气体的压强跟温度的关系

气体的压强跟温度的关系
气体的压强跟温度的关系

三、气体的压强跟温度的关系

在日常生活中,我们常会遇到这样一些情况:夏天给旧的自行车车胎打气,不宜打得很足,不然,在太阳下骑行,车胎容易爆裂;卡车在运输汽水等饮料时,由于太阳曝晒,一些质地较差的汽水瓶往往会爆裂。这些现象都表明气体压强的大小跟温度的高低有关。 我们可以用实验的方法来研究一定质量的气体,在体积不变时,它的压强跟温度的关系。 查理定律

通过实验探索,我们初步得出一定质量气体在体积不变时,它的压强随着温度的升高而增大的结论。从实验数据描绘出的p -t 图象,基本上是一条倾斜的直线(图2-7),但是这样还没有反映出压强和温度间确切的关系。

最早定量研究气体压强跟温度的关系的是法国物理学家查理(1746-1823)。我们为了精确测量一定质量气体在体积不变时,不同温度下的压强,采用了图2-8所示的实验装置。容器A 中有一定质量的空气,空气的温度可由温度计读出,空气的压强可由跟容器A 连在一起的水银压强计读出。但温度升高后,容器A 中的空气会膨胀,由于压强计两臂间是用橡皮管相连的,它的右臂可以上下移动。移上时,受热膨胀后的空气就能被压缩到原来的体积。

控制变量法

自然界发生的各种现象,往往是错综复杂的。决定某一个现象的产生和变化的因素常常也很多。为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,然后来比较、研究其他两个变量之间的关系,这是一种研究问题的科学方法。

例如物体吸收热量温度会升高,温度升高多少是由多个因素决定的,跟吸收的热量、物体的质量以及组成物体的物质性质有关。在研究时,可以先使一些因素保持不变,如在物质

相同、质量相同的情况下,观察物体温度升高跟所吸收热量的关系;接着再研究同种物质,

图2-8 图2-7

不同质量的物体吸收相等热量时,温度升高跟质量的关系等等,从而得出物体温度升高跟所吸收的热量、物体的质量和组成物体的物质性质的关系。控制变量的科学方法在物理学的研究中是经常使用的。

这个实验是按以下步骤进行的:

先把容器A 浸没在冰水混和物中,这时容器A 中的空气温度为0℃,调节压强计右臂的位置.使两臂内水银面位于同一高度,这时容器A 中的空气压强就等于大气压强,记下压强计左臂内水银面的位置B ,这就是0℃时容器A 内空气体积V 0的一个标记[图2-8(a )]。

然后将烧杯中的冰水混和物倒去,换成热水,经搅拌器搅拌后,读取热水温度,即为容器A 中空气的温度。容器A 中的空气受热后压强增大,体积也变大,这时压强计两臂内的水银面的高度差并不表示气体体积不变时的压强增加量,必须提起压强计的可动臂(右臂),使左臂内水银面回到位置B ,增大容器A 内空气的压强,以保持原来的空气体积V 0,这时,压强计两臂内的水银面的高度差将变大,读出这一高度差h ,如图2-8(b )所示,就可根据p =p 0+ρgh ,算出这一温度下容器A 中空气的压强。

实验时每一次改变热水温度后,都必须重新调节压强计可动臂的高度,使容器A 中的空气体积保持不变,并应记录每一次改变温度后,容器中空气的温度值和相应的压强值。

查理用各种气体进行实验,结果表明,一定质量的各种气体在体积不变时,温度升高

(或降低)1℃,压强的增加量(或减小量)等于它在0℃时压强的1273

1。这个实验结论叫做查理定律。

热力学温标

根据查理定律可知,一定质量的气体在体积不变时,它的温度从0℃降低到-1℃,气体压强将减小0℃时压强的1273

。若把这个结论进行合理外推,便可得出当温度降低到-273℃时,气体压强将减小到零的推论(图2-9)。

英国物理学家、数学家开尔文(1824-1907)认为,既然-273℃时气体的压强为零,就意味着这时气体分子的运动已停顿,这是绝对的零度,因此-273℃被称为绝对零度。1848年,开尔文提出了建立以-273℃为零点的温标,叫做开氏温标,现称做热力学温标,用热力学温标表示的温度,叫做热力学温度。热力学温度用T 表示,它的单位是开尔文,简称为开,符号是K 。就每一开和每一度的大小来说,热力学温度和摄氏温度是相等的。热力学温度T 和摄氏温度t 之间的换算关系是

1 精确值应是1/278.15

p (Pa )

图2-9

T =t +273,t =T -273。

我们从图2-9的p -t 图象可以看出,如果把直角坐标系的横坐标由摄氏温t 变为热力学温度T ,将坐标轴的原点取在热力学温度的零开(即-273℃)处。这样,气体压强p 和热力学温度T 之间就有了正比关系(图2-10)。于是,查理定律的表述就可以简化为:

一定质量的气体在体积不变时,它的压强跟热力学温度成正比。

若气体压强用p 表示,热力学温度用T 表示,查理定律可用以下公式表示

p 1p 2 =T 1T 2

【例题1】

室温为20℃时,把一只空瓶盖紧,当时的大气压强为1.0×105帕。把这只瓶移到炉灶旁,当瓶内空气温度升高到40℃时,它的压强是多大?

【解】把瓶子盖紧时,瓶内空气压强p 1=p 0=1.0×105帕,温度T 1=(20+273)开。移到炉灶旁,温度T 2=(40+273)开,瓶内空气的压强发生了变化,但它的质量和体积都保持不变。

根据查理定律

p 1p 2 =T 1T 2

, 瓶内空气压强

p 2=p 1T 2T 1 =1.0×105×(40+273)20+273 帕=313293 ×105帕=1.07×105帕。 【例题2】

钢瓶内贮有一定质量的氧气,在温度为20℃时,瓶内氧气压强为6.0×106帕。如钢瓶的耐压值为14×106帕,则存放这瓶氧气的环境温度不得高于几度?

【解】由于钢瓶的容积不变,当环境温度升高时,瓶内氧气的压强会增大,钢瓶的耐压值也就是瓶内氧气允许达到的压强最大值。

根据查理定律p 1p 2 =T 1T 2

,已知T 1=(20+273)开,p 1=6.0×106帕,p 2=14×106帕,所以

T 2=p 2T 1p 1 =14×106×(20+273)6.0×106

开≈684开, 即环境温度不得超过t 2=T 2-273=(684-273)℃=411℃。

所以在常温下使用或存放这瓶氧气是安全的,但不可把它放在十分靠近锅炉等温度很高的地方。工厂或医院发生火灾时,消防人员十分注意火区中是否存放氧气瓶。如果有,则首

T 0 1 2 3 4

p 4p 3p 2p 1p 0图2-10

先要控制住这些地方的火势,迅速将氧气瓶转移到安全的地方。不然,温度过高引起氧气瓶爆炸,会造成更大的破坏。

思考

1.上海地区1990年7~8月份的平均气温比1989年相同月份的平均气温高出4.8℃,怎样用热力学温度来表示?

2.采用密封式罐装、使用助推剂喷雾的杀虫药水,说明书上写明“本品切勿放置在温度高于50摄氏度的地方”。因此,即使把用完了的药水罐随手搁在暖气片上(图2-11),也是不允许的。这是什么道理?

3.在炉灶上放一块铁板,烧热后,将一些带壳的干稻谷放在铁板上。过一会儿只听到稻谷“噼”“啪”作响,同时有一些就变成了爆米花(图2-12)。试说明原因。

练习四

1.在固定容积的容器里有一定质量的氧气,当温度从30℃上升到60℃时,有的同学说,容器里的氧气压强将会增大到原来压强的2倍。这样的考虑对吗?如果要使它的压强增大到原来压强的2倍,则容器里的氧气温度必须从30℃升高到几度?

2.盛在钢瓶中的氢气,在0℃时,测得其压强为910千帕。当温度升高到27℃时,压强将变为多大?

3.盛在钢瓶中的氧气,在17℃时,测得其压强为9.0兆帕。把它搬到环境温度为37℃的高温车间内,钢瓶内氧气的压强变为9.3兆帕。钢瓶中的氧气是否有泄漏?为什么?

4.在大气压强为1.0×105帕、温度为30℃时,把一只空瓶用橡皮塞塞住,然后把这只瓶子放在-18℃的冰箱冷冻室内,过一会儿取出瓶子。如果要计算橡皮塞所受压力的大小,还必须知道什么条件?

5.白炽灯泡内充有氮和氩的混合气体,要使灯泡内的混合气体在100℃时压强不超过1.0×105帕,那么在室温20℃制作灯泡时,所充混合气体的压强至多只能多大?

2-12 图2-11

气体的压强跟温度的关系

三、气体的压强跟温度的关系 在日常生活中,我们常会遇到这样一些情况:夏天给旧的自行车车胎打气,不宜打得很足,不然,在太阳下骑行,车胎容易爆裂;卡车在运输汽水等饮料时,由于太阳曝晒,一些质地较差的汽水瓶往往会爆裂。这些现象都表明气体压强的大小跟温度的高低有关。 我们可以用实验的方法来研究一定质量的气体,在体积不变时,它的压强跟温度的关系。 查理定律 通过实验探索,我们初步得出一定质量气体在体积不变时,它的压强随着温度的升高而增大的结论。从实验数据描绘出的p -t 图象,基本上是一条倾斜的直线(图2-7),但是这样还没有反映出压强和温度间确切的关系。 最早定量研究气体压强跟温度的关系的是法国物理学家查理(1746-1823)。我们为了精确测量一定质量气体在体积不变时,不同温度下的压强,采用了图2-8所示的实验装置。容器A 中有一定质量的空气,空气的温度可由温度计读出,空气的压强可由跟容器A 连在一起的水银压强计读出。但温度升高后,容器A 中的空气会膨胀,由于压强计两臂间是用橡皮管相连的,它的右臂可以上下移动。移上时,受热膨胀后的空气就能被压缩到原来的体积。 控制变量法 自然界发生的各种现象,往往是错综复杂的。决定某一个现象的产生和变化的因素常常也很多。为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,然后来比较、研究其他两个变量之间的关系,这是一种研究问题的科学方法。 例如物体吸收热量温度会升高,温度升高多少是由多个因素决定的,跟吸收的热量、物体的质量以及组成物体的物质性质有关。在研究时,可以先使一些因素保持不变,如在物质 相同、质量相同的情况下,观察物体温度升高跟所吸收热量的关系;接着再研究同种物质, 图2-8 图2-7

标准大气的高度和气温、气压的关系

标准大气的高度和气温、气压的关系 工作中经常用到大气资料,总结如下 这里所说的标准大气指国际民航组织采用的“1964,ICAO标准大气”。在海拔32公里以下,它与“1976,U.S.标准大气”相同。近地面(32公里以下)大气气温的变化为: ---地面:气温的15.0℃,气压P=1013.25mb ---地面至海拔11公里的气温变化率:–6.5℃/公里 在11公里的界面上: 气温为–56.5℃气压P=226.32mb 海拔11—20公里的气温变化率:0.0℃/公里 海拔20—32公里的气温变化率:+1.0/公里 更详细的数据可以参考GJB365.1-87 《北半球标准大气(-2~80公里)》给出的大气参数。 气压的国际单位制是帕斯卡(或简称帕,符号是Pa),泛指是气体对某一点施加的流体静力压强,来源是大气层中空气的引力,即为单位面积上的大气压力。在一般气象学中人们用千帕斯卡(KPa)、或使用百帕(hPa)作为单位。测量气压的仪器叫气压表。其它的常用单位分别是:巴(bar,1bar=100,000帕)和厘米水银柱(或称厘米汞柱)。在海平面的平均气压约为101.325千帕斯卡(76厘米水银柱),这个值也被称为标准大气压。另外,在化学计算中,气压的国际单位是“atm”。一个标准大气压即是1atm。1个标准大气压等于101325帕,1.01325巴,或者76厘米水银柱。 大气压会随着高度的提升而下降,其关系为每提高12米,大气压下降1mm-Hg(1毫米水银柱),或者每上升9米,大气压降低100Pa。 下图给出了-0.5-20kM的大气温度、密度、压力分布图。从图中可以看出温度在0-11km成线性关系,压力和温度在0-3km(甚至5km)都成线性关系。

气体的压强体积温度间的关系

高二新课固体液体和气体夏令营2006-08-21 §12.9 气体的压强、体积、温度间的关系 要点:巩固气体压强的微观解释 知道气体压强、体积和温度之间的关系 能用气体参量来叙述生活实例中的变化 教学难点:气体压强、体积和温度三者之间的制约关系 考试要求:高考Ⅰ(气体的状态和状态参量,气体的体积、压强、温度之间的关系),会考 课堂设计:学生已涉及到了气体压强的微观解释,本节可进一步从撞击、作用力、频繁等因素将气体压强转到宏观的决定参量温度和体积上来,并使学生认识到参量之 间是有联系和制约的,也能从一些生活事例中用气体状态参量的眼光观察和解 释。为降低难度,分别将相互关系分立讨论,再通过小结得到实用的定论。为 应付一般习题中的参量定性讨论,可介绍(PV/T=常量)式。 解决难点:在复习气体压强微观意义的基础上,将微观量转化为宏观的参量,继而结合学生的一些生活经验得出三参量之间的关系,并再在生活实例中应用检验,作为 定性了解可依据课本不再展开。 学生现状:用气体压强的微观意义来理解与温度和体积之间的关系有困难; 用微观意义来理解参量的变化尚不适应; 用微观意义定性知道生活实例不知所措。 培养能力:分析综合能力,理解推理能力 思想教育:唯物主义世界观 课堂教具:针筒,气球 一、引入 【问】气体压强是如何产生的? 分析:大量气体分子频繁的碰撞器壁而产生的 【问】影响气体压强大小的因素有哪些? 分析:温度、体积 那么气体的压强与气体的温度、体积之间有什么样的定量关系存在呢?这就是今天这堂课我们要解决的问题。 二、气体压强和体积的关系 学生阅读《气体压强和体积的关系》部分 我们研究的对象是什么?实验的先决条件是什么?得出了什么结论? 分析:我们研究的对象是密封在注射气内质量一定的气体;实验的先决条件是:气体的温度不变。实验结论:体积减小时,压强增大;体积增大时,压强减小。 【问】用气体分子热运动的理论即从微观方面解释这个实验结论。 分析:温度不变,分子的平均动能不变,质量一定,体积减小,单位体积内的分子数增多,即分子越密集,所以气体压强增大。 【问】如果压缩气体的同时,温度降低,还一定是“体积越小,压强越大”吗? 分析:温度降低,分子平均动能减小,所以压强不一定增大。 结论:一定质量的气体,温度不变,体积减小,压强增大。PV=常量

压力与温度的关系

压力与温度的关系标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

压力与温度的关系 用方程:pV=nRT,即p=nRT/V,此题为等容过程,体积不变。如要改变值,需要知道第二个公式中T的系数,楼主的初始条件还应该有初始温度吧!用初始压力除以初始温度就算出了系数,再用这个系数算每摄氏度对应的压力变化. 温度在1~1000之间时,可以近似认为是理想气体,可以根据 理想气体的状态方程:PV=mRgT ,p压力V体积m质量RgT温度 空气的Rg= J/=287 J/(标准适用),摩尔R= J/ Vm=*10-3m3/mol 空气的 mol 空气的标准密度= m3 空气的标准比体积= m3/kg 根据以上公式,就可以求出所需内容。 当然,你的问题的前提,缺少一项,体积的变化。 气体在不同压力和温度下的密度怎么计算 用气体方程pV=nRT, 式中p为压强,V为体积,n为,R为,T为。 而n=M/Mmol,M为质量,Mmol为。 所以pV=MRT/Mmol 而密度ρ=M/V 所以ρ=pMmol/RT,

所以,只要知道了压强、、就可以算出气体密度。 气体的浓度与温度有什么关系(同体积、压力) 根据PV=NRT,其中P为压强,V为体积,T为 ,N为物质的量,可视为浓度指标。R为常数。在体积压力一致的情况下,温度越高,则N越小。所以浓度越低。 注:热力学温度就是绝对温度T,以开尔文(K)为单位 摄氏温标表示的温度t[以摄氏度(℃)为单位]与热力学温度T相差,即 T(K)=t (℃)+,例如温度为100℃就是热力学温度为 一定质量和体积的气体,压力和温度之间关系 PVM=mRT R为常数,M、m一定时,忽略体积变化的。故,压力提高,温度上升。

大气压与温度的关系

大气压与温度的关系 大气压:和高度、湿度、温度的变化成反比--注意,这里说的是大气压,而非气压! 详细说明如下: 高度越高--空气越稀薄; 湿度越大--空气中的水分越多,尔水的分子量比空气的混合分子量小,水气的增加,等于稀释了空气; 温度越高--虽然增加了空气分子的对撞机会,但是空气迅速膨胀,对流,尔引起空气变得稀薄,其增加的对撞能量远小于空气变稀薄减小的对撞能量,自然空气压力减小。 有关常识如下: 定义: 1.亦称“大气压强”。重要的气象要素之一。由于地球周围大气的重力而产生的压强。其大小与高度、温度等条件有关。一般随高度的增大而减小。例如,高山上的大气压就比地面上的大气压小得多。 在水平方向上,大气压的差异引起空气的流动。 2.压强的一种单位。“标准大气压”的简称。科学上规定,把相当于760mm 高的水银柱(汞柱)产生的压强或1.01×十的五次方帕斯卡叫做1标准大气压,简称大气压。 地球的周围被厚厚的空气包围着,这些空气被称为大气层。空气可以像水那样自由的流动,同时它也受重力作用。因此空气的内部向各个方向都有压强,这个压强被称为大气压。在1643年意大利科学家托里拆利在一根80厘米长的细玻璃管中注满水银倒臵在盛有水银的水槽中,发现玻璃管中的水银大约下降了4厘米后就不再下降了。

这4厘米的空间无空气进入,是真空。托里拆利据此推断大气的压强就等于水银柱的长度。后来科学家们根据压强公式准确地算出了大气压在标准状态下为1.013×105Pa。由于当时的信息交流不畅意大利和法国对大气压实验研究结果并没有被全欧洲所熟知,所以在德国对大气压的早期研究是独立进行的。1654年奥托格里克在德国马德堡作了著名的马德堡半球实验,有力的验证了大气压强的存在,这让人们对大气压有了深刻的认识。在那个时期,奥托格里克还做了很多验证大气压存在且很大的实验,也正是在这一时候他第一次听到托里拆利早在11年前已测出了大气压。 标准大气压 1标准大气压=760毫米汞柱=76厘米汞柱=1.013×10的5次方帕斯卡=10.336米水柱。 标准大气压值及其变迁 标准大气压值的规定,是随着科学技术的发展,经过几次变化的。 最初规定在摄氏温度0℃、纬度45°、晴天时海平面上的大气压强为标准大气压,其值大约相当于76厘米汞柱高。后来发现,在这个条件下的大气压强值并不稳定,它受风力、温度等条件的影响而变化。 于是就规定76厘米汞柱高为标准大气压值。但是后来又发现76厘米汞柱高的压强值也是不稳定的,汞的密度大小受温度的影响而发生变化;g值也随纬度而变化。测量大气压的仪器叫气压计。 为了确保标准大气压是一个定值,1954年第十届国际计量大会决议声明,规定标准大气压值为 1标准大气压=101325牛顿/米2,即为101325帕斯卡(Pa)大气压的变化温度、湿度与大气压强的关系 湿度越大大气压强越大 初中物理告诉我们:“大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高.”对这段叙述,就是老师也往往不

气体压强与温度的关系

气体压强与温度的关系 第六章c 一、教学任务分析 本节内容是学生在学习了分子动理论和波意耳定律等知识后,对气体状态变化规律的研究过程和方法有一定了解的基础上,进一步研究气体的等容变化过程及其规律。从科学研究方法来看,热学作为一个独立的知识体系,它在继承力学的许多研究方法的同时,又增添一些新的研究方法——外推法,并导致热力学温标的创立;建立微观气体模型对宏观规律获得本质的认识等。 学习本节内容需要理解气体的体积、压强和温度这三个状态参量和气体的状态变化之物理意义,并且要了解探究气体状态变化规律常用的方法——控制变量法和使用DIS实验器材的一些必备技能。 通过气球加热后破裂等情景引入,使学生定性认识到一定质量的气体在体积不变时其压强变化与温度变化的趋向相同。 通过对不同种类、不同体积的气体进行DIS实验探究,在计算机上得到p-t图像,并要求学生作图,然后通过对p -t图像的分析、讨论,理解压强随温度变化是线性的关系和图线在纵轴与横轴上截距的物理意义。

应用外推法合理外推图线,创建热力学温标,并得到查理定律。 本节课的学习体现出以学生为学习的主体,在获得知识的同时,感受科学探究的过程与方法,学会应用DIS实验研究实际问题,应用物理思维方法进行推理分析、得出结论,促使学生形成乐于探究的情感。 二、教学目标 .知识与技能 知道一定量的气体在体积不变的情况下压强和温度间关系的图象表达,即p-t图像和p-T图像。 知道热力学温标,知道绝对零度的物理意义。 理解查理定律。 学会用DIS实验器材完成一定量的气体在体积不变的情况下压强和温度间关系的 探究任务,并正确处理实验数据。 .过程与方法 运用控制变量的方法进行DIS实验。 运用外推法建立热力学温标,并在对p-T图像分析的基础上得出查理定律。 .情感、态度价值观 领略物理思维方法在探究、分析推理过程中的作用。 由日常生活中的气体等容变化现象养成观察身边的物

气体的压强体积温度间的关系

高二新课固体液体和气体 §12.9 气体的压强、体积、温度间的关系 要点:巩固气体压强的微观解释 知道气体压强、体积和温度之间的关系 能用气体参量来叙述生活实例中的变化 教学难点:气体压强、体积和温度三者之间的制约关系 考试要求:高考Ⅰ(气体的状态和状态参量,气体的体积、压强、温度之间的关系),会考 课堂设计:学生已涉及到了气体压强的微观解释,本节可进一步从撞击、作用力、频繁等因素将气体压强转到宏观的决定参量温度和体积上来,并使学生认识到参量之 间是有联系和制约的,也能从一些生活事例中用气体状态参量的眼光观察和解 释。为降低难度,分别将相互关系分立讨论,再通过小结得到实用的定论。为 应付一般习题中的参量定性讨论,可介绍(PV/T=常量)式。 解决难点:在复习气体压强微观意义的基础上,将微观量转化为宏观的参量,继而结合学生的一些生活经验得出三参量之间的关系,并再在生活实例中应用检验,作为 定性了解可依据课本不再展开。 学生现状:用气体压强的微观意义来理解与温度和体积之间的关系有困难; 用微观意义来理解参量的变化尚不适应; 用微观意义定性知道生活实例不知所措。 培养能力:分析综合能力,理解推理能力 思想教育:唯物主义世界观 课堂教具:针筒,气球 一、引入 【问】气体压强是如何产生的? 分析:大量气体分子频繁的碰撞器壁而产生的 【问】影响气体压强大小的因素有哪些? 分析:温度、体积 那么气体的压强与气体的温度、体积之间有什么样的定量关系存在呢?这就是今天这堂课我们要解决的问题。 二、气体压强和体积的关系 学生阅读《气体压强和体积的关系》部分 我们研究的对象是什么?实验的先决条件是什么?得出了什么结论? 分析:我们研究的对象是密封在注射气内质量一定的气体;实验的先决条件是:气体的温度不变。实验结论:体积减小时,压强增大;体积增大时,压强减小。 【问】用气体分子热运动的理论即从微观方面解释这个实验结论。 分析:温度不变,分子的平均动能不变,质量一定,体积减小,单位体积内的分子数增多,即分子越密集,所以气体压强增大。 【问】如果压缩气体的同时,温度降低,还一定是“体积越小,压强越大”吗? 分析:温度降低,分子平均动能减小,所以压强不一定增大。 结论:一定质量的气体,温度不变,体积减小,压强增大。PV=常量

统计规律理想气体的压强和温度

209-统计规律、理想气体的压强和温度 209统计规律、理想气体的压强和温度 1、选择题 1,理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动 能 (D )气体分子的平均速率 [ ] 2,温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的 关系为(A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而ε不相等 (D )ε和k ε都不相等 [ ] 3,一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为?J ,则氧气的温 度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ] 4,理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子 所具有的 (A )动能为 kT i 2 (B )动能为 RT i 2 (C )平均平动动能为kT i 2 (D )平均平动动能为 kT 23 [ ] 5,一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内 氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1 2 12p p T (B )

2 112p p T (C ) 1 21p p T (D ) 2 112p p T [ ] 6,一个能量为12 10 ?eV 宇宙射线粒子射入氖管中,氖管中有氖气 mol 。如果 宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为 (A )7 10 ?K (B )7 10 ?K (C )6 10 ? K (D )6 10 ?K [ ] 7,设想在理想气体内部取一小截面dA ,则两边气体通过dA 互施压力。从分子运动论的观点来看,这个压力施于dA 的压强为 (A )k n p ε3 2= (B )k n p ε3 4= (C )kT p 2 3= (D )kT p 3= [ ]

压力与温度的关系

压力与温度的关系 用方程:pV=nRT,即p=nRT/V,此题为等容过程,体积不变。如要改变值,需要知道第二个公式中T的系数,楼主的初始条件还应该有初始温度吧!用初始压力除以初始温度就算出了系数,再用这个系数算每摄氏度对应的压力变化. 温度在1~1000之间时,可以近似认为是理想气体,可以根据 理想气体的状态方程:PV=mRgT ,p压力V体积m质量RgT温度 空气的Rg=0.287 J/g.k=287 J/kg.k(标准适用),摩尔R=8.314411 J/mol.k Vm=22.41383*10-3m3/mol 空气的28.97g/ mol 空气的标准密度= 1.294kg/m3 空气的标准比体积= 0.7737 m3/kg 根据以上公式,就可以求出所需内容。 当然,你的问题的前提,缺少一项,体积的变化。 气体在不同压力和温度下的密度怎么计算 用气体方程pV=nRT, 式中p为压强,V为体积,n为,R为,T为。 而n=M/Mmol,M为质量,Mmol为。 所以pV=MRT/Mmol 而密度ρ=M/V 所以ρ=pMmol/RT, 所以,只要知道了压强、、就可以算出气体密度。 气体的浓度与温度有什么关系(同体积、压力) 根据PV=NRT,其中P为压强,V为体积,T为 ,N为物质的量,可视为浓度指标。R为常数。在体积压力一致的情况下,温度越高,则N越小。所以浓度越低。 注:热力学温度就是绝对温度T,以开尔文(K)为单位 摄氏温标表示的温度t[以摄氏度(℃)为单位]与热力学温度T相差273.15,即T (K)=t(℃)+273.15,例如温度为100℃就是热力学温度为373.15K 一定质量和体积的气体,压力和温度之间关系 PVM=mRT R为常数,M、m一定时,忽略体积变化的。故,压力提高,温度上升。 1

统计规律、理想气体的压强和温度

统计规律、理想气体的压强和温度 1、选择题 题号:20911001 分值:3分 难度系数等级:1 理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动能 (D )气体分子的平均速率 [ ] 答案:( C ) 题号:20911002 分值:3分 难度系数等级:1 温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的关系为 (A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而 ε不相等 (D )ε和k ε都不相等 [ ] 答案:( C ) 题号:20911003 分值:3分 难度系数等级:1 一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为21 10 21.6-?J ,则氧气的 温度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ] 答案:( D ) 题号:20911004 分值:3分 难度系数等级:1 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的 (A )动能为 kT i 2 (B )动能为RT i 2

(C )平均平动动能为 kT i 2 (D )平均平动动能为kT 2 3 [ ] 答案:( D ) 题号:20912005 分值:3分 难度系数等级:2 一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1212p p T (B )2112p p T (C )121p p T (D )2 11 2p p T [ ] 答案:( A ) 题号:20912006 分值:3分 难度系数等级:2 一个能量为12 100.1?eV 宇宙射线粒子射入氖管中,氖管中有氖气0.1 mol 。如果宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为(A )71093.1-?K (B )71028.1-?K (C )61070.7-? K (D )6 1050.5-?K [ ] 答案:( B ) 题号:20912007 分值:3分 难度系数等级:2 设想在理想气体内部取一小截面dA ,则两边气体通过dA 互施压力。从分子运动论的观点来看,这个压力施于dA 的压强为 (A )k n p ε32= (B )k n p ε34= (C )kT p 2 3 = (D )kT p 3= [ ] 答案:( A ) 题号:20912008 分值:3分 难度系数等级:2 两瓶不同种类的气体,它们的温度和压强相同,但体积不同,则下列说法正确的是 (A )单位体积内的分子数相同,单位体积内的气体质量也相同 (B )单位体积内的分子数不相同,但单位体积内的气体质量相同 (C )单位体积内的分子数相同,但单位体积内的气体质量不相同 (D )单位体积内的分子数不相同,单位体积内的气体质量也不相同

气体的压强和体积的关系

气体的压强和体积的关系

————————————————————————————————作者:————————————————————————————————日期: ?

A.气体的压强和体积的关系 【基础知识】 1.知道一定质量气体的状态由压强、体积、温度三参量描述;并能从分子动理论角度知道气体压强产生的微观情景 2.掌握气体压强计算的一般方法,掌握压强的国际单位、常用单位及换算关系。 3.学会用DIS实验系统研究温度不变时,一定质量的气体压强与体积的关系,并能对实验数据进行探究(图像拟合、简单误差分析) 4.理解玻意耳定律的内容,能运用玻意耳定律求解质量不变气体,与压强、体积有关的实际问题并解释生活中的相关现象 5.会读、画一定质量气体的P—V图。 【规律方法】 1.能将初中有关压强、大气压强、液体内部的压强、连通器原理、托里拆利实验等物理概念、物理模型、实验迁移到本节学习过程中。 2.会求固态物封闭气体的压强、液态物封闭气体的压强。 3.通过DIS实验进一步感受控制变量法在研究多参量内在关系中的作用 4.通过描绘P-V、P---1/V图像,进一步增强利用图像描述物理规律的能力 作业4?气体的压强与体积的关系(玻意耳定律) 一、选择题 1.下列哪个物理量不表示气体的状态参量() A.气体体积 B.气体密度? C.气体温度??D.气体压强 答案:B 2.关于气体的体积,下列说法中正确的是() A.气体的体积与气体的质量成正比 B.气体的体积与气体的密度成反比 ?C.气体的体积就是所有气体分子体积的总和 ?D.气体的体积是指气体分子所能达到的空间 答案:D 3.气体对器壁有压强的原因是( ) A.单个分子对器壁碰撞产生压力 B.几个分子对器壁碰撞产生压力 C.大量分子对器壁碰撞产生压力 D.以上说法都不对 答案:C 4.如图所示,大气压是1标准大气压(相当于76厘米水银柱),管内被封闭的气体的压强应是( ) A.30厘米水银柱?C.50厘米水银柱 C.26厘米水银柱 D.46厘米水银柱 答案:C 5.如图所示,在玻璃罩内放入一个充气较多的气球,下列关于玻璃罩内气球的说法中,正确的是(??) A.通过胶管抽玻璃罩内的空气,气球的体积减小 B.通过胶管抽玻璃罩内的空气,气球的体积增大 C.通过胶管向玻璃罩内充气,气球的体积增大 D.通过胶管向玻璃罩内充气,气球的体积不变50cm 30cm

天气与大气压强关系

大气压的变化与季节天气的关系 初中物理告诉我们:“大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高.”对这段叙述,就是老师也往往不易说清,笔者认为,这个问题可归结为温度、湿度、空气流动与大气压强的关系问题.今谈谈自己的初步认识. 1.大气压与天气的关系:晴天大气压比阴天(雨天)大气压高首先我们来分析:空气密度对大气压的影响。我们通常所称的大气,就是包围在地球周围的整个空气层.它除了含有氮气、氧气及二氧化碳等多种气体外,还含有水汽和尘埃.我们把含水汽很少(即湿度小)的空气称“干空气”,而把含水汽较多(即湿度大)的空气称“湿空气”.不要以为“干”的东西一定比“湿”的东西轻.其实,干空气的分子量是28.966,而水汽的分子量是18.016,故干空气分子要比水汽分子重.在相同状况下,干空气的密度也比水汽的密度大.在晴天的时候,空气中水分含量少,属于“干空气”,密度大,所以大气压比较高。阴天(雨天)的时候,空气中水分含量多,属于“湿空气”,密度反而小,所以大气压比较低。此外,引起晴天大气压比较高另一个原因是:气流运动对大气压的影响。通常情况下,地面不断地向大气层进行长波有效辐射,同时大气也在不断地向地面进行逆辐射。晴天,地面的热量可以较为通畅地通过有效辐射和对流气层的向上辐散运动向外输运。阴天时,云层覆盖在大气层上方,减少了对流层大气向外的辐散运动。云层这种保存地表和对液层热量的作用称为“温室效应”。这样,阴天地区的大气膨胀就比较厉害,从而导致阴天地区的大气横向(水平)向外扩散,使得阴天地区的空气向外流动,当然阴天地区的密度也就会减小,从而导致阴天的大气压比晴天的大气压低。大气压和天气的关系气压跟天气有密切的关系。一般地说,地面上高气压的地区往往是晴天,地面上低气压的地区往往是阴雨天。这里所说的高气压和低气压是相对的,不是指大气压的绝对值。某地区的气压比周围地区的气压高,就叫做高气压地区;某地区的气压比周围地区的气压低,就叫做低气压地区。在同一水平面上,如果气压分布不均匀,空气就要从高气压地区向低气压地区流动。因此某地区的气压高,该地区的空气就在水平方向上向周围地区流出。高气压地区上方的空气就要下降。由于大气压随高度的减小而增大,所以高处空气下降时,它所受到的压强增大,它的体积减小,温度升高,空气中的凝结物就蒸发消散。所以,高气压中心地区不利于云雨的形成,常常是晴天。如果某地区的气压低,周围地区的空气就在水平方向上向该地区流入,结果使该地区的空气上升,上升的空气因所受的压强减小而膨胀,温度降低,空气中的水汽凝结,所以,低气压中心地区常常是阴雨天。由于气压跟天气有密切的关系,所以各气象哨所每天都按统一规定的时刻观测当地的大气压,报告给气象中心,作为天气预报的依据之一。 2.大气压与季节的关系:冬天的气压比夏天高空气温度的变化是引起气压变化的一个很重要的原因。当空气冷却时,空气收缩,密度增大,单位面积上承受的空气柱重量增加,气压也就升高。因此,冷空气一到,总是伴随着气压的升高;而在暖空气来临的同时,气压常常降低。冬天是冷空气的世界,夏季则是暖空气的天地,气压冬高夏低的道理也就很清楚了。需要注意的是,由于空气的密度是随高度的上升而减小的,所以,通常讲气压的高低,都是在同一海拔高度的层面上来做比较的,—般用的最多的是海平面气压。 3.大气压与时辰的关系:早上和晚上的大气压比中午的高「百度」营销推广方案怎么写_营销平台_万万没想到订单量逆袭>>> 广告「百度」让感兴趣的客户看到您的广告,百度推广把您的广告展现给精准用户. 查看详情> 对于同一地区,在一天之内的不同时间,地面的大气压值也会有所不同,这叫大气压的日变化。一天中,地球表面的大气压有一个最高值和一个最低值。早上和晚上,气温相对较低,同时大气中的空气比较干燥,相对湿度较中午低,属于“干空气”,这两个原因造成了早上和晚上空气密度相对较大,所以在早上和晚上大气压比较高。而到中午的时候,大气不断的积累热量,使其温度升高,空气湿度增大。当温度升高后,大气逐渐向高空做上升辐散运动,在下午15~16时,大气上升辐散运动的速度达最大值,同

气温与气压的关系解析

☆专题5 气温与气压的关系 一、热力原因形成的热低压、冷高压 热低压和冷高压都是由于热力原因形成的气压关系。地表的冷热不均是引起气压高低变化的重要原因。 1.热低压:热低压是气温和气压的双重表现,二者具有相关性,“由于热而形成低压”。 如下图1 为热力环流简图,近地面A点附近气体受热膨胀上升,使得近地面空气密度变小,近地面形成低气压。这就是由于热力原因形成的“低气压”。赤道低气压带是最典型的热低压带。北半球夏季,由于陆地和海洋热容量不同,陆地增温快降温也快,因此同纬度的地方陆地比海洋温度要高,在陆地形成了热低压,在亚欧大陆上形成了亚洲低压(印度低压),在北美大陆形成北美低压。我国夏季午后(14 点)“闷热”,多对流雨,就是热低压造成。 2.冷高压:冷高压是指近地面受热少气温低,气体冷却收缩下沉,在近地面空气分子大量集聚,在同一水平面上空气密度增大,气压升高。如热力环流图中的B 点。在三圈环流模式图中,极地高气压带便是典型的冷高压,极地气温低,高空气体下沉。冬季北半球蒙古、西伯利亚一带由于气温低而形成亚洲高压,在这个高压的影响下,我国北方冬季呈现“干压表现为气温与气流的因果关系。其垂直方向的气流可认为是冷热气流。其形成要与气旋、反气旋(气流分布状况)区别开来。气旋的中心气压是低气压,受水平气压梯度力的影响,大气由四周向中心流,中心气体大量集聚,因而垂直方向上形成上升气流,可称之为推动气流。与这相反,反气旋中心是高压,中心气体往四周流,其中心垂直方向上气流下沉补充,可称之为补偿气流。无论是推动气流还是补偿气流其成因都与冷热气流不同,它们都是动力原因引起的。 二、动力原因形成的热高压、冷低压 副热带高气压带(热高压)和副极地低气压带(冷低压)是由于动力原因形成的气压带。1.热高压:如图2,南北纬30°的副热带高气压带就是典型的热高压。热是指纬度低,高压是指气体集聚,二者之间没有因果联系,如果有,可以这样认为高压加剧了“热”。北半球来自赤道上空的源源不断的气流向极地运动,在地转偏向力的作用下(无摩擦力),逐渐偏转为西风,气流在南北纬30°的上空集聚,最后下沉在近地面形成了副热带高气压带,在副高的控制下世界上一些地区形成了热带沙漠气候,终年炎热干燥,如非洲的撒哈拉沙漠、澳大利亚大沙漠等。我国7、8 月份当锋面雨带移动到东北、华北地区,长江流域由于受到副高的控制形成了伏旱天气,持续高温不降,可谓“真热”! 2.冷低压:如图2,在南北纬60°,因地处高纬,气候非常寒冷,近地面来自低纬的暖热气流与来自极地冷气流在此相遇,气体辐合上升,在高空形成高气压,近地面则形成低压,即副极地低气压带。

气体的压强与温度的关系(一)

气体的压强与温度的关系(一) 一、填空题: 1.夏天给自行车胎打气时不宜打得太足,不然,在阳光直射的马路上骑车时,车胎容易爆裂。这表明,一定质量的气体在 不变的情况下,它的 随着 的升高而增大。 2.查理定律可表示为一定质量的气体在____________保持不变的过程中,____________与热力学温度成正比。 3.一定质量的气体,作等容变化,其P-t 图像如图所示,图像中的直线 AB 延长线与 P 轴的交点表示____________,与 t 轴的交点表示的温度是______________℃。 4.如图所示是研究一定质量的气体做等容变化的实验装置,A 、B 两管的下端用橡皮管相连。在室温下,A 管中的水银面比B 管中的水银面高。现将烧瓶放进盛有热水的容器中,为使B 管中的水银面保持原来的位置,应将A 管向 移动,这时A 、B 两管中的水银面高度差将 (选填“增大”、“减小”或“不变”)。 5.一氧气瓶的容积是32L ,在-3℃时瓶中氧气的压强是27atm ,当温度上升到27℃时,瓶中的氧气的压强___________atm 。 6.人体发烧时,体温升高2℃相当于升高了______K 。我国已制成了转变温度为215K 的超导体,215K=__________℃。 7.对一个容积一定的密闭容器加热,当容器的温度升高1℃时,容器中气体的压强比原来增加0.4%,由此可知容器内气体原来的温度是____________℃。 二、单项选择题: 8.如图所示,表示一定质量的气体等容变化的图是------------------------( ) 9.密闭容器中的气体受热时,设容器的容积不随温度而变化,则气体的密度变化和压强的变化为( ) (A )密度减小 (B )密度增大 (C )压强增大 (D )压强不变 10.密闭容器中装有一定质量的气体,当温度从t 1=50℃升高到t 2=100℃时,气体的压强从t (℃) p B A T V (A ) (B ) (C ) (D )

气体的压强跟温度的关系

气体的压强跟温度的关 系 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

三、气体的压强跟温度的关系 在日常生活中,我们常会遇到这样一些情况:夏天给旧的自行车车胎打气,不宜打得很足,不然,在太阳下骑行,车胎容易爆裂;卡车在运输汽水等饮料时,由于太阳曝晒,一些质地较差的汽水瓶往往会爆裂。这些现象都表明气体压强的大小跟温度的高低有关。 我们可以用实验的方法来研究一定质量的气体,在体积不变时,它的压强跟温度的关系。 查理定律 通过实验探索,我们初步得出一定质量气体在体积不变时,它的压强随着温度的升高而增大的结论。从实验数据描绘出的p-t图象,基本上是一条倾斜的直线(图2-7),但是这样还没有反映出压强和温度间确切的关系。 图2-7 最早定量研究气体压强跟温度的关系的是法国物理学家查理(1746-1823)。我们为了精确测量一定质量气体在体积不变时,不同温度下的压强,采用了图2-8所示的实验装置。容器A中有一定质量的空气,空气的温度可由温度计读出,空气的压强可由跟容器A连在一起的水银压强计读出。但温度升高后,容器A中的空气会膨胀,由于压强计两臂间是用橡皮管相连的,它的右臂可以上下移动。移上时,受热膨胀后的空气就能被压缩到原来的体积。

图2-8 控制变量法 自然界发生的各种现象,往往是错综复杂的。决定某一个现象的产生和变化的因素常常也很多。为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,然后来比较、研究其他两个变量之间的关系,这是一种研究问题的科学方法。 例如物体吸收热量温度会升高,温度升高多少是由多个因素决定的,跟吸收的热量、物体的质量以及组成物体的物质性质有关。在研究时,可以先使一些因素保持不变,如在物质相同、质量相同的情况下,观察物体温度升高跟所吸收热量的关系;接着再研究同种物质,不同质量的物体吸收相等热量时,温度升高跟质量的关系等等,从而得出物体温度升高跟所吸收的热量、物体的质量和组成物体的物质性质的关系。控制变量的科学方法在物理学的研究中是经常使用的。 这个实验是按以下步骤进行的: 先把容器A浸没在冰水混和物中,这时容器A中的空气温度为0℃,调节压强计右臂的位置.使两臂内水银面位于同一高度,这时容器A中的空气压强

气体的压强与体积的关系

气体的压强与体积的关系(一)一、填空题 1 .气体的状态参量是指、和。 2.水的沸点是100℃,用热力学温标表示为K。当水的温度从0℃升高到20℃时,用热力学温标表示其升高的温度为K。 3.通常温度是表示物体的物理量,从分子动理论观点看,温度是物体部的标志。容器壁面积上受到的气体压力就是气体压强,气体对容器壁有压力,从分子动理论观点看,这是由于容器中而产生的。 4.一根直玻璃管,用长为10 cm的水银柱封住一段空气柱,外界大气压强相当于76cm水银柱产生的压强,则管子竖直放置、开口向上时,管空气柱的压强为cmHg;管子竖直放置、开口向下时,管空气柱的压强为cmHg;管子与水平面成30°角放置、开口向下时,管空气柱的压强为cmHg;管子与水平面成30°角放置、开口向上时,管空气柱的压强为cmHg。 5.如图所示,各玻璃管封闭的液体都是水银,水银密度为13.6×103kg/m3,外界大气压强相当于76cm水银柱产生的压强,两端水银面的高度差均为10cm,则各玻璃管封闭气体A的压强分别为: (1)p A=cmHg=Pa。 (2)p A=cmHg=Pa。 (3)p A=cmHg=Pa。 (4)p A=cmHg=Pa。 (5)p A=cmHg=Pa。 二、选择题 6.一定质量气体状态发生变化时,下列说法中正确的是()。(A)温度和体积发生变化而压强不变 (B)温度和压强发生变化而体积不变 (C)温度发生变化而体积和压强不变 (D)压强发生变化而体积和温度不变 7.如图所示,两端开口的U形管有两段水柱。AB、CD封住一段空气柱BC, 已知CD高为h1,AB高度差为h2,大气压强为p0,则()。 (A)封闭气体的压强为p0+h1 (B)封闭气体的压强为p0+h2 (C)封闭气体的压强为p0+h1+h2 (D)封闭气体的压强为2p0+h1+h2 8.如图所示为一根托里拆利管,如果当时大气压强为一个标准大气压,管顶离槽 中水银面高70cm,则管顶侧所受压强为()。 (A)76cmHg (B)70cmHg (C)6cmHg (D)0 9.如图所示,竖直放置的弯曲管A端开口,B端封闭,密度为ρ的液体将两段空气柱封闭在管,管液面高度差分别为h1、h2和h3,则B端气体的压强为()(已 知大气压强为p0)。 (A)p0-ρg(h1+h2-h3) (B)p0-ρg(h1+h3) (C)p0-ρg(h1-h2+h3) (D)p0-ρg(h1+h2) 三、计算题 10.如图所示圆柱形汽缸,汽缸质量为100kg,活塞质量为10kg,横截面积为0.1m2,大气压强为1.0×105Pa,求下列情况下缸气体的压强:

理想气体分子平均平动动能与温度的关系

四、理想气体分子平均平动动能与温度的关系 (可以用一个公式加以概括) k ε=kT v m 23212= 1.简单推导:理想气体的物态方程:RT m N m N RT M m PV A ' '== 而??? ??=??? ??=2221322132v m V N v m n P n=N/V 为单位体积内的分子数,即分子数密度, k =R /N A =×10-23J·K -1称为玻尔斯曼常量。 所以:kT v m 2 3212= 这就是理想气体分子的平均平动动能与温度的关系,是气体动理论的另一个基本公式。 它表明分子的平均平动动能与气体的温度成正比。气体的温度越高,分子的平均平动动能越大;分子的平均平动动能越大,分子热运动的程度越剧烈。因此,温度是表征大量分子热运动剧烈程度的宏观物理量,是大量分子热运动的集体表现。对个别分子,说它有多少温度,是没有意义的。 从这个式子中我们可以看出 2.温度的统计意义 该公式把宏观量温度和微观量的统计平均值(分子的平均平动动能)联系起来,从而揭示 了温度的微观本质。 关于温度的几点说明 1.由kT v m 23212=得02 1 02=v m T =,=ε,气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是用不停息的。 2.气体分子的平均平动动能是非常小的。 J K T 2110 ,300-==ε J K T 15 810 ,10-==ε 例1. 一容器内贮有氧气,压强为P=×105Pa ,温度t=27℃,求(1)单位体积内的分子数; (2)氧分子的质量;(3)分子的平均平动动能。 解:(1)有P=nkT 得 () 325235 1045.2273271038.110013.1--?=+???==m kT P n (2)kg N M m A 26233 1031.510 02.61032--?=??==

饱和蒸气气压和温度的关系

蒸汽有专门的特性,分为饱和蒸汽和过热蒸汽。 一般我们常见的是饱和蒸汽,饱和蒸汽的质量和其压力、温度有关系。对于饱和蒸汽,当压力一定时,其温度也是个定值。 1、标准状态下(即表压为0),1立方米饱和蒸汽质量约为0.598kg 2、表压为0.1MPa(绝对压力为0.2MPa),1立方米饱和蒸汽质量约为1.166kg 3、表压为0.2MPa(绝对压力为0.3MPa),1立方米饱和蒸汽质量约为1.704kg 4、表压为0.6MPa(绝对压力为0.7MPa),1立方米饱和蒸汽质量约为3.788kg 1立方米饱和蒸汽的质量随压力的增高也增高,建议你按照实际情况去查饱和蒸汽温焓表。饱和蒸汽性质表 如果是过热蒸汽的话,需要知道压力、温度两个参数去查过热蒸汽温焓表。过热蒸汽性质表: 蒸汽和水都是物质,蒸汽是水的气态状态。只要是物质都满足初中所学的质量基本公式:m=ρV,就是物体的质量和密度、体积有关系,当体积是个定值时,物体的质量仅与密度有关。 蒸汽的密度和水的密度是完全不同的。水在标准状态下密度是1000kg/m3,但是蒸汽的密度与压力、温度有关系,蒸汽的密度是随着压力、温度不同而变化的。 因此,一立方米蒸汽质量是不可能等于1吨的。 后附:饱和水蒸汽对照表

水的饱和线数据(沸点和气压对应关系100—140℃) 温度(℃)压强(大气压)温度(℃)压强(大气压)100 1.0009 126 2.3634 101 1.0372 127 2.4367 102 1.0745 128 2.5117 103 1.1129 129 2.5886 104 1.1525 130 2.6675 105 1.1932 131 2.7482 106 1.2351 132 2.8310 107 1.2782 133 2.9157 108 1.3226 134 3.0025 109 1.3682 135 3.0913 110 1.4150 136 3.1823 111 1.4632 137 3.2754 112 1.5128 138 3.3708 113 1.5637 139 3.4683 114 1.6160 140 3.5681 115 1.6697 116 1.7249 117 1.7816 118 1.8397 119 1.8995 120 1.9608 121 2.0237 122 2.0882 123 2.1544 124 2.2224 125 2.2920 克拉佩龙方程(Clapeyion):InPs=-(Dh/RT)+B Dh:水的摩尔蒸发热 R:气体通用常熟 T:温度 In:自然对数 B:克拉佩龙方程经验公式的截距

DIS专用实验十四气体压强与温度的关系

实验十四气体压强与温度的关系 实验器材 朗威DISLab数据采集器、压强传感器、温度传感器、烧杯、锥形瓶、橡胶塞、铁架台、计算机。 实验装置 如图14-1、图14-2、图14-3。 图14-1 气体压强与温度关系实验装置图

实验操作 本实验至少可采用两种方法:第一种,将温度传感器置于锥形瓶外,测量烧杯内的水温;第二种,将温度传感器置于锥形瓶内,直接测量瓶内空气的温度。两种方法虽装置构成存在差异,但具体操作步骤相同。本实验沿用第一种方法(图14-1)。 1.将压强传感器与温度传感器并列固定在铁架台上,压强传感器前端软管接入锥形瓶并确保其气密性。将两传感器接入数据采集器。 2.点击教材专用软件主界面上的实验条目“气体压强与温度的关系”,打开该软件。 3.将连接有压强传感器的锥形瓶和温度传感器同时浸入盛冷水的烧杯,等待一段时间,估计锥形瓶中的气体温度与烧杯内的水温基本一致时,点击“记录数据”,记录此刻的压强与温度值。 4.用适量沸水置换烧杯中的冷水,提高烧杯内的水温,可观察到锥形瓶内的气体压强值随着水温上升而上升。待压强数据稳定后(锥形瓶内气体的温度与烧杯内的水温基本一致),再次点击“记录数据”,记录下此刻的压强与温度值。 5.重复上述步骤,不断提高烧杯内的水温,得到多组压强与温度值(图14-4)。 6.点击“绘图”,根据已有数据点绘出“p-T ”图线(图14-5)。 图14-2 使用快速反应温度传感器 图14-3 使用远红外加热器作为热源

7.点击“清屏”按钮,可清除已有图线。 8.如图14-2,亦可将快速反应温度传感器敏感器件与压强传感器密封在较小的容器(如试管)内,使用朗威DISLab 远红外加热器作为热源(图14-3),进一步提高实验精度。 图14-4 获得多组“压强-温度”数据 图14-5 “压强-温度”关系图线

相关文档
最新文档