第六章III-V族化合物半导体讲解

第六章III-V族化合物半导体讲解
第六章III-V族化合物半导体讲解

对Ga-As体系精细相图在加热时发生的一些可逆反应熔体生长的GaAs晶体一般含有较多的Ga空位

SnAg系无铅焊料中金属间化合物的形成与控制

SnAg系无铅焊料中金属间化合物的形成与控制

中文摘要 微电子封装工艺中,起到热、电和机械连接作用的无铅焊料合金组织中金属间化合物的形态和分布直接影响着该合金的连接性能。本文以共晶配比附近的Sn—Ag 合金为研究对象,通过改变成分配比和凝固速率系统研究了其凝固过程中金属间化合物相(Ag。Sn)的析出规律。结合显微组织观察、热分析和热力学计算,从凝固过程两相竞争生长的角度揭示了块状金属间化合物Ag。Sn的形成机理。采 用高温时效模拟焊点的高温服役过程,阐明了在持续高温环境下合金组织中金属间化合物相的演化规律。最后探讨了第三组元及异相纳米ZrO:微粒的掺入对合金组织中金属间化合物的析出控制及强化机理。上述研究包括的主要内容和获得的结论是:通过改变冷却介质,系统研究了亚共晶、共晶和过共晶Sn-Ag合金在不同凝固速率下其组织中金属间化合物的形成规律。结果表明:只在缓冷过共晶合金凝固组织中有块状金属间化合物Ag。Sn的析出。在较快凝固速率下,三种合金组织均呈现亚共晶组织特征,即由初生13一Sn枝晶和由Ag。Sn相与B—Sn相共晶体所构成。这归因于非平衡条件下的动力学过冷使合金凝固过程按亚稳伪共晶反应进行。提高凝固速率对合金组织的影响为:一方面,符合经典共晶合金枝晶生长规律,其B-Sn枝晶得到细化,即:d=3.7t043(其中d为13-Sn枝晶二次枝晶间距,凝固速率在0.08.-一104 Ks。1的范围内)。另一方面,符合弥散强化原理,在共晶体区域中析出纳米Ag。Sn相提高了其显微硬度。在低速凝固速率下,发展了一种通过合金凝固时的名义热容曲线来确定固相体积转变过程,进而确定组织中块状金属间化合物体积分数的有效方法,结合定量金相分析和热力学计算,揭示了过共晶合金组织中块状金属间化合物Ag。Sn的形成机理,即:凝固时,合金熔体中的共晶Ag。Sn相因与初生Ag。Sn相有共同的晶体结构,会在小过冷度下依附于后者生长并成为块状金属间化合物Ag。Sn,并且该块状相的体积分数值随着合金凝固速率的提高而增大。 采用高温时效处理模拟焊点高温服役过程研究了Sn-3.5Ag合金在持续高温环境下的组织稳定性。结果表明:合金组织中金属间化合物Ag。Sn相的演化符合系统自由能最小原理。平衡凝固合金组织中Ag。Sn相趋于破裂和表面球化;而非平衡凝固合金组织中Ag。Sn相在初生B-Sn枝晶晶界的扩散推移作用下合并成为块状金属间化合物Ag。Sn。通过精确的热焓计算和精细的组织分析,揭示了非平衡凝固合金组织中纳米Ag。Sn相的生长驱动力源于其较高的表面能,使其处于热力学亚稳状态。但由于该纳米Ag。Sn相仅局部分布于共晶组织中,因此该合金在

金属间化合物浅析

◆山水世人出品金属间化合物(IMC)浅析?山水世人

◆山水世人出品 目录 ?IMC定义 ?IMC的特点及应用领域 ?IMC对焊点的影响 ?IMC的形成和长大规律 ?如何适当的控制IMC ?保护板镀层中IMC实例 ?总结

◆山水世人出品 IMC的定义 金属间化合物(i t t lli d)是指金属与金属金属与类?intermetallic compound)是指金属与金属、金属与类金属之间以金属键或共价键形式结合而成的化合物。在金属间化合物 中的原子遵循着某种有序化的排列。Cu 6Sn5、Cu3Sn、CuZn、InSb、 等都是金属间化合物 GaAs、CdSe等都是金属间化合物, ?金属间化合物与一般化合物是有区别的。首先,金属间化合物的组成常常在一定的范围内变动;其次金属间化合物中各元素的化合价很难确定,而且具有显著的金属键性质。

◆山水世人出品 IMC的特点及应用领域 ?金属间化合物在室温下脆性大,延展性极差,很容易断裂,缺乏实用金属间化合物在室温下脆性大延展性极差很容易断裂缺乏实用价值。经过50多年的实验研究,人们发现,含有少量类金属元素如硼元素的金属间化合物其室温延展性大大提高,从而拓宽了金属间化合物的应用领域。与金属及合金材料相比,金属间化合物具有极好的耐高温及耐磨损性能,特别是在一定温度范围内,合金的强度随温度升高而增强,是耐高温及耐高温磨损的新型结构材料。 ?除了作为高温结构材料以外,金属间化合物的其他功能也被相继开发,稀土化合物永磁材料、储氢材料、超磁致伸缩材料、功能敏感材料等稀土化合物永磁材料储氢材料超磁致伸缩材料功能敏感材料等也相继开发应用。 ?金属间化合物材料的应用,极大地促进了当代高新技术的进步与发展,促进了结构与元器件的微小型化、轻量化、集成化与智能化,促进了促进了结构与元器件的微小型化轻量化集成化与智能化促进了 新一代元器件的出现。金属间化合物这一“高温英雄”最大的用武之地是将会在航空航天领域,如密度小、熔点高、高温性能好的钛铝化合物等具有极诱人的应用前景 合物等具有极诱人的应用前景。

ZnFe及ZnFeMn固态扩散偶中金属间化合物的生长

Zn/Fe及Zn/Fe-M n固态扩散偶中金属间化合物的生长*刘 赛1,王建华1,2,3,彭浩平1,徐 鹏1,童 晨1,涂 浩2, 3 (1 材料设计及制备技术湖南省重点实验室,湘潭411105;2 常州大学材料科学与工程学院,常州213164; 3 常州大学先进金属材料常州市重点实验室,常州213164)摘要 采用Zn/Fe及Zn/Fe-Mn固固扩散偶方法,研究了锰对金属间化合物生长动力学的影响。对扩散偶在385℃扩散10~300min的研究结果表明,在Zn/Fe扩散偶中,扩散层以δ相为主,ζ相和δ相之间具有平直的界面,随扩散时间的延长,δ相的厚度增加,ζ相逐渐被消耗,厚度比dζ/dδ的值逐渐减小;在Zn/Fe-Mn扩散偶中,扩散层也以δ相为主,ζ相和δ相之间的界面更平直, 铁基体中的锰在扩散初期促进δ相的生长,但在扩散后期促进ζ相生长。对Zn/Fe-Mn扩散偶中金属间化合物的生长动力学研究表明,0.4%(质量分数,下同)的锰使扩散层总厚度增加,当锰含量增加到1.2%以上时,扩散层总厚度反而开始下降。Zn/Fe、Zn/Fe-0.4%Mn、Zn/Fe-1.2%Mn及Zn/Fe-2.0%Mn四个扩散偶中总扩散层的生长均由扩散控制。 关键词 Zn-Fe金属间化合物 扩散偶 显微组织 生长动力学 Zn-Fe-Mn中图分类号:TG113.1;TG111.6 文献标识码:A Growth of Intermetallic Comp ounds in Solid Zn/Fe andZn/Fe-Mn Diffusion Coup lesLIU Sai 1,WANG Jianhua1,2,3,PENG Haoping1,XU Peng1, TONG Chen1,TU Hao2,3 (1 Key Laboratory of Materials Design and Preparation Technology  of Hunan Province,Xiangtan 411105;2 School of MaterialsScience and Engineering,Changzhou University,Changzhou 213164;3 Key Laboratory  of Advanced Metal Materials ofChangzhou City,Changzhou University,Chang zhou 213164)Abstract The growth of Zn-Fe intermetallic compounds and the effect of Mn were studied by means of diffu-sion experiments at 385℃for 10-300min.The results show that the layer is mainly  composed ofδphase in Zn/Fecouples,the interface betweenζandδis planar,the thickness ofδphase increases andζphase decreases with prolon-gation of time,the value of dζ/d δalso decreases with time.In Zn/Fe-Mn couples,the diffusion layer is mainly com-posed ofδphase,the interface betweenζandδis more planar,and the manganese in iron promotes the growth ofδphase in the initial period but the growth ofζ is promoted in the later period.The results of Zn/Fe-Mn couples showthat 0.4%manganese makes the total thickness of diffusion layer increase,however,when the mang anese content in-creases to 1.2%,the total thickness decreases.The growth of the total layer in four couples Zn/Fe,Zn/Fe-0.4%Mn,Zn/Fe-1.2%Mn and Zn/Fe-2.0%Mn are diffusion- controlled.Key  words Zn-Fe intermetallic compounds,diffusion couple,microstructure,growth kinetics,Zn-Fe-Mn *国家自然科学基金( 50971111;50971110);江苏省青蓝工程资助;常州市国际合作项目(CZ20110014) 刘赛:女,1986年生,硕士生 E-mail:610667060@qq .com 涂浩:通讯作者,副教授,硕士生导师 E-mail:tuhao@cczu.edu.cn0 引言 热浸镀锌是一种能制备出具有优良耐腐蚀性能产品且成本低的涂层技术, 在各个行业得到了广泛的应用。但在一般镀锌过程中,由于钢中硅的存在引起镀锌层中Fe-Zn合金层相的剧烈增长,使镀层变厚并形成灰色层,同时镀层附着 性能变差,产生硅反应性(又称Sandelin效应) [1,2] 。目前采用最多的抑制Sandelin效应的方法是在锌池中添加一定量 的合金元素(如Ni、Mg、Mn、Sn、Pb等)[3-5] ,并做了大量的研究工作。早期研究[3] 表明,锌池中锰的添加能明显抑制镀层 的生长,但是未见有关钢基中锰的添加对镀层组织影响的研 究报道。 扩散偶法最先由Girchner提出, 是一种广泛用于相图计算及界面反应的研究方法[6,7]。许多研究者[8-10] 都用此方法来研究热浸镀锌Fe- Zn反应的反应动力学。李智等[9] 通过研究固态Zn/Fe及Zn/Fe-Si扩散偶扩散区内金属间化合物的生长动力学, 分析了硅反应性。一般钢中含锰0.30%~0.50%(质量分数,下同),在碳素钢中加入0.70%以上的锰就算“锰钢”,高强钢中锰含量为1.5%左右。因此本实验选择锰含量分别为0.4%、1.2%和 2.0%的铁锰合金,与固态纯锌制成扩散偶后,对其扩散层的显微组织及Zn- Fe金属间化合物的生长动力学进行分析探讨。· 38·Zn/Fe及Zn/Fe-Mn固态扩散偶中金属间化合物的生长/刘 赛等

III-V族化合物半导体-吉林大学课程中心

第6章 III-V族化合物半导体
吉林大学电子科学与工程学院
半导体材料

第六章 III-V族化合物半导体
IIIA元素:B 、Al、Ga、In VA元素: N、P、As、Sb 组合形成的化合物15种(BSb除外) 目前得到实用的III-V族化合物半导体 GaN GaP GaAs GaSb InP InAs InSb 原子序数之和:由小→大 ? 材料熔点:由高→低 ? 带隙宽度:由大→小
吉林大学电子科学与工程学院 半导体材料

元素 B Al Ga In
N BN 直接6.4eV AlN 直接6.2eV GaN 直接3.4eV InN 直接0.7eV
P
As
Sb
BP BAs 间接2.0eV 间接1.5eV AlP AlAs AlSb 间接2.45eV 间接 2.12eV 间接1.6eV GaP GaAs GaSb 间接2.26eV 直接 1.43eV 直接 0.73eV InP InAs InSb 直接1.35eV 直接0.45eV 直接0.18eV
吉林大学电子科学与工程学院
半导体材料

与Si相比,III-V族二元化合物半导体的独特性质
1. 带隙较大,大部分室温时> 1.1eV ,因而所制造的 器件耐受较大功率,工作温度更高 2. 大都为直接跃迁型能带,因而其光电转换效率高, 适合制作光电器件,如 LED 、 LD、太阳电池等。 GaP虽为间接带隙,但Eg 较大(2.25eV),掺入等电 子杂质所形成的束缚激子发光仍可得到较高的发光 效率。是红 (Zn-O 、 Cd-O) 、黄 (Bi) 、绿 (N) 光 LED 的主要材料之一 3. 电子迁移率高,很适合制备高频、高速器件
吉林大学电子科学与工程学院 半导体材料

武汉理工 材料科学基础 课后答案 _第三章

第三章答案 3-2略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。2.<15%连续。3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。(3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙

第三章 习题解答

第三章习题解答 3,7,10,11,25 3/113、非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解答:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩,产生金属离子过剩(n 型)半导体,正离子缺位和间隙负离子使负离子过剩,产生负离子过剩(p 型)半导体。 、说明下列符号的含义: 6/113 解答:钠原子空位, 钠离子空位、带一个单位负电荷, 氯离子空位、带一个单位正电荷, 最邻近的Na+空位、Cl-空位形成的缔合中心, Ca2+占据K位置、带一个单位正电荷, Ca原子位于Ca原子位置上, Ca2+处于晶格间隙位置。 1

2 7/113、写出下列缺陷反应式:(l )NaCl 溶入CaCl 2中形成空位型固溶体; (2)CaCl 2溶入NaCl 中形成空位型固溶体;(3)NaCl 形成肖特基缺陷; (4)AgI 形成弗伦克尔缺陷(Ag +进入间隙)。 解答: (l )NaCl 溶入CaCl 2中形成空位型固溶体 ?++??→?Cl Cl Ca CaCl V Cl Na' NaCl 2 (2)CaCl 2 溶入NaCl 中形成空位型固溶体 'N a Cl N a N aCl 2V Cl 2Ca CaCl ++??→?? (3)NaCl 形成肖特基缺陷 ?+→Cl N a 'V V O (4)Agl 形成弗伦克尔缺陷(Ag +进入间隙) A g 'i A g V Ag Ag +→? 10/113、MgO 晶体的肖特基缺陷生成能为84kJ/mol ,计算该晶体1000K 和1500K 的缺陷浓度。(答:6.4×10-3,3.5×10-2)。 解答: n/N = exp(-E/2RT),R=8.314, T=1000K :n/N=6.4×10-3; T=1500K :n/N=3.5×10-2。

《化合物半导体器件》教学大纲

《化合物半导体器件》教学大纲 课程编号:MI3321038 课程名称:化合物半导体器件英文名称:Compound Semiconductor Devices 学时:30 学分:2 课程类型:任选课程性质:专业课 适用专业:微电子学先修课程:半导体物理,半导体物理导论, 集成电路设计与集成系统双极型器件物理,场效应器件物理 开课学期:6 开课院系:微电子学院 一、课程的教学目标与任务 目标:化合物半导体器件的基本特征是异质结构和高速/高性能。本课程的目标是掌握半导体异质结的基本理论与特性,掌握半导体异质结器件的基本物理特性与电学特性,为新型高速/高性能器件与集成电路的研究、设计奠定理论基础。 任务:以化合物半导体材料、异质结基本物理特性与基本电学特性为基础,熟悉半导体异质结器件的基本类型与结构,掌握异质结双极型器件、异质结场效应器件、异质结量子器件、异质结光电子器件等的基本理论、原理、高速/高性能机理。了解化合物材料、异质结、异质结器件在集成电路中的应用及其当前的技术发展。半导体材料涉及GaAs、SiGe/Si、SiC和GaN。 二、本课程与其它课程的联系和分工 本课程的基础是半导体物理,半导体物理导论、双极型器件物理、场效应器件物理。 三、课程内容及基本要求 (一) 化合物半导体器件物理基础 (6学时) 具体内容:化合物半导体材料和器件的基本特征,异质结,异质结材料技术,应变材料基本属性,异质结基本物理特性,异质结基本电学特性。 1.基本要求 (1)了解化合物半导体材料和器件的基本特征。 (2)了解化合物半导体材料技术。 (3)掌握应变材料和异质结基本属性。 (4)掌握异质结基本物理特性,异质结基本电学特性。 2.重点、难点 重点:应变材料和异质结基本属性;异质结基本物理特性,异质结基本电学特性。 难点:应变材料和异质结基本属性。 3.说明:应变材料和异质结技术是当前高速/高性能器件与集成电路研究发展的重点和热点。 (二)异质结双极晶体管(6学时)

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

第九章+化合物半导体集成技术

《半导体制造技术》课程 第九章:化合物半导体集成技术 刘洪刚研究员 Email: liuhonggang@https://www.360docs.net/doc/0a8276869.html, 微波器件与集成电路研究室 中国科学院微电子研究所 1 参考书目与文献 1.Shur, M. S. Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice-Hall, 1990. ISBN: 013666496 2. 2.Sze, S. M. Physics of Semiconductor Devices. 2nd ed. New York, NY: Wiley, 1981. ISBN: 047109837X. 3.Sze, S. M., ed. High Speed Semiconductor Devices. New York, NY: Wiley, 1990. ISBN: 0471623075. 4.Adachi, Sadao. Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP. New York, NY: John Wiley & Sons, 1992. ISBN: 0471573299. 5.Cook, P., E. Martinez, J. Tantillo, and F. L. Schuermeyer. "Band Edge Alignment in Heterstructures." Applied Physics Letters 55, no. 18 (October 1989): 1877-1878. 6.Fitzgerald, E. A. "Dislocation in Strained-layer Epitaxy: Theory, Experiment, and Applications." Materials Science Reports 7 (1991): 87-142. 7.Mohammad, S. N., and H. Morkoc. "Progress and Prospects of Group-III Nitride Semiconductors." Progress in Quantum Electronics 20 (1996): 361-525. 8.Monemar, B., and G. Pozina. "Group III-nitride Based Hetero and Quantum Structures." Progress in Quantum Electronics 24 (2000): 239-290. 9.Bollaert, S., Y. Cordier, M. Zaknoune, T. Parenty, H. Happy, and A. Cappy. "HEMT's Capability for Millimeter- wave Applications." Annals of Telecommunications 56 (2001): 15-26. 10.Houston, P. A.. "High-frequency Heterojunction Bipolar Transistor Device Design and Technology." Electronics and Communication Engineering Journal 12 (October 2000): 220-228. 11.Delage, S. L. "Heterojunction Bipolar Transistors for Millimeter Waves Applications: Trends and Achievements." Annals of Telecommunications 56 (2001): 5-14. 12.Schubert, E. F. Light Emitting Diodes. Cambidge, UK: Cambridge University Press, 2003. ISBN: 0521533511. 13.Mukai, T. "Recent Progress in Group-III Nitride Light-emitting Diodes." IEEE J on Selected Topics on Quantum Electronics 8 (2002): 264-270. 2

化合物半导体(compoundsemiconductor)百科全说物理篇

化合物半导体(compoundsemiconductor)百科 全说物理篇 当今社会是一个高速发展的信息社会。生活在信息社会,就要不断地接触或获取信息。如何获取信息呢?阅读便是其 中一个重要的途径。据有人不完全统计,当今社会需要的各种信息约有80%以上直接或间接地来自于图书文献。这就说 明阅读在当今社会的重要性。还在等什么,快来看看这篇化合物半导体(compoundsemiconductor)百科全说物理篇吧~ 化合物半导体(compoundsemiconductor) 化合物半导体(compoundsemiconductor) 通常所说的化合物半导体多指晶态无机化合物半导体,它是由两种或两种以上的元素化合而成的半导体材料。化合物半导体数量最多,研究出的约有一千多种。其中研究较多的二元化合物半导体是GaAs、GaN、GaP、InP、InSb、InSn、CdS 和SiC等。Ⅲ-Ⅴ族二元化合物半导体GaAs、InP和InSb等与Ge、Si相比,它们迁移率高,可作高频、高速器件,禁 带宽度大,利于做高温、大功率器件,能带结构是直接跃迁型,因此转换成光的效率高,可作半导体激光器和发光二极管等。GaAs用于微波器件、激光器件和红外光源以及作其他外延材料的衬底;GaN是重要的宽带隙半导体材料,可用于制造兰光发光二极管、兰光发射激光器及紫外光探测器等,并在耐高温的MOSFET器件等方面具有重要的应用价值。GaP主

要用于发光二极管;InP用以制造发光二极管和微波体效应二极管;InAs和Insb主要用于霍尔器件;InSn用于制作红外探测器;CdS适宜于制造光电器件;SiC也主要用于发光二极管。在集成电路方面GaAs也日益成熟,其运算速度比硅集成电路要快得多。由两种或两种以上的Ⅲ-Ⅴ族化合物还能形成多元化合物(也称混晶或固溶体半导体)。它们的能带结构和禁宽度随组分而变化,从而为Ⅲ-Ⅴ族化合物半导体材料的应用开辟了更宽广的领域。目前应用较多的是 GaAs1-xPx、Ga1-xAlxAs、InxGa1-xAs、In1-xGaxP和 Hg1-xCdxTe(0 这篇化合物半导体(compoundsemiconductor)百科全说物理篇,你推荐给朋友了么?

化合物半导体晶片和器件键合技术进展_谢生(精)

化合物半导体晶片和器件键合技术进展 谢生陈松岩何国荣 (厦门大学物理系,厦门,361005 2002-12-02收稿,2003-03-31收改稿 摘要:半导体晶片直接键合技术已成为半导体工艺的一门重要技术,它对实现不同材料器件的准单片集成、光电子器件的性能改善和新型半导体器件的发展起了极大的推动作用。文中详细叙述了近十年来Ⅲ-Ⅴ族化合物半导体键合技术的主要实验方法,并对各种键合方法的优缺点进行了比较,结合自己的工作对化合物半导体的键合机理和界面特性做了总结,针对目前的研究工作和应用做了展望。 关键词:晶片直接键合;键合机理;化合物半导体 中图分类号:TN305.93文献标识码:A文章编号:1000-3819(200303-366-06 Development of Compound Semiconductor Wafer and Device Bonding XIE Sheng CHEN So ng yan HE Guoro ng (Department of Physics,X iamen Univ ersity,X iamen,361005,C HN Abstract:Semico nducto r w afer direct bo nding is a im po rtant technique for integ rating de-vices,improv ing the perfo rm ance o f opto electronic devices and making new dev ices.This paper presents the innova tive wafer bonding methods of com pound semico nducto rs,analyses the ad-vantag es a nd disadv antag es o f v arious mehtods,then discusses the bonding m echa nics and the g eneric nature of the interfaces.Fina lly,ex amples o f bo nded devices a re presented.

化合物半导体项目实施方案

化合物半导体项目实施方案 规划设计/投资分析/产业运营

化合物半导体项目实施方案 化合物半导体多指晶态无机化合物半导体,即是指由两种或两种以上元素以确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构等半导体性质。化合物半导体包括晶态无机化合物(如III-V族、II-VI族化合物半导体)及其固溶体、非晶态无机化合物(如玻璃半导体)、有机化合物(如有机半导体)和氧化物半导体等。通常所说的化合物半导体多指晶态无机化合物半导体。 该化合物半导体项目计划总投资10693.17万元,其中:固定资产投资8104.59万元,占项目总投资的75.79%;流动资金2588.58万元,占项目总投资的24.21%。 达产年营业收入25737.00万元,总成本费用19973.71万元,税金及附加227.03万元,利润总额5763.29万元,利税总额6785.26万元,税后净利润4322.47万元,达产年纳税总额2462.79万元;达产年投资利润率53.90%,投资利税率63.45%,投资回报率40.42%,全部投资回收期3.97年,提供就业职位398个。 坚持“社会效益、环境效益、经济效益共同发展”的原则。注重发挥投资项目的经济效益、区域规模效益和环境保护效益协同发展,利用项目承办单位在项目产品方面的生产技术优势,使投资项目产品达到国际领先

水平,实现产业结构优化,达到“高起点、高质量、节能降耗、增强竞争力”的目标,提高企业经济效益、社会效益和环境保护效益。 ......

化合物半导体项目实施方案目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

第三章 半导体中的电子状态

第三章 半导体中的电子状态 半导体的许多物理性质与其内部电子的运动状态密切相关。本章扼要介绍一些有关的基本概念。 §3-1 电子的运动状态和能带 为了便于理解半导体中的电子运动状态和能带的概念,先复习一下孤立原子中的电子态和自由空间中的电子态概念。 一.原子中的电子状态和能级。原子是由带正电荷的原子核和带负电荷的电子组成的,原子核的质量远大于电子的质量。因此,可认为电子是在原子核的库仑引力作用下绕着原子核运动。电子绕原子核运动遵从量子力学规律,处于一系列特定的运动状态,这些特定状态称量子态或电子态。在每个量子态中,电子的能量(能级)是确定的。处于确定状态的电子在空间有一定的几率分布。在讨论电子运动时,也常采用经典力学的“轨道”概念,不过其实际含义是指电子在空间运动的一个量子态和几率分布。对于原子中的电子,能级由低到高可分为E 1﹑E 2﹑E 3 ﹑E 4..等,分别对应于1s ﹑2s ﹑2p ﹑3s …等一系列量子态。如图3-1所示,内层轨道上的电子离原子核近,受到的束缚作用强,能级低。越往外层,电子受到的束缚越弱,能级越高。总之,在单个原子中,电子运动的特点是其运动状态为一些局限在原子核周围的局域化量子态,其能级取一系列分立值。 二.自由空间中的电子态和能级。在势场不随位置变化的自由空间中,电子的运动状态满足下面的定态薛定格方程 )()(222 r E r m ψψ=?- (3-1) 该方程的解为平面波: r k i k e V r ?=1)(ψ )(22)(2222 22z y x k k k m m k k E ++== (3-2) 其中,)(r k ψ称波函数,)(k E 称能量谱值或本征值,V 为空间体积,k 为平面波

化合物半导体项目立项报告

化合物半导体项目立项报告 投资分析/实施方案

报告说明— 该化合物半导体项目计划总投资16675.32万元,其中:固定资产投资12642.31万元,占项目总投资的75.81%;流动资金4033.01万元,占项目总投资的24.19%。 达产年营业收入37009.00万元,总成本费用28082.38万元,税金及附加320.24万元,利润总额8926.62万元,利税总额10478.12万元,税后净利润6694.97万元,达产年纳税总额3783.16万元;达产年投资利润率53.53%,投资利税率62.84%,投资回报率40.15%,全部投资回收期 3.99年,提供就业职位829个。 化合物半导体多指晶态无机化合物半导体,即是指由两种或两种以上元素以确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构等半导体性质。化合物半导体包括晶态无机化合物(如III-V族、II-VI族化合物半导体)及其固溶体、非晶态无机化合物(如玻璃半导体)、有机化合物(如有机半导体)和氧化物半导体等。通常所说的化合物半导体多指晶态无机化合物半导体。

目录 第一章基本情况 第二章项目投资单位 第三章项目建设背景及必要性分析第四章建设内容 第五章选址分析 第六章工程设计 第七章项目工艺技术 第八章环境保护、清洁生产 第九章项目职业安全 第十章项目风险评价 第十一章节能可行性分析 第十二章项目实施安排方案 第十三章项目投资方案分析 第十四章项目经济评价 第十五章项目评价结论 第十六章项目招投标方案

第一章基本情况 一、项目提出的理由 化合物半导体多指晶态无机化合物半导体,即是指由两种或两种以上 元素以确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构 等半导体性质。化合物半导体包括晶态无机化合物(如III-V族、II-VI族 化合物半导体)及其固溶体、非晶态无机化合物(如玻璃半导体)、有机化合 物(如有机半导体)和氧化物半导体等。通常所说的化合物半导体多指晶态 无机化合物半导体。 二、项目概况 (一)项目名称 化合物半导体项目 (二)项目选址 xxx循环经济产业园 对周围环境不应产生污染或对周围环境污染不超过国家有关法律和现 行标准的允许范围,不会引起当地居民的不满,不会造成不良的社会影响。项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备 便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然 生态资源保护相一致。对各种设施用地进行统筹安排,提高土地综合利用

相关文档
最新文档