中考数学难点分类讲解 第七讲 坐标系中的几何问题

中考数学难点分类讲解 第七讲 坐标系中的几何问题
中考数学难点分类讲解 第七讲 坐标系中的几何问题

中考数学难点分类讲解 第七讲 坐标系中的几何问题

第七讲 坐标系中的几何问题

【前言】

前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。

第一部分 真题精讲

【例1】2010,石景山,一模

已知:如图1,等边ABC ?

的边长为x

轴上且()

10A ,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F .

(1)直接写出点B C 、的坐标;

(2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值;

(3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段

OB 上运动时,现给出两个结论:

① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.

图2

图1

【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求,因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D 做一条垂线就发现图中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题的7分就成功落入囊中了。

【解析】解:(1)()

10B ;()13C ,. (2)过点C 作CP AB ⊥于P ,交EF 于点Q ,取PQ 的中点R .

∵ABC ?是等边三角形,()

10A . ∴60EAO ∠=? .

在Rt EOA ?中,90EOA ∠=?.

∴(tan 6013EO AO =??=-=

∴(0,3E .

∵EF ∥AB 交BC 于F ,()13C ,

∴1R ? ??

. (就是四边形对角线的中点,横坐标自然和C 一样,纵坐标就是E

的纵坐标的一半)

∵直线1y kx =-将四边形EABF 的面积两等分.

∴直线1y kx =-必过点1R ? ??

∴1k -=

,∴k

(3)正确结论:①GNM CDM ∠=∠.

证明:可求得过A B C 、、的抛物线解析式为222y x x =-++ ∴()02D ,. ∵()20G -,

. ∴OG OD =.

由题意90GON DOM ∠=∠=?. 又∵GNO DNH ∠=∠ ∴NGO MDO ∠=∠ ∴NGO ?≌MDO ?

∴GNO DMO ∠=∠,OM ON = ∴45ONM NMO ∠=∠=? 过点D 作DT CP ⊥于T ∴1DT CT == ∴45CDT DCT ∠=∠=? 由题意可知DT ∥AB ∴TDM DMO ∠=∠

∴454545TDM DMO GNO ∠+?=∠+?=∠+? ∴TDM CDT GNO ONM ∠+∠=∠+∠

即:GNM CDM ∠=∠. (这一问点多图杂,不行就直接另起一个没有抛物线干扰的图)

G

P

N

M H

T

D

C B

A O x

y

【例2】2010,怀柔,一模

如图,在平面直角坐标系xoy 中,抛物线214

10189

y x x =

--与x正半轴交于点A,与y轴交于点B,过点B 作x 轴的平行线BC,交抛物线于点C,连结AC .现有两动点P 、Q 分别从O 、C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC,PQ 相交于点D,过点D 作DE∥OA,交CA 于点E,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t(单位:秒)

(1)求A,B,C 三点的坐标;

(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;

(3)当0<t <

9

2

时,△P QF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;

(4)当t _________时,△P QF 为等腰三角形?

【思路分析】近年来这种问动点运动到何处时图像变成特殊图形的题目非常流行,所以大家需要对各种特殊图形的判定性质非常熟悉。本题一样一步步拆开来做,第一问送分,给出的抛物线表达式很好因式分解。注意平行于X 轴的直线交抛物线的两个点一定是关于对称轴对称的。第二问就在于当四边形PQCA 为平行四边形的时候题中已知条件有何关系。在运动中,QC 和PA 始终是平行的,根据平行四边形的判定性质,只要QC=PA 时候即可。第三问求△PQF 是否为定值,因为三角形的一条高就是Q 到X 轴的距离,而运动中这个距离是固

定的,所以只需看PF 是否为定值即可。根据相似三角形建立比例关系发现OP=AF ,得解。第四问因为已经知道PF 为一个定值,所以只需PQ=PF=18即可,P 点(4t,0)Q (8-t,-10),F(18+4t,0)两点间距离公式分类讨论即可.本道题是09年黄冈原题,第四问原本是作为解答题来出的本来是3分,但是本题作为1分的填空,考生只要大概猜出应该是FP=FQ 就可以。实际考试中如果碰到这么麻烦的,如果没时间的话笔者个人建议放弃这一分去检查其他的.毕竟得到这一分的时间都可以把选择填空仔细过一遍了.

【解析】解:(1) 2

1(8180)18

y x x =

--,令0y =得281800x x --=,()()18100x x -+=

∴18x =或10x =-∴(18,0)A ;

在214

10189

y x x =--中,令0x =得10y =即(0,10)B -; 由于BC ∥OA ,故点C 的纵坐标为-10,由214

1010189

x x -=--得8x =或0x = 即(8,10)C -

于是,(18,0),(0,10),(8,10)A B C --

(2)若四边形PQCA 为平行四边形,由于QC ∥PA.故只要QC=PA 即可 ∵184,PA t CQ t =-= ∴184t t -= 得18

5

t =

(3)设点P 运动t 秒,则4,OP t CQ t ==,0 4.5t <<,说明P 在线段OA 上,且不与点O 、A 重合,

由于QC ∥OP 知△QDC ∽△PDO ,故1

44

QD QC t DP OP t === ∴4AF t OP ==

∴18PF PA AF PA OP =+=+= 又点Q 到直线PF 的距离10d = ∴11

18109022

PQF S PF d ?=

=??= ∴△PQF 的面积总为90

(4)由上知,(4,0),(184,0),(8,10)P t F t Q t +--,0 4.5t <<。构造直角三角形后

易得

2222(48)10(58)100PQ t t t =-++=-+,

2222(1848)10(510)100FO t t t =+-++=++

若FP=PQ ,即2

2

18(58)100t =-+,故2

25(2)224t +=,

∵22 6.5t +≤≤∴25t +=

=∴25

t =-

若QP=QF ,即2

2

(58)100(510)100t t -+=++,无0 4.5t ≤≤的t 满足条件;……………12′

若PQ=PF ,即2

2

(58)10018t -+=,得2

(58)224t -=,∴8 4.55

t +=

>或

805

t -=

<都不满足0 4.5t ≤≤,故无0 4.5t ≤≤的t 满足方程;

综上所述:当2t =

-时,△PQR 是等腰三角形。 【例3】2010,延庆,一模

如图,已知抛物线1C :()522

-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点

A 在点

B 的左边)

,点B 的横坐标是1. (1)求P 点坐标及a 的值;

(2)如图(1),抛物线2C 与抛物线1C 关于x 轴对称,将抛物线2C 向右平移,平移后的抛物线记为3C ,3C 的顶点为M ,当点P 、M 关于点B 成中心对称时,求3C 的解析式;

(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线1C 绕点Q 旋转180?后得到抛物线4C .抛物线4C 的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、

N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.

【思路分析】出题人比较仁慈,上来就直接给出抛物线顶点式,再将B (1,0)代入,第一问轻松拿分。第二问直接求出M 坐标,然后设顶点式,继续代入点B 即可。第三问则需要设出N ,然后分别将NP ,PF,NF 三个线段的距离表示出来,然后切记分情况讨论直角的可能性。计算量比较大,务必细心。

【解析】

解:⑴由抛物线1C :()2

25y a x =+-得 顶点P 的为(25)--,

∵点(10),

B 在抛物线1

C 上 ∴ ()2

0125a =+- 解得,59

a =

⑵连接PM ,作⊥PH x 轴于H ,作⊥MG x 轴于G ∵点P 、M 关于点B 成中心对称 ∴PM 过点B ,且=PB MB ∴PBH MBG △≌△

∴5==MG PH ,3==BG BH

∴顶点M 的坐标为(45),

(标准答案如此,其实没这么麻烦,点M 到B 的横纵坐标之差都等于B 到P 的,直接可以得出(4,5))

抛物线2C 由1C 关于x 轴对称得到,抛物线3C 由2C 平移得到

∴抛物线3C 的表达式为()25

459

y x =-

-+ ⑶∵抛物线4C 由1C 绕点x 轴上的点Q 旋转180?得到 ∴顶点N 、P 关于点Q 成中心对称 由⑵得点N 的纵坐标为5 设点N 坐标为(5),

m 作⊥PH x 轴于H ,作⊥NG x 轴于G 作⊥PK NG 于K ∵旋转中心Q 在x 轴上 ∴26===EF AB BH

∴3=FG ,点F 坐标为(30)+,m H 坐标为(20),

,K 坐标为(5)-,m , 根据勾股定理得

22224104PN NK PK m m =+=++ 22221050PF PH HF m m =+=++ 2225334NF =+=

①当90∠=?PNF 时,222PN NF PF +=,解得443m =,∴Q 点坐标为19

(0)3,

②当90∠=?PFN 时,222PF NF PN +=,解得103m =,∴Q 点坐标为2

(0)3

③∵10>=>PN NK NF ,∴90NPF ∠?≠

综上所得,当Q 点坐标为19(0)3,或2

(0)3,时,以点P 、N 、F 为顶点 的三角形是直角三角形.

【例4】2010,房山,一模

如图,在平面直角坐标系xOy 中,直线l1

:y =+交x 轴、y 轴于A 、B 两点,点(),M m n 是线段AB 上一动点,点C 是线段OA 的三等分点.

(1)求点C 的坐标;

(2)连接CM ,将ACM △绕点M 旋转180?,得到''A C M △. ①当1

2

BM AM =

时,连结'A C 、'AC ,若过原点O 的直线2l 将四边形''A CAC 分成面

积相等的两个四边形,确定此直线的解析式;

②过点'A 作'A H x ⊥轴于H ,当点M 的坐标为何值时,由点'A 、H 、C 、M 构成的四边形为梯形?

【思路分析】本题计算方面不是很繁琐,但是对图形的构造能力提出了要求,也是一道比较典型的动点移动导致特殊图形出现的题目。第一问自不必说,第二问第一小问和前面例题是一样的,也是要把握过四边形对角线交点的直线一定平分该四边形面积这一定理。求出交点就意味着知道了直线.第二小问较为麻烦,因为C 点有两种可能,H 在C 点的左右又是两种可能,所以需要分类讨论去求解.只要利用好梯形两底平行这一性质就可以了.

【解析】

(1)根据题意:()6,0

A ,(0,

B ∵

C 是线段OA 的三等分点

∴()2,0C 或()4,0C ---------------2分 (2)①如图,过点M 作MN y ⊥轴于点N , 则BMN BAO △∽△. ∵1

2

BM AM =

. ∴1

3

BM BA =

∴1

3BN BO =

∴(0,N

∵点M

在直线y =+上

∴(2,M -

∵''A C M △是由ACM △绕点M 旋转180?得到的 ∴''A C AC ∥

∴无论是1C 、2C 点,四边形A CAC ''是平行四边形且M 为对称中心 ∴所求的直线2l

必过点(2,M . ∴直线2l 的解析式为

:y =

② 当()12,0C 时,

第一种情况:H 在C 点左侧 若四边形1A HC M '是梯形 ∵A M '与1HC 不平行 ∴A H '∥1MC

此时(2,M

第二种情况:H 在C 点右侧 若四边形1'A C HM 是梯形 ∵'A M 与1C H 不平行 ∴1'A C HM ∥ ∵M 是线段'AA 的中点 ∴H 是线段1AC 的中点 ∴()4,0H

由6OA =,OB = ∴60OAB ∠=? ∴点M 的横坐标为5

∴(M

当()24,0C 时,同理可得

第一种情况:H 在2C 点左侧时,(4,M -

第二种情况:H 在2C 点右侧时,11,2M ? ??

-

综上所述,所求M 点的坐标为:(2,M ,(5,M ,(4,M 或112M ? ??

【例5】通州,2010,一模

在平面直角坐标系中,抛物线2

23y x x =+-与x 轴交于A 、B 两点,(点A 在点B 左侧).

与y 轴交于点C ,顶点为D ,直线CD 与x 轴交于点E.

(1)请你画出此抛物线,并求A 、B 、C 、D 四点的坐标.

(2)将直线CD 向左平移两个单位,与抛物线交于点F (不与A 、B 两点重合),请你求出F 点坐标.

(3)在点B 、点F 之间的抛物线上有一点P ,使△PBF 的面积最大,求此时P 点坐标及△PBF 的最大面积.

(4)若平行于x 轴的直线与抛物线交于G 、H 两点,以GH 为直径的圆与x 轴相切,求该圆半径.

【思路分析】本题看似错综复杂,尤其最后第四问的图像画出来又乱又挤,稍微没画好就会让人头大无比。但是不用慌,一步步来慢慢做。抛物线表达式很好分解,第一问轻松写出四个点。第二问向左平移,C 到对称轴的距离刚好是1,所以移动两个距离以后就到了关于对称轴对称的点上,所以F 直接写出为(-2,-3)第三问看似棘手,但是只要将△PBF 拆解成以Y 轴上的线段为公共边的两个小三角形就会很轻松了。将P 点设出来然后列方程求解即可。最后一问要分GH 在X 轴上方和下方两种情况,分类讨论。不过做到最后一步相信同学们的图已经画的乱七八糟了,因为和前面的问题没有太大关系,所以建议大家画两个图

分开来看。

【解析】 .解:

(1)()()()()30100314A B C D ----,

,,,,,,.

(2)()23F --,

(3)过点P 作y 轴的平行线与BF 交于点M ,与x 轴交于点H 易得()23F --,

,直线BF 解析式为1y x =-. 设()

223P x x x +-,

,则()1M x x -,, ∴22PM x x =--+

PM 的最大值是

9

4

. 当PM 取最大值时PBF ?的面积最大

19273248

PBF PFM PBM

S S S ???=+=??=

PFB ?的面积的最大值为

27

8

. (4)如图,①当直线GH 在x 轴上方时,设圆的半径为()0R R >,则()1H R R -,

代入抛物线的表达式,解得R ②当直线GH 在x 轴下方时,设圆的半径为()0r r >, 则()1H r r --,

代入抛物线的表达式,解得r =

.

H 1

O 2O 1

H 2

M B y

x

O C

P D F

A G 2

G 1

【总结】 通过以上五道一模真题,我们发现这类问题虽然看起来十分复杂,但是只要一问一问研究慢慢分析,总能拿到不错的分数。将几何图形添进坐标系大多情况下是和抛物线有关,所以首先需要同学们对抛物线的各种性质熟练掌握,尤其是借助抛物线的对称性,有的时候解题会十分方便。无论题目中的图形是三角形,梯形以及平行四边形或者圆,只要认清各种图形的一般性质如何在题中体现就可以了。例如等腰/边三角形大多和相似以及线段长度有关,梯形要抓住平行,平行四边形要看平行且相等,圆形就要看半径和题目中的条件有何关系。还需要掌握平分三角形/四边形/圆形面积的直线分别都一定过哪些点。总之,再难的问题都是由一个个小问题组成的,就算最后一两问没有时间思考拿不了全分,至少要将前面容易的分数拿到手,这部分分数其实还不少。像例2最后一问那种情况,该放弃时候果断放弃,不要为1分的题失去了大量检查的时间。

第二部分 发散思考

【思考1】2009,北京

. 如图,在平面直角坐标系xOy 中,ABC 三个顶点的坐标分别为()6,0A -,

()6,0B ,()

0,43C ,延长AC 到点D,使CD=1

2

AC ,过点D 作

DE ∥AB 交BC 的延长线于点E.

(1)求D 点的坐标;

(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边

形,确定此直线的解析式;

(3)设G为y轴上一点,点P从直线y kx b

=+与y轴的交点出发,先沿y轴到达G 点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)

【思路分析】在一模真题部分我们谈到的是直线分四边形面积相等,但是这道去年中考原题则是分周长相等。周长是由很多个线段组成的,所以分周长相等只需要研究哪些线段之和相等就可以了。所以自然想到去证明全等三角形。第三问虽然不要求证明,但是只需设出速度,利用相似三角形去建立关系,还是不难证明的,有余力的同学可以试试.

【思考2】2009,西城,一模

已知:如图,在平面直角坐标系xOy中,直线

3

6

4

y x

=-+与x轴、y轴的交点分

别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;

(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出

QA QO

-的取值范围.

【思路分析】第二问有两个思路,第一个是看已知四边形的线段是否平行且相等,角是否符合平行四边形的条件。另一个是看假如有平行四边形,那么构成平行四边形的点P 是否在BC上。从这两个思路出发,列出方程等式即可求解。第三问根据抛物线的对称性来看三点共线,继而看出最大值和最小值分别是多少。

【思考3】2009,朝阳,一模

抛物线与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,-3),抛物线顶点为M ,连接AC 并延长AC 交抛物线对称轴于点Q ,且点Q 到x 轴的距离为6.

(1)求此抛物线的解析式;

(2)在抛物线上找一点D ,使得DC 与AC 垂直,求出点D 的坐标;

(3)抛物线对称轴上是否存在一点P ,使得S△PAM=3S△ACM,若存在,求出P 点坐标;若不存在,请说明理由.

【思路分析】第一问要算的比较多,设直线以后求解析式,看出抛物线对称轴为x=1,然后设顶点式解个二元方程组即可.第二问利用三角形相似求出点N 坐标,然后联立抛物线与直线CN 即可求出点D.第三问考验对图形的理解,如果能巧妙的将△ACM 的面积看成是四边形ACEM 减去△AME,那么就会发现四边形ACEM 刚好也是△AOC 和梯形OCEM 之和,于是可以求出PM 的距离,然后分类讨论PM 的位置即可求解.

【思考4】2009,崇文,一模

如图,抛物线两点轴交于与B A x bx ax y ,32

-+=,与y 轴交于点C ,且

OA OC OB 3==.

(I )求抛物线的解析式;

(II )探究坐标轴上是否存在点P ,使得以点C A P ,,为顶点的三角形为直角三角形? 若存在,求出P 点坐标,若不存在,请说明理由; (III )直线13

1

+-

=x y 交y 轴于D 点,E 为抛物线顶点.若α=∠DBC , βαβ-=∠求,CBE 的值

【思路分析】本题虽然没有明确给出

坐标,但是表达式中暗含了X=0时Y=-3,于是C 点得出,然后利用给定的等式关系写出A,B 去求解析式。第二问中,因为AC 是固定的,所以构成的直角三角形根据P 的不同有三种类型。注意分类讨论。第三问则是少见的计算角度问题,但是实际上也是用线段去看角度的相等。最方便就是利用正切值构建比例关系,发现∠CBE=∠DBO ,于是所求角度差就变成了求∠OBC 。

第三部分 思考题解析

【思考1解析】

解:(1)∵(60)A -,

,(0C ,

∴6OA OC ==, 设DE 与y 轴交于点M .

由DE AB ∥可得DMC AOC △∽△.

又1

2

CD AC =

, ∴

1

2

MD CM CD OA CO CA ===.

∴CM =,3MD =. 同理可得3EM =.

∴OM =

∴D

点的坐标为(3.

(2)由(1)可得点M

的坐标为(0. 由DE AB EM MD =∥,,

可得y 轴所在直线是线段ED 的垂直平分线. ∴点C 关于直线DE 的对称点F 在y 轴上. ∴ED 与CF 互相垂直平分. ∴CD DF FE EC ===.

∴四边形CDFE 为菱形,且点M 为其对称中心. 作直线BM .

设BM 与CD EF 、分别交于点S 、点T .可证FTM CSM △≌△. ∴FT CS =. ∵FE CD =, ∴TE SD =. ∵EC DF =,

∴TE EC CS ST SD DF FT TS +++=+++.

∴直线BM 将四边形CDFE 分成周长相等的两个四边形.

由点(60)B ,,点(0M 在直线y kx b =+上,

可得直线BM 的解析式为y =+

(3)确定G 点位置的方法:过A 点作AH BM ⊥于点H .则AH 与y 轴的交点为所求的G 点.

由6OB OM ==, 可得60OBM ∠=°, ∴30BAH ∠=°.

在Rt OAG △中,tan OG AO BAH =∠=

∴G 点的坐标为(0.(或G 点的位置为线段OC 的中点)

【思考2解析】

解:(1)点C 的坐标为(3,0).

∵ 点A 、B 的坐标分别为(8,0),(0,6)A B ,

∴ 可设过A 、B 、C 三点的抛物线的解析式为(3)(8)y a x x =--.

将0,6x y ==代入抛物线的解析式,得1

4a =. ∴ 过A 、B 、C 三点的抛物线的解析式为2111

6y x x =-+.

(2)可得抛物线的对称轴为11

2

x =,顶点D 的坐标为1125

(,)216

-,设抛物线的对称轴与x 轴的交点为G. 直线BC 的解析式为26y x =-+.- 设点P 的坐标为(,26)x x -+.

解法一:如图8,作OP ∥AD 交直线BC 于点P , 连结AP ,作PM ⊥x 轴于点M. ∵ OP ∥AD ,

∴ ∠POM=∠GAD ,tan ∠POM=tan ∠GAD.

∴ PM DG

OM GA =,即25

26161182

x x -+=-

. 解得167x =. 经检验167

x =是原方程的解. 此时点P 的坐标为1610

(,)77

.

但此时165

,72

OM GA ==,OM <GA.

∵ ,,,cos cos OM GA

OP AD POM GAD POM GAD

=

=∠=∠∠∠

∴ OP <AD ,即四边形的对边OP 与AD 平行但不相等, ∴ 直线BC 上不存在符合条件的点P.

解法二:如图9,取OA 的中点E ,作点D 关于点E 的对称点P ,作PN ⊥x 轴于点N. 则∠PEO=∠DEA ,PE=DE.

可得△PEN ≌△DEG .

由42OA

OE =

=,可得E 点的坐标为(4,0). NE=EG=32, ON=OE -NE=52,NP=DG=25

16

.

∴ 点P 的坐标为525

(,)216

.

∵ x=52时,52526261216

x -+=-?+=≠,

∴ 点P 不在直线BC 上.

∴ 直线BC 上不存在符合条件的点P .

(3)QA QO -的取值范围是04QA QO ≤-≤.

说明:如图10,由对称性可知QO=QH ,QA QO QA QH -=-.当点Q 与点B 重合时,Q 、H 、A 三点共线,QA QO -取得最大值4(即为AH 的长);设线段OA 的垂直平分线与直线BC 的交点为K ,当点Q 与点K 重合时,QA QO -取得最小值0.

【思考3解析】

解:(1)设直线AC 的解析式为3-=kx y ,把A (-1,0)代入得3-=k . ∴直线AC 的解析式为33--=x y . 依题意知,点Q 的纵坐标是-6.

把6-=y 代入33--=x y 中,解得1=x ,∴点 Q (1,6-) ∵点Q 在抛物线的对称轴上,∴抛物线的对称轴为直线1=x .

设抛物线的解析式为n x a y +-=2

)1(,由题意,得???-=+=+304n a n a ,解得 ?

??-==.4,

1n a

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

高中数学解析几何中的基本公式

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 221B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比 为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --= λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 21211k k k k +-,]2 ,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

解析几何课后答案按

第1章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 §1.3 数量乘矢量 1.要使下列各式成立,矢量,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=-

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- 2. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以构成一个三角形. [证明]: )(21 AC AB AL += )(21 BM += 0= 3. 设L 、 [证明] 4. [证明] 但 OB OD OC OA OB OC OA OD +=+-=-∴=-=-= 由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD , ∴0=+=+OB OD OC OA , 从而OA=OC ,OB=OD 。

5. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB ++=4. [证明]:因为OM = 21 (OA +OC ), =2 1 (OB +), 所以 2=2 1 (OA +OB ++OD ) 所以 OA +OB ++OD =4OM . 6. [所以所以显然所以 1. [所以从而 OP =λ+1. 2. 在△ABC 中,设=1e ,AC =2e ,AT 是角A 的平分线(它与BC 交于T 点),试将分解为1e ,2e 的线性组合. 图1-5

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

解析几何中的算法与算理

解析几何中的算法与算理——一堂研究课的听课观察记录与感悟 2.分析:求直线AB的方程,关键是确定求直线AB的斜率;而k AB可以由点A(或点B)的位置的确定而确定——引入点参;k AB也可以由直线P A(或直线PB)、直线AB的位置的确定而确定——引入k参、写方程;…… 用思维导图表达研究过程的思路、方法,使思维“视觉化”,进而帮助学生捋顺思路:结论:

3.板书计划: 4.学生展示、观摩、小组交流、评价: 学生甲的思路(1—1)的解法:由题意 F (1,0).因为直线AB 不经过点P ,故直线AB 的斜 率必存在. 可设AB :y =k (x -1) 由? ??=+-=1243)1(2 2y x x k y 消去y ,整理得 1248)34(2 222=-+-+k x k x k 设点)()(2211,,,y x B y x A . 由根与系数的关系,得??? ?? ? ??? +-= ?+=+>?34124348022212 221k k x x k k x x 由k P A +k PB =0得 01 23 1232211=--+-- x y x y , 所以, 01 23 )1(123)1(2211=---+-- -x x k x x k , 所以,0)2(2 3 )1)(1(22121=-+- --x x x x k

即0)2(2 3 ]1)([2212121=-+- ++-x x x x x x k 消去x 1和x 2,得)23 48(23)134834124( 222 2222-+=++-+-k k k k k k k 化简,得2 1 12= ?=k k . 所以,所求的直线AB 的方程为:.012)1(2 1 =--?-= y x x y 师问:本题消去x ,行吗?消去哪个更好? 于是,引导学生继续探究: 思路(1—2)的解法:将算法“局部优化”为:由k P A +k PB =0得 01 23 1232211=--+-- x y x y , 由?? ?=+-=12 43)1(2 2 y x x k y 消去x ,得 096)34(1243 2222222 =-++?=++k ky y k k y k k y )( 设点)()(2211,,,y x B y x A . 由根与系数的关系,得??? ? ? ? ??? +-=?+=+>?34934602 2212 21k k y y k k y y 由k P A +k PB =0得 01 231232211=--+-- x y x y , 所以,)(2320123 12321212211y y y y y k y y k y +=??=-+- , 故2 1 34623349222 2=?+?=+-?k k k k k . 所以,所求的直线AB 的方程为:.012)1(2 1 =--?-= y x x y 学生丁的思路(1—3)的解法:由题意,直线AB 的斜率必存在且不等于0.

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

《空间解析几何》教学指南

《空间解析几何》教学指南 说明: 1.课程性质 空间解析几何是高等师范院校数学专业的一门重要基础课。是初等数学通向高等数学的桥梁。是高等数学的基石。线性代数,数学分析,微分方程,微分几何,高等几何等课程的学习都离不开空间解析几何的基本知识以及研究方法。空间解析几何是用坐标法,把数学的基本对象与数量关系密切联系起来,它对整个数学的发展起了很大作用。 2.教学目的 本课程的教学目的是培养学生的空间想象能力以及解决问题的能力,并为以后学习其他数学课程作准备,也为日后的中学几何教学打下良好的基础。 (1)对空间的直线和平面,对曲面特别是二次曲面有明晰的空间位置、形状的概念,对于坐标化方法能应用自如,从而达到数与形的统一; (2)能具备空间想象能力,娴熟的矢量代数的计算能力和推理、演绎的逻辑思维能力,科学地处理中学数学的有关教学内容。 3.教学内容与学时安排: 第一章矢量与坐标 20学时 第二章轨迹与方程 6学时 第三章平面于空间直线 18学时 第四章柱面、锥面、旋转曲面与二次曲面 20学时 第五章二次曲线的一般理论 22学时 第六章二次曲面的一般理论 4学时 4.课程教学重点与难点: 重点:基本概念;矢量计算;做图能力; 难点:一般二次曲线、曲面理论,知识的综合应用。 5.教学方法 本课程以课堂讲授为主,结合课堂提问课堂讨论进行教学,同时对适合的内容以多媒体辅助教学。 6. 课程考核方法与要求: 本课程考核以笔试为主,主要考核学生对基本理论、基本概念、运算技巧的掌握程度,以及学生综合应用知识的能力。 内容: 第一章矢量与坐标(20学时) 1. 主要内容 (1)矢量概念单位矢量零矢量相等矢量反矢量共线矢量共面矢量。 (2)矢量的加法及其运算法则。 (3)数量乘矢量及其运算法则。 (4)矢量的线形运算及矢量的分解。

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

解析几何中极点与极线知识的现状与应用研究

解析几何中极点与极线知识的现状与应用研究 王文彬 极点与极线是圆锥曲线内在的几何特征,在解析几何中必然有所反映,有所体现.现将具体研究结果报告如下: §1.极点与极线的定义 1.1 几何定义 如图,P 是不在圆锥曲线上的点,过P 点引 两条割线依次交圆锥曲线于四点,,,E F G H ,连接,EH FG 交于N ,连接,EG FH 交于M ,则直线MN 为点P 对应的极线. 若P 为圆锥曲线上的点,则过P 点的切线即为极线. 由图1可知,同理PM 为点N 对应的极线,PN 为点 M 所对应的极线.MNP 称为自极三点形.若连接MN 交圆锥曲线于 点,A B ,则,PA PB 恰为圆锥曲线的两条切线. 事实上,图1也给出了两切线交点P 对应的极线的一种作法. 1.2 代数定义 已知圆锥曲线22 :220Ax Cy Dx Ey F Γ++++=,则称点00(,)P x y 和直线 0000:()()0l A x x C y y D x x E y y F ++++ ++=是圆锥曲线Γ的一对极点和极线. 事实上,在圆锥曲线方程中,以0x x 替换2 x ,以02 x x +替换x (另一变量y 也是如此) 即可得到点00(,)P x y 极线方程. 特别地: (1)对于椭圆22 221x y a b +=,与点00(,)P x y 对应的极线方程为00221x x y y a b +=; (2)对于双曲线22 221x y a b -=,与点00(,)P x y 对应的极线方程为00221x x y y a b -=; (3)对于抛物线2 2y px =,与点00(,)P x y 对应的极线方程为00()y y p x x =+. §2.极点与极线的基本结论 定理1 (1)当P 在圆锥曲线Γ上时,则极线l 是曲线Γ在P 点处的切线; (2)当P 在Γ外时,则极线l 是曲线Γ从点P 所引两条切线的切点所确定的直线(即切点 弦所在直线); (3) 当P 在Γ内时,则极线l 是曲线Γ过点P 的割线两端点处的切线交点的轨迹. 证明:假设同以上代数定义,对22:220Ax Cy Dx Ey F Γ++++=的方程,两边求 导得22220Ax Cyy D Ey ''+++=,解得Ax D y Cy E +'=-+,于是曲线Γ在P 点处的切线斜率 为00Ax D k Cy E +=-+,故切线l 的方程为0000()Ax D y y x x Cy E +-=--+,化简得 220000000Ax x Cy y Ax Cy Dx Ey Dx Ey +--++--=,又点P 在曲线Γ上,故有220000220Ax Cy Dx Ey F ++++=,从中解出2200Ax Cy +,然后代和可得曲线Γ在P 点 图1

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

相关文档
最新文档