人教版高中数学必修一《集合与函数概念》章末复习课(含答案)

人教版高中数学必修一《集合与函数概念》章末复习课(含答案)
人教版高中数学必修一《集合与函数概念》章末复习课(含答案)

第一章集合与函数概念章末复习课

知识概览

对点讲练

分类讨论思想在集合中的应用

分类讨论思想是高中的重要数学思想之一,分类讨论思想在与集合概念的结合问题上,主要是以集合作为一个载体,与集合中元素结合加以考查,解决此类问题关键是要深刻理解集合概念,结合集合中元素的特征解决问题.

1.由集合的互异性决定分类

【例1】设A={-4,2a-1,a2},B={9,a-5,1-a},已知A∩B={9},则实数a=________.

分析由A∩B={9}知集合A与B中均含有9这个元素,从而分类讨论得到不同的a 的值,注意集合中元素互异性的检验.

答案-3

解析由A∩B={9},得2a-1=9,或a2=9,

解得a=5,3,-3.

当a=5时,A={-4,9,25},B={9,0,-4},

A ∩

B ={9,-4},与A ∩B ={9}矛盾;

当a =3时,a -5=-2,1-a =-2,B 中元素重复,舍去;

当a =-3时,A ={-4,-7,9},B ={9,-8,4},满足题设.

∴a =-3.

规律方法 (1)本题主要考查了分类讨论的思想在集合中的具体运用,同时应该注意集合中元素的互异性在集合元素的确定中起重要作用.

(2)本题在解题过程中易出现的错误:①分类讨论过于复杂;②不进行检验,导致出现增根;③分类讨论之后没有进行总结.

变式迁移1 全集S ={2,3,a 2+2a -3},A ={|2a +11|,2},?S A ={5},求实数a 的值. 解 因为?S A ={5},由补集的定义知,5∈S ,但5?A.

从而a 2+2a -3=5,解得a =2或a =-4.

当a =2时,|2a +11|=15?S ,不符合题意;

当a =-4时,|2a +11|=3∈S.故a =-4.

2.由空集引起的讨论

【例2】 已知集合A ={x|-2≤x ≤5},集合B ={x|p +1≤x ≤2p -1},若A ∩B =B ,求实数p 的取值范围.

解 ∵A ∩B =B ,∴B ?A ,

(1)当B =?时,即p +1>2p -1,

故p<2,此时满足B ?A ;

(2)当B ≠?时,又B ?A ,借助数轴表示知

????? p +1≤2p -1-2≤p +1

2p -1≤5,故2≤p ≤3.

由(1)(2)得p ≤3.

规律方法 解决这类问题常用到分类讨论的方法.如A ?B 即可分两类:(1)A =?;(2)A ≠?.而对于A ≠?又可分两类:①A B ;②A =B.从而使问题得到解决.需注意A =?这种情况易被遗漏.解决含待定系数的集合问题时,常常会引起讨论,因而要注意检验是否符合全部条件,合理取舍,谨防增解.

变式迁移2 已知集合A ={x|x 2-3x +2=0},集合B ={x|mx -2=0},若B ?A ,求由实数m 构成的集合.

解 A ={x|x 2-3x +2=0}={1,2}

当m =0时,B =?,符合B ?A ;

当m ≠0时,B ={x|x =2m },由B ?A 知,2m =1或2m

=2.即m =2或m =1. 故m 所构成的集合为{0,1,2}.

数形结合思想在函数中的应用

数形结合是本章最重要的数学思想方法,通过画出函数的图象,使我们所要研究的问题更加清晰,有助于提高解题的速度和正确率.

【例3】 设函数f(x)=x 2-2|x|-1 (-3≤x ≤3),

(1)证明f(x)是偶函数; (2)画出这个函数的图象;

(3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;

(4)求函数的值域.

(1)证明 f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x),

即f(-x)=f(x),∴f(x)是偶函数.

(2)解 当x ≥0时,

f(x)=x 2-2x -1=(x -1)2-2,

当x<0时,

f(x)=x 2+2x -1=(x +1)2-2,

即f(x)=?

???? (x -1)2-2(0≤x ≤3)(x +1)2-2 (-3≤x<0). 根据二次函数的作图方法,可得函数图象如图.

(3)解 函数f(x)的单调区间为

[-3,-1),[-1,0),[0,1),[1,3].

f(x)在区间[-3,-1)和[0,1)上为减函数,

在[-1,0),[1,3]上为增函数.

(4)解 当x ≥0时,函数f(x)=(x -1)2-2的最小值为-2,最大值为f(3)=2; 当x<0时,函数f(x)=(x +1)2-2的最小值为-2,最大值为f(-3)=2.

故函数f(x)的值域为[-2,2].

规律方法 函数的图象是函数的重要表示方法,它具有明显的直观性,通过函数的图象能够掌握函数重要的性质,如单调性、奇偶性等.反之,掌握好函数的性质,有助于图象正确的画出.

变式迁移3 当m 为何值时,方程x 2-4|x|+5=m 有4个互不相等的实数根?

解 令f(x)=x 2-4|x|+5,

则f(x)=?

????

x 2-4x +5, x ≥0,x 2+4x +5, x<0, 那么原问题转化为探求m 为何值时,函数f(x)的图象与直线y =m 有4个交点.作出f(x)的图象,如图所示.由图象可知,当1

数学问题中,已知条件是结论成立的保证.但有的问题已知条件和结论之间距离比较大,难以解出.因此,如何将已知条件经过转化,逐步向所求结论靠拢,是解题过程中经常要做的工作.变更条件就是利用与原条件等价的条件去代替,使得原条件中隐含的因素显露出来,使各种关系明朗化,从而缩短已知条件和结论之间的距离,找出它们之间的内在联系,以便应用数学规律、方法将问题解决.

【例4】 对任意x ∈[1,+∞),不等式x 2+2x -a>0恒成立.求实数a 的取值范围. 解 方法一 由已知x ∈[1,+∞),x 2+2x -a>0恒成立,

即a

令g(x)=x 2+2x ,x ∈[1,+∞),

则原问题可转化为a 小于g(x)在[1,+∞)上的最小值.

∵g(x)=(x +1)2-1,图象的对称轴为x =-1,

∴函数g(x)在[1,+∞)上是增函数,

∴x =1时,g(x)取最小值g(1)=3.∴a<3.

即所求a 的取值范围是(-∞,3).

方法二 当x ∈[1,+∞)时,x 2+2x -a>0恒成立,

令f(x)=x 2+2x -a ,x ∈[1,+∞),

则有x ∈[1,+∞)时,f(x)>0恒成立,

f(x)=(x +1)2-a -1,x ∈[1,+∞),

∴f(x)min =f(1)=3-a ,问题转化为3-a>0,

即a<3.∴所求a 的取值范围为(-∞,3).

规律方法 本题关键是将不等式恒成立问题转化为求函数最值问题,即f(x)>a 恒成立?f(x)min >a ,f(x)

变式迁移4 已知函数f(x)=mx 2+mx +1的定义域为R ,求m 的取值范围.

解 f (x )=mx 2+mx +1的定义域为R ,即等价于x ∈R 时,mx 2+mx +1≥0恒成立. 当m =0时,1≥0满足要求,

当m ≠0时,则?

????

m >0Δ=m 2-4m <0,解得:0

数学思想方法是从数学内容中提炼出来的数学知识的精髓,是将知识转化为能力的桥梁.在日常学习中,同学们要注意数学思想方法在解题中的运用,要增强运用数学思想方法解决问题的意识,从而迅速找到解题思想或简化解题过程.

课时作业

一、选择题

1.设集合S ={x ||x -2|>3},T ={x |a

A .-3

B .-3≤a ≤-1

C .a ≤-3或a ≥-1

D .a <-3或a >-1 答案 A

解析 ∵|x -2|>3,∴x >5或x <-1.

∴S ={x |x >5或x <-1}.

又T ={x |a

∴?

???? a +8>5,a <-1. ∴-3

A .f ????-32

B .f (-1)

?-32

解析 由f (x )是偶函数,

得f (2)=f (-2),

又f (x )在区间(-∞,-1]上是增函数,

且-2<-32

<-1, 则f (-2)=f (2)

?-32

A .增函数且最小值为3

B .增函数且最大值为3

C .减函数且最小值为-3

D .减函数且最大值为-3

答案 D

解析 当-5≤x ≤-1时1≤-x ≤5,

∴f (-x )≥3,即-f (x )≥3.

从而f (x )≤-3,

又奇函数在原点两侧的对称区间上单调性相同,

故f (x )在[-5,-1]是减函数.故选D.

4.定义在区间(-∞,+∞)的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a

①f (b )-f (-a )>g (a )-g (-b );②f (b )-f (-a )

③f (a )-f (-b )>g (b )-g (-a );④f (a )-f (-b )

其中成立的是( )

A .①④

B .②③

C .①③

D .②④

答案 D

解析 本题采用特值法求解.

不妨取符合题意的函数f (x )=x 及g (x )=|x |,进行比较或由g (x )=?

????

f (x ), x ≥0,f (-x ), x <0, f (0)=0,f (a )f (-b )>0得出.

5.已知y =f (x )与y =g (x )的图象如图所示,则函数F (x )=f (x )·g (x )的图象可以是( )

答案 A

解析 由图象可知函数y =f (x )与y =g (x )均为奇函数.

f (-x )=-f (x ),

g (-x )=-g (x ),F (x )=f (x )·g (x )=[-f (-x )]·[-g (-x )]=F (-x ).所以函数F (x )=f (x )·g (x )为偶函数.注意到函数y =f (x )的图象在y 轴右侧部分先小于0后大于0,而函数y =g (x )在右侧部分恒大于0,满足以上条件的只有A.

二、填空题

6.设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},?U A ={5},则实数a 的值为________. 答案 2

解析 ∵?U A ={5},∴5∈U 且5?A .

∴a 2+2a -3=5,解得a =2或a =-4.

当a =2时,|2a -1|=3≠5且3∈U ,

当a =-4时,|2a -1|=9≠5,但是9?U .

故a 的值为2.

7.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=______.

答案 -2

解析 f (x +4)=f (x ),∴f (7)=f (3+4)=f (3)=f (-1+4)=f (-1)=-f (1)=-2×12=-2.

8.有下列四个命题:

①函数f (x )=|x ||x -2|

为偶函数;②函数y =x -1的值域为{y |y ≥0}; ③已知集合A ={-1,3},B ={x |ax -1=0,a ∈R },若A ∪B =A ,则a 的取值集合为

?

?????-1,13; ④集合A ={非负实数},B ={实数},对应法则f :“求平方根”,则f 是A 到B 的映射. 写出所有正确命题的序号________.

答案 ②④

解析 函数f (x )=|x ||x -2|

的定义域为(-∞,2)∪(2,+∞),它关于坐标原点不对称,所以函数f (x )=|x ||x -2|

既不是奇函数也不是偶函数,即命题①不正确; 函数y =x -1的定义域为{x |x ≥1},当x ≥1时,y ≥0,即命题②正确;

因为A ∪B =A ,所以B ?A ,若B =?,满足B ?A ,这时a =0;

若B ≠?,由B ?A ,得a =-1或a =13

. 因此,满足题设的实数a 的取值集合为????

??-1,0,13,即命题③不正确. 依据映射的定义知,命题④正确.

三、解答题

9.设奇函数f (x )是定义在(-∞,+∞)上的增函数,若不等式f (ax +6)+f (2-x 2)<0对于任意x ∈[2,4]都成立,求实数a 的取值范围.

解 由f (ax +6)+f (2-x 2)<0

得f (ax +6)<-f (2-x 2).

∵f (x )为奇函数,∴f (ax +6)

又f (x )在R 上为增函数,

∴原问题等价于ax +6

即x 2-ax -8>0对x ∈[2,4]都成立.

令g (x )=x 2-ax -8,问题又转化为:在x ∈[2,4]上,

g (x )min >0?????? a 2<2,g (2)>0或??? 2≤a 2≤4,g (a 2)>0或?????

a 2>4,g (4)>0, 解得a <-2.综上,a ∈(-∞,-2).

10.设函数f (x )=ax 2+1bx +c

(a ,b ,c ∈N )是奇函数,且f (1)=2,f (2)<3. (1)求a ,b ,c 的值;

(2)试研究x <0时,f (x )的单调性,证明你的结论.

解 (1)由f (1)=2,得a +1b +c =2,由f (2)<3,得4a +12b +c

<3, 因为f (x )为奇函数,故f (x )的定义域关于原点对称.

又f (x )的定义域为????

??x |x ∈R 且x ≠-c b (显然b ≠0,否则f (x )为偶函数),所以-c b =0,则c =0,

于是得f (x )=a b x +1bx ,且a +1b =2,4a +12b

<3, ∴8b -32b <3,∴b <32

,又b ∈N ,∴b =1,∴a =1, 故a =b =1,c =0.

(2)由(1)知f (x )=x +1x

, 则f (x )在[1,+∞)上单调递增

由于f (x )是奇函数,根据奇函数的对称性,可知f (x )在(-∞,-1]上是增函数,所以只需讨论f (x )在区间(-1,0)上的增减性即可,

当-1

f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2

=(x 1-x 2)????1-1x 1x 2=x 1-x 2x 1x 2(x 1x 2-1). 显然x 1-x 2<0,0

∴f (x 1)-f (x 2)>0,∴f (x )在(-1,0)上为减函数.

综上所述,f(x)在(-∞,-1]上是增函数,在[-1,0)上是减函数.

高一数学必修一第二章知识总结

高一数学必修一第二章知识总结 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: )1,,,0(* >∈>= n N n m a a a n m n m , )1,,,0(1 1 * >∈>= =- n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a 〃s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a a b =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;

(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真 数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 指数 对数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log 〃=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log = . (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5 x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a .

最新高一数学必修二第一章知识点总结

一、柱、台、锥、球的结构特征 二、柱体、锥体、台体、球体的表面积、体积 1、面积公式 2、体积公式 球体的表面积与体积 S4πR2 V=4/3πR3 =

习题: 1.一个棱柱是正四棱柱的条件是(). A.底面是正方形,有两个侧面是矩形 B.底面是正方形,有两个侧面垂直于底面 C.底面是菱形,且有一个顶点处的三条棱两两垂直 D.每个侧面都是全等矩形的四棱柱 2.下列说法中正确的是(). A. 以直角三角形的一边为轴旋转所得的旋转体是圆锥 B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台 C. 圆柱、圆锥、圆台的底面都是圆 D. 圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半 3.下列说法错误的是(). A. 若棱柱的底面边长相等,则它的各个侧面的面积相等 B. 九棱柱有9 条侧棱,9 个侧面,侧面为平行四边形 C. 六角螺帽、三棱镜都是棱柱 D. 三棱柱的侧面为三角形 4.下列说法正确的是() A. 平行于圆锥某一母线的截面是等腰三角形 B. 平行于圆台某一母线的截面是等腰梯形 C. 过圆锥顶点的截面是等腰三角形 D. 过圆台上底面中心的截面是等腰梯形 5.如果一个几何体的正视图是矩形,则这个几何体不可能是(). A. 棱柱 B. 棱台 C. 圆柱 D. 圆锥 6.下图所示为一简单组合体的三视图,它的左部和右部分别是() A. 圆锥,圆柱 B. 圆柱,圆锥 C. 圆柱,圆柱 D. 圆锥,圆锥 7.下图是某个圆锥的三视图,请根据正视图中所标尺寸,则俯视图中圆的面积为_________,圆锥母线长为______. 8.下列说法正确的是(). A.相等的线段在直观图中仍然相等 B.若两条线段平行,则在直观图中对应的两条线段仍然平行 C.两个全等三角形的直观图一定也全等 D.两个图形的直观图是全等三角形,则这两个图形一定是全等三角形 9.如图所示的直观图,其平面图形的面积为(). A. 3 B. 6 C. 3232 2 10.用长为4,宽为2 的矩形做侧面围成一个圆柱,此圆柱轴截面面积为(). 11.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为 V1 和 V2 ,则 V1 : V2 =(). A. 1: 3 B. 1:1 C. 2 :1 D. 3 :1 12.如图,一个简单空间几何体的三视图其主视图与左视图是边长为2 的正三 角形、俯视图轮廓为正方形,则其体积是().

2020年人教版高中数学必修一全套精品教案(完整版)

2020年人教版高中数学必修一全套精品教 案(完整版) 第一章集合与函数 §1.1.1集合的含义与表示 一. 教学目标: l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力. 2. 过程与方法 (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. (2)让学生归纳整理本节所学知识. 3. 情感.态度与价值观 使学生感受到学习集合的必要性,增强学习的积极性. 二. 教学重点.难点

重点:集合的含义与表示方法. 难点:表示法的恰当选择. 三. 学法与教学用具 1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标. 2. 教学用具:投影仪. 四. 教学思路 (一)创设情景,揭示课题 1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价. 2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容. (二)研探新知 1.教师利用多媒体设备向学生投影出下面9个实例: (1)1—20以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥; (6)到一个角的两边距离相等的所有的点; (7)方程2560 -+=的所有实数根; x x (8)不等式30 x->的所有解; (9)国兴中学2004年9月入学的高一学生的全体. 2.教师组织学生分组讨论:这9个实例的共同特征是什么? 3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义. 一般地,指定的某些对象的全体称为集合(简称为集).集合中的 每个对象叫作这个集合的元素. 4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常 用小写字母,,, a b c d…表示. (三)质疑答辩,排难解惑,发展思维 1.教师引导学生阅读教材中的相关内容,思考:集合中元素有 什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的 三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是 一样的,我们就称这两个集合相等. 2.教师组织引导学生思考以下问题: 判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数;

必修一数学第二章测试卷答案

必修一基本初等函数(I)测试题姓名:_______________班级:_______________考号:_______________ 1、已知函数,若函数有四个零点,则实数的取值范围为( ?) A.?????? B.?????? ?? ??? C.?????? ? D. 2、若函数在(,)上既是奇函数又是增函数,则函数 的图象是??????????????????????????????????????? (? ???) 3、D已知定义在R上的奇函数f(x)满足f(2+x)=f(-x),当0≤x≤1时,f(x)=x2,则f(2015)= ( ??) A.-1?? ??? ??? B.1 ??? ??? ??? ??? C.0 ??? ??? ??? ??? ??? D.20152 4、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是( ??) A.?????? B.??????? C.????? D. 5、下图可能是下列哪个函数的图象(???? ) . ?????????. . ?????????.

6、?已知 ,, ,则的大小关系是(??) A .?????? B .?????? C .?????? D . 7、设 ,, ,则的大小关系是 A.??????? B. ?????? C.??????? D. 8、?下列函数中值域为(0,)的是(??? ) A. ????? B. ????? C. ????? D. 9、 已知函数为自然对数的底数) 与的图象上存在关于轴对称的点, 则实数的取值范围是( ??) A .?????? B .??????? C .????? D . 10、? 已知函数,若,则的取值范围是( ???) A .??????? B .?????? C .???????? D . 11 、已知函数 的最小值为(??? ) ??? A.6????????? ? ??? B.8????????????? ? C.9???????????? ?? D.12

苏教版高一数学必修一第二章章末检测

章末检测 一、填空题 1.f (x )=2x +13x -1 的定义域为________. 2.y =2x 2+1的值域为________. 3.已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是________. 4.设f (x )=? ?? x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是______. 5.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是________. 6.函数f (x )=-x 2+2x +3在区间[-2,3]上的最大值与最小值的和为________. 7.若函数f (x )=x 2+(a +1)x +a x 为奇函数,则实数a =________. 8.若函数f (x )=x 2-mx +m +2是偶函数,则m =______. 9.函数f (x )=x 2+2x -3,x ∈[0,2],那么函数f (x )的值域为________. 10.用min{a ,b }表示a ,b 两数中的最小值,若函数f (x )=min{|x |,|x +t |}的图象关于直线 x =-12 对称,则t 的值为________. 11.已知函数f (x )=? ?? x +2, x <1,x 2+ax , x ≥1,当f [f (0)]=4a ,则实数a 的值为________. 12.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+3,则f (-2)的值为________. 13.函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________. 14.若函数y =ax 与y =-b x 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是________函数(填“增”或“减”). 二、解答题 15.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数且1满足f (1)=52,f (2)=174 ,求f (x )的解析式.

人教课标版高中数学必修二第一章学情分析与教材分析-新版

第一章空间几何体 (一)学情分析: 本章内容是在义务教育阶段学习的基础上展开的.例如,对于棱柱,在义务教育阶段直观认识正方体、长方体等的基础上,进一步研究了棱柱的结构特征及其体积、表面积.因此,在教材内容安排中,特别注意了与义务教育阶段“空间与图形”相关内容的衔接. 本章中的有关概念,主要采用分析详尽实例的共同特点,再抽象其本质属性空间图形而得到.教学中应充分使用直观模型,必要时要求学生自己制作模型,引导学生直观感知模型,然后再抽象出有关空间几何体的本质属性,从而形成概念. 柱体、锥体、台体和球体是简单的几何体,繁复的几何体大都是由这些简单的几何体组合而成的.有关柱体、锥体、台体和球体的研究是研究比较繁复的几何体的基础.本章研究空间几何体的结构特征、三视图和直观图、表面积和体积等.运用直观感知、操作确认、度量计算等方法,认识和探索空间几何图形及其性质. (二)教材分析: 1.核心素养 我们在高中阶段要培养学生数学的三大能力:计算能力,思维能力,空间想象能力.本章的主要任务就是培养学生的空间想象能力. 值得注意的是在教学中,要坚持循序渐进,逐步渗透空间想象能力面的训练.由于受有关线面位置关系知识的限制,在讲解空间几何体的结构时,我们应该多强调感性认识.要确凿把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单几何体的模型,使学生初步感受到信息技术在学习中的严重作用. 2.本章目标 (1)认识柱、锥、台、球及其简单组合体的结构特征.

①利用实物模型、计算机软件观察大量空间图形. ②运用空间几何体的特征描述现实生活中简单物体的结构. (2)空间几何体的三视图和直观图 ①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简捷组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图. ②通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的例外表示形式. ③完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (3)空间几何体的表面积和体积 ①了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).②会使用球、棱柱、棱锥、台的表面积和体积公式计算一些简单几何体的体积和表面积. 3.课时安排 本章教学时间约需12课时,详尽分配如下: 3课时 3课时 1.1空间几何体的结构 1.2空间几何体的三视图和直观图 1.3空间几何体的表面积和体积 章末检测题 4.本章重点3课时

最新高一数学必修一第二章知识点总结(1)

〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值 (1)函数的单调性 ①定义及判定方法 函数的 性质 定义图象判定方法 函数的 单调性 如果对于属于定义域I内某 个区间上的任意两个自变量 的值x1、x2,当x.1 . < x ..2.时,都 有f(x ...1.)f(x .....2.).,那么就说 f(x)在这个区间上是减函数 .... y=f(X) y x o x x 2 f(x ) f(x )2 1 1 (1)利用定义 (2)利用已知函数的 单调性 (3)利用函数图象(在 某个区间图 象下降为减) (4)利用复合函数 ②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为 增函数,减函数减去一个增函数为减函数. ③对于复合函数[()] y f g x =,令() u g x =,若() y f u =为增,() u g x =为增,则[()] y f g x =为增;若() y f u =为减,() u g x =为减,则[()] y f g x =为增;若() y f u =为增,() u g x =为减,则[()] y f g x =为减;若() y f u =为减 [()] y f g x =为减. (2)打“√”函数()(0) a f x x a x =+>的图象与性质 () f x分别在(,a -∞、,) a+∞上为增函数,分别在[,a 减函数. (3)最大(小)值定义 ①一般地,设函数() y f x =的定义域为I,如果存在实数M满足:( 对于任意的x I ∈,都有() f x M ≤;

高中数学人教版必修一知识点总结归纳

第一章集合与函数概念 一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。 把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3、集合的表示:{…} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来 {a,b,c……} b、描述法: ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ②语言描述法:例:{不是直角三角形的三角形} ③Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a¢A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 6、集合间的基本关系 (1).“包含”关系(1)—子集 定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合 A?(或B?A) A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分; 注意:B (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A (2).“包含”关系(2)—真子集 A?,但存在元素x∈B且x¢A,则集合A是集合B的真子集 如果集合B 如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B (3).“相等”关系:A=B “元素相同则两集合相等” 如果A?B 同时 B?A 那么A=B (4). 不含任何元素的集合叫做空集,记为Φ

2020新人教A版高中数学必修一第二章基本初等函数Ⅰ章末复习提升

【创新设计】2015-2016学年高中数学第二章基本初等函数(Ⅰ) 章末复习提升新人教A版必修1 1.指数幂、对数式的运算、求值、化简、证明等问题主要依据指数幂、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时函数的单调性及图象特点. 3.应用指数函数y=a x和对数函数y=log a x的图象和性质时,若底数含有字母,要特别注意对底数a>1和0<a<1两种情况的讨论. 4.幂函数与指数函数的主要区别:幂函数的底数为变量,指数函数的指数为变量.因此,当遇到一个有关幂的形式的问题时,就要看变量所在的位置从而决定是用幂函数知识解决,还是用指数函数知识去解决. 5.理解幂函数的概念、图象和性质. 在理解幂函数的概念、图象和性质时,要对幂指数α分两种情况进行讨论,即分α>0和α<0两种情况. 6.比较几个数的大小是幂函数、指数函数、对数函数性质应用的常见题型,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比,分出大于1还是小于1;然后在各

类中两两相比较. 7.求含有指数函数和对数函数复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 8.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图造式、图象变换以及用图象解题.函数图象形象地显示了函数的性质,利用数形结合有时起到事半功倍的效果. 题型一 有关指数、对数的运算问题 指数与指数运算、对数与对数运算是两个重要的知识点,不仅是本章考查的重要题型,也是高考的必考内容. 指数式的运算首先要注意化简顺序,一般负指数先转化成正指数,根式化为指数式;其次若出现分式,则要注意把分子、分母因式分解以达到约分的目的.对数运算首先要注意公式应用过程中范围的变化,前后要等价;其次要熟练地运用对数的三个运算性质,并根据具体问题合理利用对数恒等式和换底公式等.换底公式是对数计算、化简、证明常用的公式,一定要掌握并灵活运用. 例1 (1)化简 a 43-8a 3 1b 4b 3 2 +23 ab +a 3 2÷? ?? ??1-2 3b a ×3 ab ; (2)计算:2log 32-log 3329 +log 38-253 5 log . 解 (1)原式= a 3 1a -8b 2b 3 12 +2a 3 1b 3 1+a 3 12 × a 3 1a 3 1-2b 3 1×a 31b 3 1= a 3 1a -8b a -8b ×a 31×a 31b 3 1 =a 3b . (2)原式=log 34-log 3329 +log 38-53 5 log 2+ =log 3(4×932 ×8)-53 5 log 2+=log 39-9=2-9=-7. 跟踪演练1 (1)求lg 8+lg 125-lg 2-lg 5log 54·log 25 +52 5 log +1643 的值. (2)已知x >1,且x +x -1 =6,求x 2 1-x 2 1- . 解 (1)lg 8+lg 125-lg 2-lg 5log 54·log 25 +52 5log +1643

高中数学必修一第二章公式全总结

指数运算公式 一、根式 1、 () ()02 ≥=a a a 2、???????<-=>==0 ,0,00,2 a a a a a a a 3、 () ()0≥=a n a a n n 为偶数时要求当 4、???? ?=为偶数 为奇数 n a n a a n n ,,二、指数幂 1、()010 ≠=a a 2、() a a a a a n n 101 1 =≠=--特别: 3、n n a a =1 4、n m n m a a = 5、n m n m n m a a a 1 1= = - 6、n m n m a a a +=? 7、n m n m a a a -=÷ 8、() n m n m a a = 9、()n n n b a b a ?=?注:① 0的0次幂没有意义,0没有负指数幂. ②负数没有偶次方根.(即负数不能开偶次方) 对数运算公式 对数的底数大于0且不等于1,真数大于0 1、指对互换: ()10log ≠>=?=a a y x a y a x 且 2、01log =a 3、1log =a a 4、()对数恒等式N a N a =log 5、()N M N M a a a log log log +=? 6、N M N M a a a log log log -= 7、b m n b a n a m log log = 公式7是如下两个公式的结合: () ()b m b b n b a a a n a m l o g 1l o g 2l o g l o g 1== 8、换底公式:

a b b c c a l o g l o g l o g = 换底公式的常用变形: ()() 1 l o g l o g 2l o g 1 l o g 1=?= a b a b b a b a 常用的代数恒等式 1、平方差公式:()()b a b a b a -+=-22 2、完全平方公式:()()?????+-=-++=+2 222 2222b ab a b a b ab a b a 3、十字相乘法公式(不用背,要求会方法): ()()()ab x b a x b x a x +++=++2 4、立方和(差)公式: ()( )()() ?????++-=-+-+=+2 2332 233b ab a b a b a b ab a b a b a 5、完全立方公式: ()()?????-+-=-+++=+3 22333 22333333b ab b a a b a b ab b a a b a 6、三元完全平方公式: ()ca bc ab c b a c b a 2222 222 +++++=++

人教版高中数学必修一知识点总结

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰 洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。 {x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 注意:B ?/B或B?/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

高中数学必修2第一章及2.1试题(含答案)

高一数学必修2第一章及2.1测试题 班别 姓名 考号 得分 一、选择题:(每小题5分,共50分) 1. 下图中的几何体是由哪个平面图形旋转得到的( ) A B C D 2.若一个几何体的三视图都是等腰三角形,则这个几何体可能是( ) A .圆锥 B .正四棱锥 C .正三棱锥 D .正三棱台 3.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 4.棱长都是1的三棱锥的表面积为( ) A. 3 B. 32 C. 33 D. 34 5.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:9 6.下列几种说法正确的个数是( ) ①相等的角在直观图中对应的角仍然相等 ②相等的线段在直观图中对应的线段仍然相等 ③平行的线段在直观图中对应的线段仍然平 ④线段的中点在直观图中仍然是线段的中点 A .1 B .2 C .3 D .4 7.下命题中为真命题的个数是( ) (1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α?b ,则a ∥α; (4)若直线a ∥b ,α?b ,则a 平行于平面α内的无数条直线。 8.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,, (D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 9.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A ) 1个或3个 (B ) 1个或4个 (C ) 3个或4个 (D ) 1个、3个或4个 10.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12

高中数学必修一第二章测试题正式

秀全中学2012——2013学年第一学期高一数学 第二章单元检测(满分120分) 一、选择题(本大题共10小题,每小题4分,共40分。在每小题只有一项是符合要求的) 1.函数32+=-x a y (a >0且a ≠1)的图象必经过点 (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4) 2.函数lg y x = A.是偶函数,在区间(,0)-∞ 上单调递增 B.是偶函数,在区间(,0)-∞上单调递减 C.是奇函数,在区间(0,)+∞ 上单调递增 D .是奇函数,在区间(0,)+∞上单调递减 3.三个数6 0.70.70.76log 6, ,的大小关系为 A . 60.70.70.7log 66<< B . 60.7 0.7log 60.76<< C .0.7 60.7log 660.7<< D . 60.70.70.76log 6<< 4.函数12 log (32)y x = - A .[1,)+∞ B .2(,)3+∞ C .2(,1]3 D .2[,1]3 5、已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是 (A )y =(0.9576) 100 x (B )y =(0.9576)100x (C )y =( )x (D )y =1-(0.0424) 100 x 6、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a = (A ) (B ) 2 (C ) 3 (D ) 7、下列函数中,在区间(0,2)上不是增函数的是 (A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22= 8、函数 与 ( )在同一坐标系中的图像只可能是 1009576.02131x a y =x y a log -=1,0≠>a a 且

高中数学必修一第二章测试题

高中数学必修一第二章测试题 一、选择题: 1.已知p >q >1,0 B .a a q p > C .q p a a --> D .a a q p --> 2、已知(10)x f x =,则(5)f = ( D ) A 、5 10 B 、10 5 C 、lg10 D 、lg 5 3.函数x y a log =当x >2 时恒有y >1,则a 的取值范围是 ( A ) A . 1221≠≤≤a a 且 B .02121≤<≤> B 、213y y y >> C 、132y y y >> D 、123y y y >> 8.设f (x )=a x ,g (x )=x 3 1,h (x )=log a x ,a 满足log a (1-a 2)>0,那么当x >1时必有 ( B ) A .h (x )<g (x )<f (x ) B .h (x )<f (x )<g (x ) C .f(x )<g (x )<h (x ) D .f (x )<h (x )<g (x ) 9、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( A ) A 、减少7.84% B 、增加7.84% C 、减少9.5% D 、不增不减 10. 对于幂函数5 4 )(x x f =,若210x x <<,则)2( 21x x f +,2) ()(21x f x f +大小关系是( A ) A .)2( 21x x f +>2 ) ()(21x f x f + B . )2(21x x f +<2 ) ()(21x f x f +

高中数学必修二第一章测试题及答案(人教版)

第一章 空间几何体 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体可能是一个 ( ) . 主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体 2.如果一个水平放置的平面图形的斜二测直观图是一个底角为 45°,腰和上底均为 1 的 等腰梯形,那么原平面图形的面积是 ( ) . A .2+ 2 1+ 2 2+ 2 D .1+ 2 B . 2 C . 2 3.棱长都是 1的三棱锥的表面积为 ( ) . A . 3 B . 2 3 C .3 3 D .4 3 4.长方体的一个顶点上三条棱长分别是 3, 4, 5,且它的 8 个顶点都在同一球面上, 则这个球的表面积是 ( ) . A . 25π B . 50π C . 125π D .都不对 5.正方体的棱长和外接球的半径之比为 ( ) . A . 3∶1 B . 3∶2 C . 2∶ 3 D . 3∶3 6.在 △ ABC 中, AB = 2,BC = 1.5,∠ ABC = 120°,若使△ ABC 绕直线 BC 旋转一周, 则所形成的几何体的体积是 ( ) . A . 9 π B . 7 π C . 5 π D . 3 π 2 2 2 2 7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5,它的对角线的长分别是 9 和 15,则这个棱柱的侧面积是 ( ) . A .130 B . 140 C . 150 D . 160 8.如图,在多面体 ABCDEF 中,已知平面 ABCD 是边长为 3 的正方形, EF ∥AB ,EF = 3 ,且 EF 与平面 ABCD 的距离为 2,则该多面体的体积为 ( ) . 2 9 B . 5 (第8题) C . 6 15 A . D . 2 2 9.下列关于用斜二测画法画直观图的说法中,错误 ..的是 ( ) . A .用斜二测画法画出的直观图是在平行投影下画出的空间图形 B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同 C .水平放置的矩形的直观图是平行四边形 D .水平放置的圆的直观图是椭圆 10.如图是一个物体的三视图,则此物体的直观图是 ( ) .

人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函 数知识点总结 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念: 负数没有偶次方根;0的任何次方根都是0,=0。 注意:(1)n a = (2)当 a = ,当 n 是偶数时,0 ||,0 a a a a a ≥?==?-∈>且 正数的正分数指数幂的意义:_1(0,,,1)m n m n a a m n N n a *= >∈>且 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)r s r s a a a a r s R +=>∈ (2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r r r a a b a b r R =>>∈ 注意:在化简过程中,偶数不能轻易约分;如122 [(1]11-≠ (二)指数函数及其性质 1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x 是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 2a>1

注意: 指数增长模型:y=N(1+p )指数型函数: y=k a3 考点:(1)ab =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。 (2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。掌握利用单调性比较 幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。 (3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。 (4)分辨不同底的指数函数图象利用a 1=a,用x=1去截图象得到对应的底数。 (5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数 1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a— 底数, N — 真数,log a N — 对数式) 说明:1. 注意底数的限制,a>0且a≠1;2. 真数N>0 3. 注意对数的书写格式. 2、两个重要对数: (1)常用对数:以10为底的对数, 10log lg N N 记为 ; (2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =?= 对数式 指数式 对数底数← a → 幂底数 对数← x → 指数 真数← N → 幂 结论:(1)负数和零没有对数

(完整word)人教版经典高一数学必修一试题

人教版经典高一数学必修一试卷 共120分,考试时间90分钟. 第I卷(选择题,共48 分) 一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合 题目要求的. 1 ?已知全集U {1,2,345,6.7}, A {2,4,6}, B {1,3,5,7}.则A (QB )等于 ( ) A. {2,4,6} B. {1,3,5} C. {2,4,5} D. {2,5} 2. 已知集合A {x|x2 1 0},则下列式子表示正确的有( ) ① 1 A ②{ 1} A ③ A ④{1, 1} A A. 1个 B. 2个 C. 3个 D. 4个 3. 若f : A B能构成映射,下列说法正确的有 ( ) (1)A中的任一元素在B中必须有像且唯一; (2)A中的多个元素可以在B中有相同的像; (3)B中的多个元素可以在A中有相同的原像; (4)像的集合就是集合B. A 1个 B 、2个 C 、3个 D 、4个 4. 如果函数f(x) x 2(a 1)x 2在区间,4上单调递减,那么实数a的取值范围是 ( ) A、a w 3 B 、a》3 C 、a w 5 D 、a》5 5. 下列各组函数是同一函数的是 ( ) ① f (x) J 2x3与g(x) x42x :② f (x) x 与g(x) V x2; 1 ③ f (x) x0与g(x) 0:④ f(x) x2 2x 1 与g(t) t2 2t 1。 x A、①② B 、①③ C 、③④ D 、①④ 6. 根据表格中的数据,可以断定方程e x x 2 0的一个根所在的区间是

( )

高中数学必修2第一章(免费)

第一章 空间几何体 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ). 主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体 2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ). A .2+2 B . 2 21+ C . 2 2 +2 D .2+1 3.棱长都是1的三棱锥的表面积为( ). A .3 B .23 C .33 D .43 4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ). A .25π B .50π C .125π D .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶3 6.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线B C 旋转一周,则所形成的几何体的体积是( ). A . 2 9π B . 2 7π C . 2 5π D . 2 3π 7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130 B .140 C .150 D .160 8.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF

= 2 3,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ). A . 2 9 B .5 C .6 D . 2 15 9.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形 B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同 C .水平放置的矩形的直观图是平行四边形 D .水平放置的圆的直观图是椭圆 10.如图是一个物体的三视图,则此物体的直观图是( ). (第10题) 二、填空题 11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱. 12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________. 13.正方体ABCD -A 1B 1C 1D 1 中,O 是上底面ABCD 的中心,若正方体的棱长为a ,则三棱锥O -AB 1D 1的体积为_____________. 14.如图,E ,F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在 (第8题)

相关文档
最新文档