有限元分析在轮毂设计中的应用_王渭新

有限元分析在轮毂设计中的应用_王渭新
有限元分析在轮毂设计中的应用_王渭新

现代制造技术与装备2007第4期总第179期

在汽车的零部件中,轮毂由轮辋及轮辐构成,是一个高速转动和承受汽车总载荷的零部件,轮辋结构遵照《YEARBOOKFORTHETIREANDRIMASSOCIATION》标准规定设计,轮辐的形状则多种多样,没有统一的要求。轮毂的强度和刚度无论从安全性还是性能方面考虑都至关重要。本文通过有限元分析软件ANSYS对车轮进行弯曲疲劳、径向疲劳和冲击应力的模拟分析,最后结合试验结果对模拟分析进行验证,为轮毂设计开发人员提供可靠的设计依据,进而缩短开发周期、减少开发费用,从而提高企业的竞争力[1-2]。

1疲劳破坏的基本概念和车轮安全性试验的具体要求1.1疲劳破坏的基本概念

零件在受到交变的循环载荷作用并在达到一定的循环次数时,零件的表面会产生裂纹、裂纹继续扩大会导致构件断裂。零件表面产生裂纹称为疲劳破坏。疲劳破坏的过程是零部件在循环载荷作用下,在局部的最高应力处,最弱的及应力最大的晶粒上形成微裂纹,然后发展成宏观裂纹,裂纹继续扩展,最终导致疲劳断裂。所以,疲劳破坏经历了裂纹形成、扩展、和瞬断三个阶段[3-4]。

1.2车轮安全性试验的具体要求

由于汽车轮毂是一个高速转动和承受汽车总载荷的零部件,其在工作过程中承受交变的循环载荷:动态弯矩、动态径向力和路面的冲击力,因此轮毂装车前必须通过汽车行业标准QC/T221-1997和国家标准GB/T15704-1995规定的三项强度测试试验。这三大强度试验分别是弯曲疲劳试验,径向疲劳试验,冲击试验[5]。

2车轮安全性试验的有限元分析

2.1车轮安全性试验有限元分析的概述

本文研究的铝合金车轮材料为A356,经过T6热处理(固熔+时效处理)。因此在ANSYS中输入材料属性(MaterialProperty)时,选择为各项同性(Isotropic),并且是线弹性的(LinearElastic),同时需要限定的参数(材料特性)为:

弹性模量E:71E09N/mm2;

密度ρ:2.7*10-3g/mm2;

泊松比:0.33。

2.2弯曲疲劳试验有限元模拟

2.2.1试验概述

弯曲疲劳试验模拟汽车转弯时车轮的受力状态,试验台有一个旋转装置,车轮可在一个固定不动的弯矩作用下旋转,或是车轮静止不动,而承受一个旋转弯曲力矩作用。见图1。

图1弯曲疲劳试验装置

2.2.2试验弯矩

试验弯矩由下式确定:

M=(u?R+d)?F?S(1)式中M——

—弯矩(N?m);

u——

—轮胎和道路之间的摩擦系数,设定为0.7;

R——

—静载半径,是轮毂厂或汽车制造厂规定的该轮毂配用的最大轮胎静载半径(m);

d——

—轮毂的内偏距或外偏距,取绝对值,按轮毂规定(m);

F——

—轮毂最大额定载荷,由轮毂厂或汽车制造厂规定(N);

S——

—试验强化系数。

有限元分析在轮毂设计中的应用

王渭新张磊刘智冲

(戴卡轮毂制造有限公司,秦皇岛066003)

摘要:轮毂是汽车中的重要零部件,既要具有高承载能力,又要满足整体外观个性化设计要求,其设计与开发中也主要体现了此设计理念,因此其制造企业要想赢得市场,提高产品的竞争力,必须改变原有的紧靠设计经验开发轮毂的传统的设计开发模式。本文以有限元分析软件ANSYS和三位造型软件UG为工具,建立了与轮毂实际的弯曲疲劳试验、径向疲劳试验、冲击试验相等效有限元分析模型,对轮毂的可靠性进行预测,为轮毂产品的设计开发人员提供设计依据。

关键词:有限元分析轮毂疲劳设计ANSYS

安装面

试验加载力臂

32

2.2.3弯曲疲劳试验的有限元数值模拟与实验验证轮毂的弯曲疲劳试验的有限元力学模型见图2。

图2弯曲疲劳有限元模型

图3是我们利用以上的模拟方法对一实际产品进行分析后得到的结果

图3弯曲疲劳有限元模拟应力分布

从有限元模拟的应力分布图中可以看出最大应力为-53.242 ̄61.585MPa,判定强度合格。实际试验的结果如图4所示。

图4实际弯曲疲劳试验结果

实际试验的结果没有出现裂纹等缺陷,与有限元模拟结果一致。

2.3径向疲劳试验有限元模拟

2.3.1试验概述

径向加载滚动疲劳试验用的轮毂应是未经试验或使用过的新成品轮毂,但是表面不喷涂。每个轮毂只能做一次试验,每次试验只能使用一只轮毂。试验机是一台带有旋转鼓的装置,转鼓表面光滑,且比加载试验所用轮胎的接触区宽,试验装置安装特性应和车辆上轮毂的装配特性相同。当轮毂转动时,试验机能给轮毂施加一恒定不变径向载荷,轮毂加载方向应与转鼓表面垂直,轮毂和转鼓的中心在径向上成一条直线,转鼓轴线和轮毂轴线应平行,且在同一平面内。试验装置如图5所示:

图5径向疲劳试验装置

2.3.2试验径向载荷

径向载荷按下式确定:

Fr=F?K?S(2)式中Fr——

—径向载荷(N)

F——

—轮毂最大额定载荷,由轮毂厂或汽车制造厂规定(N)

S——

—试验强化系数

2.3.3径向疲劳试验的有限元数值模拟与实验验证轮毂的径向疲劳试验的有限元力学模型见图6。

图6径向疲劳有限元模型

图7是利用以上的模拟方法对一实际产品进行分析后得到的结果,

图7径向疲劳有限元模拟应力分布

从有限元模拟的应力分布图中可以看出最大应力为-79.224 ̄70.205MPa,判定强度合格。(下转第69页)

设计与研究33

实际试验的结果没有出现裂纹等缺

陷,与有限元模拟结果一致。

2.4冲击试验有限元模拟2.4.1试验概述

试验用的轮胎应选用在车辆厂或轮毂制造厂与设计轮毂相匹配的、最小公称断面宽度的无内胎轮胎。轮胎的充气压力必须按车辆制造厂的规定,如无此规定,可按

20kPa充气。试验轮毂轮胎总成安装在与车辆轮毂一致

的连接盘上。轮毂安装时,要按车辆或轮毂制造厂推荐的方法或用手工拧紧至规定值。

2.4.2冲头质量

冲头质量按下式确定

D=0.6?W+180(4-4)

(3)

式中D———冲头质量±2%(kg)

W———

最大轮毂静载荷,按轮毂或车辆制造厂规定(kg)2.4.3冲击试验的有限元数值模拟与实验验证

轮毂的冲击试验的有限元力学模型见图8。

图8冲击试验有限元模型

图9是利用以上的模拟方法对一实际产品进行分析后得到的结果。从有限元模拟的应力分布图中可以看出最大应力为-39.243 ̄37.687MPa,判定强度合格。

图9冲击有限元模拟应力分布(背面)

实际试验的结果没有出现裂纹等缺陷,与有限元模拟结果吻合。

3结论

汽车铝合金轮毂是一个高速转动和承受交变循环载荷的零部件,它承受着动态弯矩、动态径向力和路面的冲击力。一方面,车轮必须有足够的强度保证车辆和乘坐人员的生命安全。另一方面,过高的强度会带来较高的车轮重量,导致车辆油耗增加,加速性能变差。因此本文针对上述问题,提出了通过ANSYS分析软件,对车轮进行强度分析的方法,对典型轮毂进行了有限元模拟分析并进行了实验验证,证明该有限元力学模型是可靠并适于实际应用的。

参考文献

[1]王祝堂.试论我国汽车铝合金轮毂工业的发展.轻加工技术,

2005,Vol.22,No.3

[2]崔胜民,杨占春.汽车车轮疲劳寿命预测方法的研究.机械强

度,2002,24(4):617-619

[3]李海梅,宋刚,刘永志.金属材料疲劳极限的估算.郑州大学学

报,2002,23(4):26-30

[4]汪厚凡,刘英卫,郑冬青,等.结构疲劳可靠性分析方法及工程

应用.洪都科技,2000:7-18

[5]刘忠亮.汽车车轮的强度分析及优化设计.自动化技术,2005,

(1):34-35

TheApplicationofFiniteeElementaAnalysisintheDesignofWheel

WANGWeixin,ZHANGLei,LIUZhichong

(DicastalWheelManufacturingCo.LTD,Qinhuangdao066003)

Abstract:A-alloywheelistheimportantpartofcar.Itnotonlyhashigherbearingcapability,butalsosatisfiestheindividualdesigningdemandofthewholeappearance.AndthisdesignconceptionisadoptedinthedesigningA-alloywheel.Ifwheelmanufacturingenterpriseswanttofindwayinthemarketandpromotecompetitivepowerofproducts,itmustchangethetraditionaldesignapproachthatreliesonexperiences.Aimingatrotaryfatiguetest,radialfatiguetest,impacttestofsomeA-alloywheels,thepaperestablishesthefiniteelementmodelwithANSYSthatisequivalentwiththephysicaltestofthewheel,andwecanknowtheintensityofA-alloywheelsbeforepracticalmanufacture.Sowecanprovidetheimportantdesignguideforwheeldesignengineers.

Keywords:finiteelementanalysis,wheel,fatiguedamage,ANSYS

(上接第33页)

Boor-Cox,amethodofblockmatrixispresentedandthecal-culationformulaofarbitrarydegreebasisfunctionandarbitraryorderderivativeisderivedfromthismethod.Comparedwithothers,theproposedmethodhasadvantagesofcommonalityand

highefficiency.

Keywords:Surfacesmodeling,NURBS,Basisfunction,BlockMatrix

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

自动化与控制

69

有限元分析在轮毂设计中的应用_王渭新

现代制造技术与装备2007第4期总第179期 在汽车的零部件中,轮毂由轮辋及轮辐构成,是一个高速转动和承受汽车总载荷的零部件,轮辋结构遵照《YEARBOOKFORTHETIREANDRIMASSOCIATION》标准规定设计,轮辐的形状则多种多样,没有统一的要求。轮毂的强度和刚度无论从安全性还是性能方面考虑都至关重要。本文通过有限元分析软件ANSYS对车轮进行弯曲疲劳、径向疲劳和冲击应力的模拟分析,最后结合试验结果对模拟分析进行验证,为轮毂设计开发人员提供可靠的设计依据,进而缩短开发周期、减少开发费用,从而提高企业的竞争力[1-2]。 1疲劳破坏的基本概念和车轮安全性试验的具体要求1.1疲劳破坏的基本概念 零件在受到交变的循环载荷作用并在达到一定的循环次数时,零件的表面会产生裂纹、裂纹继续扩大会导致构件断裂。零件表面产生裂纹称为疲劳破坏。疲劳破坏的过程是零部件在循环载荷作用下,在局部的最高应力处,最弱的及应力最大的晶粒上形成微裂纹,然后发展成宏观裂纹,裂纹继续扩展,最终导致疲劳断裂。所以,疲劳破坏经历了裂纹形成、扩展、和瞬断三个阶段[3-4]。 1.2车轮安全性试验的具体要求 由于汽车轮毂是一个高速转动和承受汽车总载荷的零部件,其在工作过程中承受交变的循环载荷:动态弯矩、动态径向力和路面的冲击力,因此轮毂装车前必须通过汽车行业标准QC/T221-1997和国家标准GB/T15704-1995规定的三项强度测试试验。这三大强度试验分别是弯曲疲劳试验,径向疲劳试验,冲击试验[5]。 2车轮安全性试验的有限元分析 2.1车轮安全性试验有限元分析的概述 本文研究的铝合金车轮材料为A356,经过T6热处理(固熔+时效处理)。因此在ANSYS中输入材料属性(MaterialProperty)时,选择为各项同性(Isotropic),并且是线弹性的(LinearElastic),同时需要限定的参数(材料特性)为: 弹性模量E:71E09N/mm2; 密度ρ:2.7*10-3g/mm2; 泊松比:0.33。 2.2弯曲疲劳试验有限元模拟 2.2.1试验概述 弯曲疲劳试验模拟汽车转弯时车轮的受力状态,试验台有一个旋转装置,车轮可在一个固定不动的弯矩作用下旋转,或是车轮静止不动,而承受一个旋转弯曲力矩作用。见图1。 图1弯曲疲劳试验装置 2.2.2试验弯矩 试验弯矩由下式确定: M=(u?R+d)?F?S(1)式中M—— —弯矩(N?m); u—— —轮胎和道路之间的摩擦系数,设定为0.7; R—— —静载半径,是轮毂厂或汽车制造厂规定的该轮毂配用的最大轮胎静载半径(m); d—— —轮毂的内偏距或外偏距,取绝对值,按轮毂规定(m); F—— —轮毂最大额定载荷,由轮毂厂或汽车制造厂规定(N); S—— —试验强化系数。 有限元分析在轮毂设计中的应用 王渭新张磊刘智冲 (戴卡轮毂制造有限公司,秦皇岛066003) 摘要:轮毂是汽车中的重要零部件,既要具有高承载能力,又要满足整体外观个性化设计要求,其设计与开发中也主要体现了此设计理念,因此其制造企业要想赢得市场,提高产品的竞争力,必须改变原有的紧靠设计经验开发轮毂的传统的设计开发模式。本文以有限元分析软件ANSYS和三位造型软件UG为工具,建立了与轮毂实际的弯曲疲劳试验、径向疲劳试验、冲击试验相等效有限元分析模型,对轮毂的可靠性进行预测,为轮毂产品的设计开发人员提供设计依据。 关键词:有限元分析轮毂疲劳设计ANSYS 安装面 试验加载力臂 32

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

铝合金车轮设计及结构分析

铝合金车轮设计及结构分析 【摘要】车轮是汽车行驶系统中重要的安全部件,汽车前进的驱动力通过车轮传递,车轮的结构性能对整车的安全性和可靠性有着重要的影响。另外,车轮还是汽车外观的重要组成部分。传统车轮设计多凭借经验展开,存在着设计盲目性大、设计制造周期长、成本高等诸多弊端。面对日益激烈的市场竞争,企业迫切需要采用科学的手段改善设计方法,本文所采用的CAD技术和有限元分析方法是解决上述问题的理想方法。本文运用工业设计理论,将造型设计构思表现的方法与技能应用于车轮设计中,结合车轮结构尺寸优化和形状优化,使工程技术与形式美密切结合,综合表现了车轮的性能、结构和外观美。 【关键词】铝合金车轮;有限元分析;结构设计;强度分析;疲劳分析 1.引言 普遍意义的车轮包括轮胎和金属轮辆一轮辐一轮毅两部分,本文所研究的车轮只限于金属轮惘一轮辐一轮毅部分,不包括轮胎。车轮是介于轮胎和车桥之间承受负荷的旋转件,它不仅承受着静态时车辆本身垂直方向的自重载荷,同时也经受着车轮行驶过程中来自各个方向因起动、制动、转弯、物体冲击、路面凹凸不平等各种动态载荷所产生不规则力的作用,是车辆行驶系统中重要的安全结构部件,其结构性能是车轮设计中主要因素[1]。另外,车轮作为整车外观的主要元素之一,象征着整车的档次,多变的铝合金车轮轮辐形态和明亮的色泽越来越为人们所关注,因此车轮的外观设计也因此变得越发的重要。 2.铝合金车轮的设计方法 车轮制造企业的设计手段依然采用传统的设计方法,其设计及生产流程如图1所示。 图1 传统的车轮设计流程图 产品的结构强度、疲劳性能则在产品试样制造出来后,通过试验来验证。这样导致产品的设计周期过长,成本过高。而且设计时为了保证产品的通过率,避免反复多次修改模型,设计人员往往留有过大的设计欲量,对于大批量生产的企业,这无形中造成了材料浪费,增加成本[2]。 此外,当试验失败进行结构修改时,设计人员也是凭借经验,通过局部增加材料达到提高强度的目的,缺乏理论依据,具有较强的盲目性,对于产品的结构优化更是无从入手[3]。因此,采用新的技术和手段,使车轮设计由经验类比型向科学分析计算型转变,是车轮行业一项势在必行的工作。 3.载荷的处理

汽车轮毂有限元分析

第二章理论基础与模型建立 2.1 有限元技术及UG软件 2.1.1 有限元法基本原理 计算机辅助工程CAE(Computer Aid2ed Engineering) 指工程设计中的分析计算与分析仿真, 而有限元法FEM( FiniteElement Method) 是计算机辅助工程CAE中的一种, 另外CAE还包含了边界元法BEM(Boundary Element Method) 和有限差分法FDM( Finite Difference Method) 等。这几种方法各有其优缺点, 各有其应用领域,但有限元法的应用最广。 有限元法是求解数理方程的一种数值计算方法,是将弹性理论、计算数学和计算机软件有机结合在一起的一种数值分析技术,是解决工程实际问题的一种有力的数值计算工具。有限元是一种离散化的数值方法。离散后的单元与单元间只通过节点相联系, 所有力和位移都通过节点进行计算。对每个单元选取适当的插值函数,使得该函数在子域内部、子域分界面上(内部边界) 以及子域与外界分界面(外部边界) 上都满足一定的条件。然后把所有单元的方程组合起来, 就得到了整个结构的方程。求解该方程,就可以得到结构的近似解。离散化是有限元方法的基础。必须依据结构的实际情况,决定单元的类型、数目、形状、大小以及排列方式。这样做的目的是将结构分割成足够小的单元,使得简单位移模型能足够近似地表示精确解【13】。 因次它可以对各种类型的工程和产品的物理力学性能进行分析、模拟、预测、评价和优化,以实现产品技术创新, 故已广泛应用于各种力学、电学、磁学及很多结合学科领域; 同时, 由于它能够处理耦合问题, 使得其有更大的应用前景。你可以从专业的角度理解有限元:包括变分原理、等效积分和加权余量法等, 也可以从直观的意义上理解有限元: 把连续体划分为足够小的单元, 这些单元通过节点和边连接起来,通过选择简单函数(比如线形函数) 来近似表达位移或应力的分布或变化, 从而得到整个连续体物理量的分布和变化【14】。 2.1.2 有限元法分析过程 所谓有限元法(FEA)基本思想是把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。求解得到节点值后就可以通过设定

Ansys有限元分析实例[教学]

Ansys有限元分析实例[教学] 有限元分析案例:打点喷枪模组(用于手机平板电脑等电子元件粘接),该产品主要是使用压缩空气推动模组内的顶针作高频上下往复运动,从而将高粘度的胶水从喷嘴中打出(喷嘴尺寸,0.007”)。顶针是这个产品中的核心零件,设计使用材料是:AISI 4140 最高工作频率是160HZ(一个周期中3ms开3ms关),压缩空气压力3-8bar, 直接作用在顶针活塞面上,用Ansys仿真模拟分析零件的强度是否符合要求。 1. 零件外形设计图:

2. 简化模型特征后在Ansys14.0 中完成有限元几何模型创建:

3. 选择有限元实体单元并设定,单元类型是SOILD185,由于几何建模时使用的长度单位是mm, Ansys采用单位是长度:mm 压强: 3Mpa 密度:Ton/M。根据题目中的材料特性设置该计算模型使用的材料属性:杨氏模量 2.1E5; 泊松比:0.29; 4. 几何模型进行切割分成可以进行六面体网格划分的规则几何形状后对各个实体进行六面体网格划分,网格结果: 5. 依据使用工况条件要求对有限元单元元素施加约束和作用载荷:

说明: 约束在顶针底端球面位移全约束; 分别模拟当滑块顶断面分别以8Bar,5Bar,4Bar和3Bar时分析顶针的内应力分布,根据计算结果确定该产品允许最大工作压力范围。 6. 分析结果及讨论: 当压缩空气压力是8Bar时: 当压缩空气压力是5Bar时:

当压缩空气压力是4Bar时: 结论: 通过比较在不同压力载荷下最大内应力的变化发现,顶针工作在8Bar时最大应力达到250Mpa,考虑到零件是在160HZ高频率在做往返运动,疲劳寿命要求50百万次以上,因此采用允许其最大工作压力在5Mpa,此时内应力为156Mpa,按线性累积损伤理论[3 ]进行疲劳寿命L-N疲劳计算,进一部验证产品的设计寿命和可靠性。

基于ANSYS的汽车轮毂单元载荷分析

龙源期刊网 https://www.360docs.net/doc/0a4877915.html, 基于ANSYS的汽车轮毂单元载荷分析 作者:吕新飞 来源:《下一代》2019年第03期 摘要:轮毂是汽车系统重要的运动和支撑部件,从轮毂实际结构出发,建构SoliwdWorks 实体模型,并将模型导入ANSYSWorkbench有限元分析软件作为分析工具,通过模拟轮毂实际载荷,对轮毂的各项力学性能有限元分析,可以优化轮毂设计、提高强度。 关键词:轮毂;有限元;弯矩载荷 一、轮毂的几何结构、载荷分析 1.1轮毂的形状结构 本文轮毂为整体铸造辐条式铝合金轮毂,轮毂材料为ZL101A。通过三维软件SolidWorks 建立轮毂模型,轮毂上有5个直径为Φ22mm的PCD孔,均匀分布在直径为Φ108mm的圆周上。结合实际,将辐条表面形状设计为多曲面结合,较平面设计可提高结构的抗冲击性能。轮毂为五辐条式,且大部分汽车轮毂均为5幅设计。据统计,轿车轮毂PCD数值5孔占70%以上。下面通过五幅轮毂展开分析。 1.2汽车轮毂的轻量化发展趋势及材料选用 中国汽车行业的飞速发展带来了一系列安全、能源等方面的问题,为了获得更多经济效益和动力性能,汽车工业发展要有新的技术工艺。汽车轮毂轻量化在节能减排、降低油耗等方面起着至关重要的作用,考虑汽车平稳、舒适、无噪音等整体运行情况,对汽车的结构和形状进行优化。根据RAYS的测算,减轻lkg非簧载质量(例如,轮毂重量轻lkg,相当于整车质量轻15kg)铝合金以其轻量、散热性好、减震性好等诸多优点大量应用于汽车轻量化,推动了汽车轻量化的发展。 二、建立有限元模型 2.1轮毂模型的导入、建立及简化 将在SolidWorks软件中完成的零部件3D造型按照Parasolid标准输出“.x_t”文件,导入ANSYS环境。因轮辐表面由多曲而构成,结构相对复杂,以采用自由网格划分方式“AutomaticMethod”生成网格,而轮缘及胎圈座部分结构较为规则,采用六面体法“Hex Donimant Method”生成網格。共生成12174个节点,4725个基本单元。为了节约仿真计算时间

有限元分析案例

有限元分析案例 图1 钢铸件及其砂模的横截面尺寸 砂模的热物理性能如下表所示: 铸钢的热物理性能如下表所示: 一、初始条件:铸钢的温度为2875o F,砂模的温度为80o F;砂模外边界的对流边界条件:对流系数0.014Btu/hr.in2.o F,空气温度80o F;求3个小时后铸钢及砂模的温度分布。 二、菜单操作: 1.Utility Menu>File>Change Title, 输入Casting Solidification; 2.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete, Add, Quad 4node 55; 3.定义砂模热性能:Main Menu>Preprocessor>Material Props>Isotropic,默认材料编号1, 在Density(DENS)框中输入0.054,在Thermal conductivity (KXX)框中输入0.025,在S pecific heat(C)框中输入0.28; 4.定义铸钢热性能温度表:Main Menu>Preprocessor>Material Props>-Temp Dependent->Temp Table,输入T1=0,T2=2643, T3=2750, T4=2875; 5.定义铸钢热性能:Main Menu>Preprocessor>Material Props>-Temp Dependent ->Prop Table, 选择Th Conductivity,选择KXX, 输入材料编号2,输入C1=1.44, C2=1.54, C3=1.22, C4=1.22,选择Apply,选择Enthalpy,输入C1=0, C2=128.1, C3=163.8, C4=174.2; 6.创建关键点:Main Menu>Preprocessor>-Modeling->Create>Keypoints>In Active

基于有限元分析的轿车铝合金车轮设计

摘要 轻量化是世界汽车工业发展的主要趋势,轻质材料铝及其合金等的使用是一种有效的途径。目前,大部分汽车车轮已使用铝及其合金做作为材料,利用现代设计方法,在此基础上进一步实现车轮的轻量化则是本文的研究所在。 在研究了CAD软件Pro /E以及有限元分析软件ANSYS的功能及其主要特点后,着重进行了了应用ANSYS对铝合金车轮进行结构强度分析的具体过程。 首先使用Pro/E软件,按照轮辋的国家标准,建构车轮的实体模型;然后把模型导入ANSYS,按2005年中国汽车行业标准中的汽车轻合金车轮的性能要求和实验方法所规定的疲劳实验要求施加荷载;然后进行强度分析和模态分析,分析结果表明,车轮的最大应力远小于铝合金的许用应力,车轮的固有频率满足要求,存在进一步改进的可能和必要。最后,改进车轮模型,改进结果表明,车轮的重量有了显著的减少。 利用CAE分析技术有助于提高汽车车轮的设计水平、缩短设计周期、减少开发成本。该方法具有普遍性,适用于指导任何其言型号车轮的设计和分析。 关键词:铝合金车轮;结构设计;有限元分析;强度分析;模态分析

ABSTRACT Lightweight is the main trends of the world's automotive industry, lightweight materials such as the use of aluminum and its alloys is an effective way. At present, most automotive aluminum and its alloy wheels have been used to do as a material, using modern design methods, based on the further realization of this lightweight wheels is the Institute of this article. In the study of the CAD software Pro / E and ANSYS finite element analysis software functions and the main characteristics, the Emphasis was the application of ANSYS, the structural strength of aluminum alloy wheel analysis of the specific process. First ,uses the Pro / E software, according to the rim of the national standards, building wheel solid model; then the model into ANSYS, by 2005 China's auto industry standard in automotive light-alloy wheels and performance requirements and test methods under the fatigue test requirements defined load and then the strength analysis and the results showed that the wheel is much less than the maximum stress allowable stress of aluminum alloy, there is further improvement possible and necessary. Then, the improved wheel models, improved results show that the weight of the wheels have been significantly reduced. The results show that the use of CAE analysis technology helps improve the design of automobile wheel level, shorten design cycles, reduce development costs. The method is universal, applicable to any of his words and models to guide the design and analysis of the wheel. Key words: Aluminum Alloy Wheels; Structural Design; Finite Element Analysis; Strength Analysis; Modal Analysis

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

轮毂有限元分析说明书

目录 1设计项目名称 (2) 2设计目的和要求 (2) 3实验内容: (2) 4试验方法: (2) 5三维建模生成轮毂实体 (2) 6模型导入ANASYS过程 (13) 7定义材料属性 (13) 8划分网格 (14) 9 施加约束和载荷 (14) 10浏览及分析结果 (16) 11参考文献 (17)

1设计项目名称 大型工程软件综合课程设计 2设计目的和要求 (1)掌握应用catia实体建模方法。 (2 )掌握应用ansys进行简单有限元分析方法,要求学生能对问题进行分析, 自己独立完成。 3实验内容: 利用CATI A画出轮毂实体模型,然后倒入ANASY对轮毂进行有限元分析,观察轮毂在静止时面受力变化情况。 4试验方法: 合理利用好CATIA和ANASYS各命令,完成实体建模与分析 5三维建模生成轮毂实体 (1)打开CATIA软件:开始→机械设计→零部件设计。 (2)单位设置:工具→选项→单位→把长度单位改为毫米→单击确定。 (3)由XY平面进入草图,以原点为圆心画一个半径为200mm的圆,退出草图, 将圆拉伸成280mm的凸台。 (4)由yz平面进入草图,用直线命令画出插入几何体的平面轮廓如图:

图5.1 (5) 退出草图,将轮廓曲面绕圆柱轴线旋转360°,结果如图: 图5.2

(6)生成新的实体: 图5.3 (7)由圆柱上平面,进入草图,以原点为圆心画一个半径为190mm的圆,退出草图,将做深度为20mm的凹槽。结果如图: 图5.4

(8) 由YZ平面进入草图,利用线命令画出插入体的平面图形,如图所示: 图5.5 (9) 退出草图,将插入面绕圆柱轴线旋转360度,如图: 图5.6

ANSYS有限元分析实例

有限元分析 一个厚度为20mm的带孔矩形板受平面内张力,如下图所示。左边固定,右边受载荷p=20N/mm作用,求其变形情况 P 一个典型的ANSYS分析过程可分为以下6个步骤: ①定义参数 ②创建几何模型 ③划分网格 ④加载数据 ⑤求解 ⑥结果分析 1定义参数 1.1指定工程名和分析标题 (1)启动ANSYS软件,选择File→Change Jobname命令,弹出如图所示的[Change Jobname]对话框。 (2)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定 (3)选择File→Change Title菜单命令,弹出如图所示的[Change Title]对话框。 (4)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。 1.2定义单位

在ANSYS软件操作主界面的输入窗口中输入“/UNIT,SI” 1.3定义单元类型 (1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。 (2)单击[Element Types]对话框中的[Add]按钮,在弹出的如下所示[Library of Element Types]对话框。 (3)选择左边文本框中的[Solid]选项,右边文本框中的[8node 82]选项,单击确定,。 (4)返回[Element Types]对话框,如下所示 (5)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。

基于有限元分析的轿车铝合金车轮设计-开题报告

毕业设计开题报告 学生姓名系部汽车与交通工程学院专业、班级 指导教师姓名职称教授从事 专业 车辆工程、 交通工程 是否外聘□是√否 题目名称基于有限元分析的轿车铝合金车轮设计 一、课题研究现状、选题目的和意义 1、课题研究现状 1)铝合金车轮的起源,发展 长时期内,钢制车轮在车轮制造业中占主导地位,随着科学技术的发展与进步,对车辆安全、环保、节能的要求日趋严格,铝合金车轮以其美观、质轻、节能、散热好、耐腐蚀、加工性能好等特点,逐步取代钢制车轮。铝合金车轮的出现到如今渐渐替代钢制车轮是一个漫长的发展阶段。在20世纪初,一些热衷于赛车的爱好者,为了能使车辆更轻以提高赛车速度,想方设法对车辆各零部件作轻量化的改进,其中车轮是重点减轻的主要对象。1923年,Bugatti公司大胆地将砂型铸造的铝合金车轮装上了赛车,加世纪30年代联邦德国汽车联合会、拜尔(BMW)发动机公司及戴姆勒一奔驰汽车公司,正式将钢制辐条式轮毂与铝制扎制轮辋相结合的车轮装上汽车,为铝合金车轮的发展奠定了基础。二次世界大战和世界性的能源危机大大刺激了汽车商的轻量化需求。1945年汽车厂商纷纷开展批量生产铝合金车轮的研究,重要集中在铝合金车轮的材质和成形工艺方面,但由于车轮的特殊安全要求,仍未能实施批量生产。直至20世纪50年代末,联邦德国还只能少量地生产铝合金车轮。1970年末,拜尔发动机公司率先将铸造铝合金车轮作为特殊部件装到了2002型轿车上,1972年又在双门小轿车上成批装上了铸造铝合金车轮,开始了铸造铝合金车轮批量用于轿车的新局面。 日本铝合金车轮工业是在1970年后至1984年之间快速发展起来的,在1984年的年产量达640万件。意大利在1979年曾生产150万件。到1980年,西欧共生产700多万件铝合金车轮(其中50%是铸造铝合金车轮),并以年产6%~7%的速度递增。1988年,美国生产的车辆中,铝合金车轮已作为好几种车型的系列部件,Pontiac SE车型的Grand Prix车更是采用了涂装彩色条带状的铝合金车轮。通用汽车公司生产的Gorvette车和另外两种Grand Prix车型也采用了铝合金车轮;Pontiao Fiero 的一种新车采用了表面为黑色的铝合金车轮;Dodge Dynasty车也把花边式样的铝合金车轮装了上去。同年,福特公司在Merkur Scorprio轿车上也装上了铝合金车轮,并把铝合金车轮定为公司系列的标准件。20世纪80年代初,美国原装轿车铝合金车轮装车率大约4%一5%,如今已超过40%。而日本目前轿车铝合金车轮装车率超过45%,欧洲国家超过50%。 我国铝合金车轮工业起步较晚,最早使用铝合金车轮是在20世纪80年代初,国营洪都机械厂

电动汽车轮毂式驱动电机有限元分析_尚军军

北京力学会第18届学术年会论文集:计算力学 电动汽车轮毂式驱动电机有限元分析 尚军军杨庆生 (北京工业大学机电学院,100124) 摘要:本文确定了电动汽车轮毂式驱动电机的参数,采用了分数槽的方式,有效地减小了 电动机运转时所产生的转矩脉动。利用有限元软件对电动机的磁场进行了分析和计算,在 ANSYS中导入2-D模型,并对该模型进行划分网格、加载、求解,得到永磁直流电机的磁 场磁力线分布图、磁通密度模值、磁通密度矢量显示图、磁场强度分布图等分析结果,说 明了采用分数槽的钕铁硼永磁直流电动机具有磁性能好,磁化均匀,利用率高等优势。 关键词:永磁无刷直流电动机,分数槽,有限元 一、 轮毂式驱动电机的参数选择 通过查阅文献,本文采用适合作轮毂驱动电机的三相永磁无刷直流电动机。从减少电动机的定子齿槽引起的转矩脉动,从而降低电动机运转时产生的噪声的角度出发,采取分数槽技术。分数槽[1]是指电机的每极每相槽数为分数,它提高了槽满率,改善了反电势波形的正弦性,提高了电动机的性能。电机的槽数为51,极数为46,永磁材料为钕铁硼,它的额定数据如表1所示。 表1 轮毂式驱动电机的额定参数 额定功率额定转速额定运行电压额定运行电流最大转矩起动转矩倍数 2.7kw1000r/min 216v 14A 50Nm 5 二、 轮毂电机的有限元分析 首先创建有限元模型[2]。进入偏好设置,选择电磁分析选项中的Magnetic-Nodal, 设置好分析类型。进入前处理器并定义单元类型为Magnetic Vector下的Quad 8 node 53。定义材料属性:空气的相对磁导率值为1,材料编号为1;转子壳材料编号为2,相对磁导率为8000;永磁体材料编号为3,相对磁导率为1.14,磁化方向为X轴正方向,永磁体的矫顽力为755740A/m。电磁场分析模型可用AUTOCAD绘制并生成面域的SAT图形导入。导入后将其转化成ANSYS模型,并显示出来,对其进行布尔操作,使各个不同的面分开。建立局部坐标系,确定永磁体的充磁方向,通过三点在46个磁钢上建立46个局部坐标系。其次,进行网格剖分。给几何图形中各部分分配单元及材料属性,单

ansys有限元分析作业经典案例

有 限 元 分 析 作 业 作业名称 输气管道有限元建模分析 姓 名 陈腾飞 学 号 3070611062 班 级 07机制(2)班 宁波理工学院

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK

2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。 图2 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框。 图3 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK

风力发电机组轮毂极限强度的有限元分析

风力发电机组轮毂极限强度的有限元分析 文章是基于有限元理论,对兆瓦级风力发电机组的轮毂进行强度及疲劳计算。轮毂是风力发电机中的重要组成部分,铸造而成,是将机械能转换为电能的核心部件,其形状复杂,轮毂的设计质量会直接影响到整个机组的正常运行及使用寿命,在其受复杂风载荷的作用下,其强度和疲劳耐久性成为此行业关注的焦点。此分析利用大型有限元分析软件Ansys对轮毂模型分析。模型中包含轮毂、主轴及叶片,从轮毂的应力分布情况,从中找出最危险的部位,为轮毂的设计提供可靠依据。 标签:风力发电机;轮毂;有限元分析;极限强度 1 绪论 1.1 课题研究背景 经济发展过程中,我国作为世界上人口最多的发展中国家,能源消耗量不断增加,传统化石能源无以为继,面临的能源开发利用的资源约束越来越多,环境压力也越来越大。如今,生态环境承载能力弱、资源相对紧张。传统能源利用导致的环境问题越来越严重,以及全国范围内的雾霾天气都在提醒我们要努力做到全面、协调、可持续发展,以符合当今国情。在众多的可再生能源中,风能以其巨大的优越性和发展潜力受到人们的瞩目。 1.2 轮毂在大型风力发电机组的重要性 在大型风力发电机组中,轮毂是核心构件,其不仅承担着与驱动连的链接,而且将叶片所受的风载荷通过主轴传递给齿轮箱,承担着风力发电机组容量增大而带来的更大的负荷。它需要有足够的强度和刚度,以保证机组在各种工况下能正常运行。由此可看出轮毂在风力发电机组的设计和制造过程中的重要性。 2 轮毂的强度校核计算 2.1 轮毂模型介绍 轮毂模型结构见图1 此机组风轮由三片叶片对称安装在轮毂上构成,叶片间的夹角为120°。利用CAD绘图软件Solidworks,绘制了轮毂的三维实体几何简化模型。在保证计算精度的前提下,由于小的孔类、圆角及小凸台类结构对计算结果影响很小并且不是关键部位,已经略去。叶片产生的气动载荷以及由于风轮旋转和机舱对风轮转动引起的离心力、惯性力和重力通过三片叶片连接点传递到轮毂上,这些载荷和轮毂自身的重力构成了轮毂载荷。最终,轮毂简化后的几何模型如图1所示。

汽车轮毂轴承凸度有限元分析

!产品设计与应用# 汽车轮毂轴承凸度有限元分析 孙立明1,王大力1,赵滨海1,杨建虹2,颜 波2,张天平2 (1.洛阳轴承研究所 河南 洛阳 471039 2.万向集团技术中心 浙江 萧山 311215) 摘要:用ANSY S软件对桑塔纳轿车前轮毂轴承进行有限元分析,确定合理的凸度形式及滚子与滚道的最佳凸度匹配关系,给出了滚子、内圈滚道最佳凸度控制方程。结果表明:凸度形式及滚子与滚道的凸度匹配关系对轴承的载荷分布和承载能力有显著影响,最佳凸度控制方程对改进轮毂轴承凸度设计具有重要的指导意义。 关键词:轮毂轴承;有限元;凸度 中图分类号:TH133.3;O242.21 文献标识码:A 文章编号:1000-3762(2005)02-0001-04 Finite E lement Analysis on Crow ning for Automobile H ub Bearings S UN Li-ming1,W ANG Da-li1,ZH AO Bin-hai1,Y ANGJian-hong2,Y AN Bo2,ZH ANG T ian-ping2 (11Luoyang Bearing Research Institute,Luoyang471039,China; 21Wanxiang G roup T echnology Centrue,X iaoshan311215,Chian) Abstract:The crowning of the front hub bearings of Santana car is analyzed by using ANSY S finite element s oftware,and the proper crowning form and optimal crowning match relation between roller and raceway are determined.The optimal crowning control equations of roller and inner raceway is given.The results show that the crowning match relation between roller and raceway has an important in fluence for load distribution and capacity of the bearing,the optimal crowning control equations has mainly guiding meaning to improve crowning design of hub bearing. K ey w ords:hub bearing;finete element;crowning 近些年来,用户对圆锥滚子轴承的寿命提出了更为严格的要求,这不仅涉及到材料、热处理、制造水平、工装设备,而且涉及到轴承的设计,特别是滚子和滚道凸形、凸度量及最佳凸度匹配关系的确定。由于滚子和滚道接触分析属于非静定问题,滚子与滚道接触区的大小、应力、应变及应力和应变的分布状态用赫兹理论求解比较困难。因此,有必要采用现代设计方法,对这些问题进行分析求解。 1 滚子与滚道凸形和凸度量的确定 根据国内外轴承样品的对比分析结果及在滚子与滚道多种设计方案进行分析的基础上,仅对 收稿日期:2004-10-08 作者简介:孙立明,洛阳轴研科技股份有限公司产品开发部副部长,教授级高级工程师。滚子与内圈有凸度的情况进行仿真分析,并提出如下滚子与滚道凸度设计原则,在轻载时,滚子的有效接触长度为滚子长度的60%~70%,重载时,不出现应力集中。在此选择的凸形为修正对数曲线,并对4种情况的凸度匹配关系进行对比分析。所给出的凸度量分别为:滚子和滚道无凸度;滚子凸度2.4μm,内圈滚道凸度5μm,滚子凸度8μm,内圈滚道凸度10μm,滚子凸度15μm,内圈滚道凸度15μm。 2 滚子和滚道凸度有限元模型及仿真分析 在轴承中,由于滚子和滚道的接触特征完全一致,因此用一个滚子和滚道接触的局部模型就能够进行整体的凸度仿真分析。图1给出了有限元分析网格划分模型。 ISS N1000-3762 C N41-1148/TH 轴承 Bearing   2005年第2期 2005,N o.2 1-3

ANSYS Workbench在铝合金轮毂冲击试验中的应用

ANSYS Workbench在铝合金轮毂冲击试验中的应用 摘要:在追求环保节能的汽车行业,轻量化越来越成为高品质的代名词之一。铝合金轮毂以其良好的性能、更轻的重量、回收率高等优势成为轮毂行业的主流。本文以有限元分析软件ANSYS Workbench 为工具,对铝合金轮毂的抗冲击性进行分析和预判,为铝合金轮毂产品的开发人员提供设计依据。 关键词:有限元分析;Workbench;轮毂;冲击 中图分类号:TG11.3 文献标识码: A 文章编号:1673-1069(2016)22-126-2 0 引言 轮毂由轮辋和轮辐部分组成,轮辐又可细分为轮盘和辐条。轮辋有规定的设计标准,但轮辐的形状复杂多变,没有统一的要求。轮毂又叫轮圈,是一个高速旋转件,并且要支撑整个汽车的重量。为保证轮毂性能的合格,主要对其做冲击试验、弯曲疲劳试验和径向疲劳试验。在实际开发和生产过程中,我们发现主要影响轮毂性能合格的是其抗冲击性。 本文通过用ANSYS Workbench软件模拟对轮毂冲击应变的模拟分析,并结合实际实验结果对分析进

行验证,为轮毂开发人员提供可靠的设计依据,进而缩短开发周期、减少开发成本,从而提高企业的竞争力[1]。 1 有限元分析和ANSYS Workbench的简介 1.1 有限元分析简介 有限元分析(Finite Element Analysis,FEA)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 1.2 ANSYS Workbench的简介 ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的

相关文档
最新文档