce相对的减小了,因为影响实验。输入输出电阻选择不够合理,导致实验误差,影响实验。 温度的升高使得偏置电流Ib能自动的减小以限制Ic的增大。

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

Multisim模拟电路仿真实验

实验19 Multisim 数字电路仿真实验 1.实验目的 用Multisim 的仿真软件对数字电路进行仿真研究。 2.实验内容 实验19.1 交通灯报警电路仿真 交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。出故障时报警灯亮。 设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。字母Z 表示报警灯,高电平表示报警。则真值表如表 19.1所示。 逻辑表达式为:RY RG G Y R Z ++= 若用与非门实现,则表达式可化为:RY RG G Y R Z ??= Multisim 仿真设计图如图19.1所示: 图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。用发光二极管LED1的亮暗模拟报警灯的亮暗。另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500 表19.1 LED_red LED1 图19.1

欧姆电阻。 在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。 实验19.2数字频率计电路仿真 数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。如果用2位数码管,则测量的最大频率是99Hz。 数字频率计电路Multisim仿真设计图如图19.2所示。其电路结构是: 用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。三输入与非门7410(U6A)为控制闸门。 运行后该频率计进行如下自动循环测量: 计数1秒→显示3秒→清零1秒→…… 改变被测脉冲频率,重新运行。

电路实验报告材料参考直流

R V R 实验报告参考(直流部分) 实验一 基本实验技术 一、 实验目的: 1. 熟悉电路实验的各类仪器仪表的使用方法。 2. 掌握指针式电压表、电流表阻的测量方法及仪表误测量误差的计算。 3. 掌握线性、非线性电阻元件伏安特性的测绘。 4. 验证电路中电位的相对性、电压的绝对性。 二、需用器件与单元: 三、实验容: (一) 电工仪表的使用与测量误差及减小误差的方法 A 、基本原理: 通常,用电压表和电流表测量电路中的电压和电流,而电压表和电流表都具有一定的阻,分别用R V 和R A 表示。如图2-1所示,测量电阻R 2两端电压U 2时,电压表与R 2并联,只有电压表阻R V 无穷大,才不会改变

A R A m I I R I A I R 图 2-2 S 可调恒流源V R V m U R + -U + -V U R U + -S 图 2-3 可调恒压源 电路原来的状态。如果测量电路的电流I ,电流表串入电路,要想不改变电路原来的状态,电流表的阻R A 必须等于零,。但实际使用的电压表和电流表一般都不能满足上述要求,即它们的阻不可能为无穷大或者为零,因此,当仪表接入电路时都会使电路原来的状态产生变化,使被测的读数值与电路原来的实际值之间产生误差,这种由于仪表阻引入的测量误差,称之为方法误差。显然,方法误差值的大小与仪表本身阻值的大小密切相关,我们总是希望电压表的阻越接近无穷大越好,而电流表的阻越接近零越好。 可见,仪表的阻是一个十分关注的参数。 通常用下列方法测量仪表的阻: 1.用‘分流法’测量电流表的阻 设被测电流表的阻为R A ,满量程电流为I m,测试电路如图2-2所示,首先断开开关S,调节恒流源的输出电流I,使电流表指针达到满偏转,即I =I A =I m。然后合上开关S, 并保持I 值不变,调节电阻箱R的阻值,使电流表的指针指在1/2满量程位置,即 2m S A I I I == 则电流表的阻R R =A 。 2.用‘分压法’测量电压表的阻 设被测电压表的阻为R V ,满量程电压为U m,测试电路如图2-3所示,首先闭合开关S,调节恒压源的输出电压U ,使电压表指针达到满偏转,即U =U V =U m。然后断开开关S, 并保持U 值不变,调节电阻箱R的阻值,使电压表的指针指在1/2满量程位置,即 2m R V U U U = = 则电压表的阻R R =V 。 图2-1电路中,由于电压表的阻R V 不为无穷大,在测量电压时引入的方法误差计算如下:, R 2上的电压为: U R R R U 212 2+= ,若R 1=R 2,则U 2 =U /2 现用一阻R V 的电压表来测U 2值,当R V 与R 2并联后, 2V 2 V 2 R R R R R +=',以此来代替上 式的R 2 ,则得 U R R R R R R R R R U ?+ ='2 V 2 V 12 V 2V 2++ 绝对误差为

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

大学《模拟电子线路实验》实验报告

大连理工大学网络高等教育《模拟电子线路》实验报告 学习中心:奥鹏教育中心 层次:高中起点专科 专业:电力系统自动化 年级: 学号: 学生姓名:杨

实验一常用电子仪器的使用 一、实验目的 答:1.了解并掌握模拟电子技术实验箱的主要功能及使用方法。 2.了解并掌握数字万用表的主要功能及使用方法。 3.学习并掌握TDS1002型数字存储示波器和信号源的基本操作方法。 二、基本知识 1.简述模拟电子技术实验箱布线区的结构及导电机制。 答:布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的。 2.试述NEEL-03A型信号源的主要技术特性。 答:1.输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号; 2.输出频率:10HZ~1HZ连续可调; 3.幅值调节范围:0~10Vp-p连续可调; 4.波形衰减:20db、40db; 5.带有6位数字频率计,即可作为信号源的输出监视仪表,也可以作为外侧频率计使用。 3.试述使用万用表时应注意的问题。 答:使用万用表进行测量时,应先确定所需测量功能和量程。 确定量程的原则: 1.若已知被测参数大致范围,所选量程应“大于被测值,且最接近被测值”。 2.如果被测参数的范围未知,则选择所需功能的最大量程测量,根据粗侧结果逐步把量程下调到最接近于被测值的量程,以便测量出更加精准的数值。 如屏幕显示“1”,表明以超过量程范围,需将量程开关转至相应档位上。 3.在测量间歇期和实验结束后,不要忘记关闭电源。 三、预习题 1.正弦交流信号的峰-峰值=__2__×峰值,峰值=__√2__×有效值。 2.交流信号的周期和频率是什么关系? 答:周期和频率互为倒数。T=1/f f=1/T

模拟电路仿真实验

模拟电路仿真实验 实验报告 班级: 学号: 姓名:

多级负反馈放大器的研究 一、实验目的 (1)掌握用仿真软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。 1.测试开环和闭环的电压放大倍数、输入电阻、反馈网络的电压反馈系数的通频带; 2.比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别; 3.观察负反馈对非线性失真的改善。 二、实验原理及电路 (1)基本概念: 1.在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输入回路,用来影响其输入量(放大电路的输入电压或输入电流)的措施称为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 2.交流负反馈有四种组态:电压串联负反馈;电压并联负反馈;电流串联负反馈;电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;若反馈量取自输出电流,则称之为电流反馈。输入量、反馈量和净输入量以电压形式相叠加,称为串联反馈;以电流形式相叠加,称为并联反馈。 3.在分析反馈放大电路时,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路;“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,否则为串联反馈。 4.引入交流负反馈后,可以改善放大电路多方面的性能:提高放大倍数的稳定性、改变输入电阻和输出电阻、展宽通频带、减小非线性失真等。实验电路如图所示。该放大电路由两级运放构成的反相比例器组成,在末级的输出端引入了反馈网路C f 、R f2和R f1,构成了交流电压串联负反馈电路。 R110kΩ R2100kΩ R3 10kΩ R43.9kΩ R53.9kΩ R63.9kΩ R7200kΩ R81kΩ R94.7kΩR10300kΩ U1A LM324N 3 2 11 41 U1C LM324N 10 9 11 4 8 C110uF C210uF C3 10uF J1 Key = Space J2 Key = A VCC 10V VEE -10V 1 4 10 8 11 12 13 7 3 6 5VEE VCC 2 9

电路实验报告

目录实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性和齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

330口 R B 1— 1 2. 电路中相邻两点之间的电压值 在图1 — 1中,测量电压U AB :将电压表的红笔端插入 A 点,黑笔端插入B 点,读电压表读数,记入表 1 — 1中。按同样方法测量 U BC 、U CD 、U DE 、U EF 、及U FA ,测量数据记入表1 — 1中。 实验一 电位、电压的测定及电路电位图的绘制 1.学会测量电路中各点电位和电压方法。理解电位的相对性和电压的绝对性; 2?学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 .原理说明 在一个确定的闭合电路中, 各点电位的大小视所选的电位参考点的不同而异, 但任意两点之间的电 压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。据此性质,我们 可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标, 电路中各点位置(电阻或电源)作横坐标, 将测量到的各点电位在 该平面中标出,并把标出点按顺序用直线条相连接, 就可得到电路的电位图, 每一段直线段即表示该两 点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定, 对于不同的参考点, 所绘出的电位图形是不同,但其各点电位 变化的规律却是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2 .恒压源(EEL — I 、II 、III 、IV 均含在主控制屏上,可能有两种配置( 1) +6V ( +5V ) , +12 V , 0? 30V 可调或(2)双路0?30V 可调。) 四.实验内容 实验电路如图1 — 1所示,图中的电源U S 1用恒压源中的+6V (+5V )输出端, 输出端,并将输出电压调到 +12V 。 U S2用0?+30V 可调电源 1.测量电路中各点电位 以图1 — 1中的A 点作为电位参考点,分别测量 B 、C 、 用电压表的黑笔端插入 A 点,红笔端分别插入 B 、C 、 以D 点作为电位参考点,重复上述步骤,测得数据记入表 D 、E 、F 各点的电位。 D 、 E 、 F 各点进行测量,数据记入表 1 — 1 中。 1 — 1 中。 5100 S3 VCU 5100 5ion R4

电路仿真实验报告

本科实验报告实验名称:电路仿真

实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,

将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描

模拟电子技术实验报告

姓名:赵晓磊学号:1120130376 班级:02311301 科目:模拟电子技术实验B 实验二:EDA实验 一、实验目的 1.了解EDA技术的发展、应用概述。 2. 掌握Multisim 1 3.0 软件的使用,完成对电路图的仿真测试。 二、实验电路

三、试验软件与环境 Multisim 13.0 Windows 7 (x64) 四、实验内容与步骤 1.实验内容 了解元件工具箱中常用的器件的调用、参数选择。 调用各类仿真仪表,掌握各类仿真仪表控制面板的功能。 完成实验指导书中实验四两级放大电路实验(不带负反馈)。 2.实验步骤 测量两级放大电路静态工作点,要求调整后Uc1 = 10V。 测定空载和带载两种情况下的电压放大倍数,用示波器观察输入电压和输出电压的相位关系。 测输入电阻Ri,其中Rs = 2kΩ。 测输出电阻Ro。 测量两级放大电路的通频带。 五、实验结果 1. 两级放大电路静态工作点 断开us,Ui+端对地短路

2. 空载和带载两种情况下的电压放大倍数接入us,Rs = 0 带载: 负载: 经过比较,输入电压和输出电压同相。 3. 测输入电阻Ri Rs = 2kΩ,RL = ∞ Ui = 1.701mV

Ri = Ui/(Us-Ui)*Rs = 11.38kΩ 4. 测输出电阻Ro Rs = 0 RL = ∞,Uo’=979.3mV RL = 4.7kΩ,Uo = 716.7mV Ro = (Uo’/Uo - 1)*R = 1.72kΩ 5. 测量两级放大电路的通频带电路最大增益49.77dB 下限截止频率fL = 75.704Hz 上限截止频率fH = 54.483kHz 六、实验收获、体会与建议

相关文档
最新文档