铂催化醇类的分子氧氧化

铂催化醇类的分子氧氧化
铂催化醇类的分子氧氧化

铂催化醇类的分子氧氧化

2016-08-24 12:58来源:内江洛伯尔材料科技有限公司作者:研发部

铂炭催化剂样品

金属Pt 能催化醇类的分子氧氧化反应发现于1855年。1995年, Zhou等首次报道了scCO2中Pt 金属催化的醇类分子氧氧化反应,他们研究了乙醇在Pt/TiO2催化剂上的氧化效果,发现乙醛的收率较低只有15 % —23 % ,主要原因在于乙醛的过度氧化难以抑制。

尽管对于醇类的分子氧氧化反应,铂的催化活性不如钯,但改进铂催化活性的研究却一直在进行。2001年, Steele等探讨了scCO2中石墨负载Pt 催化剂( Pt/C)对9-蒽基甲醇、正癸醇和对二苯基乙二醇的分子氧氧化的催化作用,研究表明负载Pt/C催化剂经氟化改性后具有较好的活性。在338 K、氧气分压5 MPa 、scCO2压力15MPa 条件下,添加1 %聚四氟乙烯氟化的Pt/C催化剂对9-蒽基甲醇氧化为相应醛的选择性大于99 % ,转化率达到96 %;未氟化的Pt/C 催化剂选择性虽大于99 % ,转化率只有45 % ,而相同条件的水溶剂体系中,转化率虽达到100 % ,但选择性只有65 %。由此表明清洁溶剂scCO2相对于水溶剂的优势。氟化的催化剂表面可以疏远水分,从而减少了形成羧酸的过度氧化反应。

2004 年,Tsang等进一步探讨了F添加量对Pt/C催化剂催化活性的影响,结果表明当

F/PC质量比为0.071 时,9-蒽基甲醇的氧化转化率最高。试验还研究了邻二苯基乙二醇的氧化反应,氧化产品的选择性不是很好,产品分布强烈依赖于温度和scCO2的压力。Gaser等也探讨了10—19 MPa 及40℃的scCO2中石墨负载5 %Pt/C 催化剂对1-丙醇和2-丙醇的氧化催化反

应。1-丙醇主要氧化成丙醛和丙酸,选择性不如仲醇;2-丙醇基本氧化成丙酮,选择性很高,300 min 内转化率达到98 %。

对于2-丙醇氧化成丙酮,在温度、氧气分压以及原料摩尔比等相同条件下,通过反应介质scCO2和水的比较,催化剂的稳定性在scCO2中大大提高。在相同时间内,scCO2中的转化率高于水中的转化率,而且在scCO2中反应基质与催化剂的比例可以提高到4 倍。Glaser等也考察了Pt负载于不同孔径硅石上的催化效果,对大孔硅胶(Pt/SiO2)、中孔分子筛(Pt/MCM-41) 及微孔硅石(Pt/silicalite-1) 的对比表明,具有纳米尺寸的硅石负载的Pt催化剂对2-丙醇氧化成丙酮也同样具有催化活性,但是丙酮的收率不高。

利用循环伏安发分析甲醇的电化学氧化行为

利用循环伏安发分析甲醇的电化学氧化行为 专业: 姓名: 学号:

1.通过实验熟悉和了解电化学工作站的使用方法。 2.在实验过程中巩固加深电化学知识。 3.学习循环伏安法测定电极反应参数的基本原理及方法。 4.学会使用伏安仪 。 5.了解酸性环境下GC 、Pt 的电催化性能。 6.比较GC 与Pt 电催化的异同。 二、实验原理: 与H 2O 2燃料电池相比, 直接甲醇燃料电池(DM FC)以其明显的体积比能量优势而倍受关注 。 铂是目前已知对甲醇吸附解离催化活性最好的金属元素,也是在燃料电池环境中稳定性最好的电极材料。甲醇在铂电极表面上的反应为双途径机理,即甲醇首先解离吸附在电极表面,生成毒性中间体CO,然后再生成CO2。其反应为: -+-+++?→?+++?→?e H CO O H e H CO OH CH ads 66444223 在低温(100K)时,甲醇吸附在铂表面并不发生离解。分子态的热力学解吸发生在两个温度:直 接与表面接触的甲醇(单分子层甲醇)在180K 时解吸;甲醇的多分子层 140K 时解吸[2~5]。对吸附态甲醇的研究[2,5]表明,甲醇吸附后,其振动光谱并未发生显著的变化,即吸附面只导致了分子的轻微扰动。 在温度为200~300K 时,甲醇在铂面上离解生成吸附态的CO 和H[2]。但是,甲醇在铂表面上的吸附脱氢反应并非一个单步反应步骤。Bagotzky 提出了这样的反应步骤:在纯铂表面,三个氢几乎是同时脱离的,中间没有生成甚至是没有经过甲基氧中间物,第四个氢的脱离要慢一些。这一机理成功地解释了观测到的甲酰(HCO)中间体,而且与Gasteiger 等在解释Ru 原子于铂表面的双功能机理时提出的量子模型也是一致的。根据双功能机理,Gasteiger 等[6]认为三个铂原子组成的铂原子簇更有利于甲醇的吸附脱氢。 甲醇在铂电极上发生吸附,然后脱氢同时发生解离吸附反应,生成一系列表面吸附物种(CHXOH)ad(X=0~3) Pt+CH3OH →Pt-(CH3OH)ad ⑴ Pt+Pt-(CH3OH)ad →Pt-(CH2OH)ad +Pt-Had ⑵ Pt+Pt-(CH2OH)ad →Pt-(CHOH)ad+Pt-Had ⑶ Pt+Pt-(CHOH)ad →Pt-(COH)ad+Pt-Had ⑷ Pt+Pt-(COH)ad →Pt-(CO)ad+Pt-Had ⑸ Pt-Had →Pt + H+ + e (6) 三、实验仪器: 电化学工作站 工作电极(Pt 电极和GC 电极) 参比电极 对电极 浓硫酸 无水甲醇 去离子水

钯催化反应及其机理

钯催化反应及其机理研究 摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。 关键词:过渡金属催化偶联反应钯催化机理 1.引言 进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。在众多过渡金属中,金属钯是目前研究得最深入的一个。自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。 2.钯催化各反应机理的研究 2.1.钯催化的交叉偶联反应 自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为 homo coupling)。 2.1.1Heck反应 Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新 C—C 键的重要反应[3]。反应物主要为卤代芳烃(碘、溴)与含有α-吸电子基团的烯烃,生成物为芳香代烯烃。所用的不饱和卤化烃是一类芳基化合物。亲电性不饱和碳(sp 或 sp2杂化)与亲核性碳、氮、氧、硫、硒原子经过某些过渡金属的催

Pt电极上甲醇电催化氧化的EQCM

Pt 电极上甲醇电催化氧化的EQC M 研究 Ξ 姚忠亮 (福建师范大学福清分校生化系,福建福清 350300) 摘要:运用电化学循环伏安和石英晶体微天平技术研究了0.1m ol ?L -1H 2S O 4溶液中甲醇在Pt 电极上吸附和氧化行为.结果表明,甲醇的电氧化过程与电极表面氧的吸附物种有着密切的关系,并指出甲醇电催化氧化是通过解离吸附产物和反应中间体双途径机理进行的.电化学原位E 2QC M 进一步从表面质量变化提供了甲醇电催化氧化的新数据. 关键词:Pt 电极;电催化氧化;甲醇;C V ;E QC M 中图分类号:O 646.54,O 433 文献标识码:A 文章编号:1004-2911(2002)02-0107-04 研究有机小分子醇类的电化学吸附、脱附和氧化,不仅具有表面分子过程等基础理论研究价值,而且具有直接燃料电池和电有机合成等方面的应用前景[1,2].甲醇是最简单的醇分子,来源丰富、价格低廉、储存携带方便;而且当它完全被氧化时,能够给出6个电子,从作为燃料的实用角度上讲,相对甲醛和甲酸就更有优势.早期文献中对甲醇研究的报道多为常规电化学方法研究结果,提出了一些热力学和动力学的反应规律.近年来,随着原位红外反射光谱或其他能鉴定反应中间产物和跟踪反应历程的原位谱学方法的发展,对甲醇电氧化过程的认识已提高到分子水平[3],但对其反应机理仍有待进一步深入.电化学石英晶体微天平(E 2QC M )[4,5]是一种非常有效的电极表面分析方法,可检测电极表面纳克级的质量变化.它从一个新的角度对电极表面的变化和反应历程提供定量的数据,具有其它方法所不能比拟的优点,对于深入认识电化学反应机理十分重要.已知醇的氧化与电极表面形成的一些不稳定氧化物密切相关[6],所以用E QC M 从表面质量变化研究电催化过程,对于认识醇参与的电催化反应显得尤为重要.然而,由于有机小分子氧化的复杂性,迄今用E QC M 技术研究有机小分子醇类在Pt 电极上的氧化报道还很少[7].本文运用电化学循环伏安和E QC M 等方法研究了硫酸溶液中甲醇在Pt 电极上吸附和氧化过程,试图从定量角度上进一步揭示其反应机理. 1 实验 电化学循环伏安实验(C V )采用M270软件控制的PARC -263A 型(EG&G )恒电位仪在三电极玻璃电解池中进行.扫描速度为50mV ?s -1.研究电极为Pt 电极,对电极为Pt 黑电极,参比电极为饱和甘汞电极(SCE ).E QC M 实验在QC A917型E QC M 仪(SEIK O EG&G 公司)上进行,通过M270软件和G PI B 接口卡(EG&G )与计算机和PARC -263A 型恒电位仪(EG&G )相连接,完成数据同步采集及分析.工作电极为AT -cut 石英晶体铂电极(SEIK O EG &G ),基频f 0=9MH z ,在溶液中f 0=8.87MH z ,几何面积约为0.2cm 2.根据Sauerbrey 方程[4],当频率变化Δf < 2%f 0时,Δf (H z )与电极表面质量变化Δm (g.cm -2)关系如下: Δm =-S Δf (1) 第14卷第2期 宁德师专学报(自然科学版) 2002年5月 Journal of Ningde T eachers C ollege (Natural Science )V ol 114 N o 12 May 2002 Ξ收稿日期:2002-01-30 作者简介:姚忠亮(1975-),男,助教,福建福清人,现从事高校化学教学及研究.

金属有机化学中的钯催化的反应全解

XXXX大学研究生学位课程论文(2012 ---- 2013 学年第一学期) 学院(中心、所):化学化工学院 专业名称:应用化学 课程名称:高等有机化学 论文题目:金属有机化学中的钯催化的反应 授课教师(职称)XXXX(教授) 研究生姓名:XXXX 年级:2012级 学号:XXXXXXXXX 成绩: 评阅日期: XXXX大学研究生学院 2012年12 月25 日

金属有机化学中的钯催化的反应 XXXXXX (XXXX大学化学化工学院,山西,太原,030006) 摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。 关键词:钯,催化剂,反应机理,研究进展 1钯催化的反应类型及反应机理 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。 1.1氢化反应 钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。 1.1.1反应式及反应机理 反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。 1.1.2反应方程式举例 1.2氧化反应 烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。 1.2.1分子氧参与的钯催化烯烃的氧化反应 根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。 1.2.1.1反应机理 钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。 1.2.1.2形成C-C键 1.2.1.2.1烯-烯偶联

甲醇的电化学催化氧化

《应用化学综合实验》(项目化)电化学能源实验指导书课程代码:0703525008 开课学期:第6学期开课专业:应用化学 实验学时:16学时总学分/实验学分:0.5学分 综合实验室(实验中心)名称:生化实验中心二级实验室名称:应用化学专业实验室一、课程简介 《应用化学综合实验》电化学能源实验是化学专业比较新的的一门重要专业综合实验课。本课程是根据甲醇燃料电池的相关理论与技术而展开的。学生需具有基本的有机化学、无机化学、电化学等方面的基础知识。通过本实验的学习,能够是学生了解最基本的甲醇燃料电池的工作原理和核心技术;能够使学生对能源及电化学能源具有初步的认识;能够为学生在将来从事相关工作打下基础。 二、实验的地位、作用和目的 通过此课程的学习,对电化学能源知识具有初步的了解,掌握基本的电化学技术。 三、实验方式与基本要求 实验方式以设计实验为主,从基础理论、材料准备、装置、数据的采集与分析等方面进行自主设计并进行实验。 1、掌握甲醇燃料电池的工作原理。 2、掌握评价甲醇燃料电池性能好坏的方法。 3、能从实验中发现更多的电化学能源相关的技术与理论。 四、报告与考核 设计实验报告和实验报告结果讨论等内容。 考核:1、设计实验的设计思路和方法40%。2、实验操作和实验结果30%。3、实验报告和讨论分析30% 五、设备及器材材料配置

六、实验指导书及主要参考书 1、陆天虹. 能源电化学,化学工业出版社,2014.11 2. 哈曼.电化学,化学工业出版社,2010.01 项目简介和设计要求 随着全球对新能源的需求,燃料电池被广泛研究。甲醇燃料电池是燃料电池中的一种。使用甲醇水溶液或蒸汽甲醇为燃料供给来源,而不需通过甲醇、汽油及天然气的重整制氢以供发电。甲醇燃料电池具备低温快速启动、燃料洁净环保以及电池结构简单等特性。这使得甲醇燃料电池可能成为未来便携式电子产品应用的主流。本项目针对甲醇燃料电池的核心化学原理,也就是甲醇的催化氧化,来认识、了解燃料电池化学能源的原理。学习全面的电化学测试、表征和数据处理技术。 设计要求: (1)学会文献查阅和资料整理。 (2)学会如何参考文献设计实验方案,主要包括原理、实验具体操作步骤、电化学基本实验技术、数据的分析、评价和处理。

醇的催化氧化

已知: 1、 如何鉴别1-丙醇与2-丙醇。 2、 分子式为C 5H 12O 的醇,其中能被氧化为醛的结构是哪几种?能被氧化为酮的是哪几种?不能被氧化的是哪几种? 3、分子式为C 4H 8的烃可以发生如图转化: 其中E 、F 均呈酸性。 写出下列物质的结构简式: C 4H 8: C : D : E : F : C 4H 8 R —CH 2OH R —CHO ; 氧化 R’ R CH —OH 氧化 R —C —R ’ O (酮); 则很难被氧化(R 、R ’、R ’’表示烃基)。 R —C —OH R ’ R ’’

4、(2012房山期末1,16分)已知:Ⅰ. 质谱分析测得有机化合物A的相对分子质量为92.5 ;其含碳、氢的质量分数分别为51.89% 、9.73% ,其余为氯。 Ⅱ. A有如下转化关系: Ⅲ. 与羟基相连的碳上没有氢原子的醇(结构: )不能发生催化氧化反应。 Ⅳ. F的核磁共振氢谱有两种峰,峰高比值为1:9 , 不能发生催化氧化反应。 Ⅴ. E和G都能和新制的Cu(OH)2悬浊液反应, H是一种有果香味的液体。 写出下列物质的结构简式: F:C: B:A: D:E: G:H: 5、由C= CH3 CH2 选择合适的途径制备 CH2 C= COOH(C COOH CH2 )。(写流程图) 6. (11东城期末)23.(14分)上海世博会英国馆――种子圣殿,由六万多根透明的亚克力[其

分子式是(C 5H 8O 2)n ]杆构建而成。某同学从提供的原料库中选择一种原料X ,设计合成高分子亚克力的路线如下图所示: 原料库: a 、CH 2=CHCH 3 b 、CH 2=CHCH 2CH 3 c 、CH 2=CCH 3 , d 、CH 2CHCH 3 已知:① (不易被氧化成羧酸) ② 不易被氧化成醛或酮 ③ (R 、R ’、R ’’表示烃基) 写出下列物质的结构简式: X : A : B : C : D : E : F : 亚克力: R —C —R ’(H) O HCN R —C —R ’(H) OH H +/H 2O R —C —R ’(H) OH R ’’ R —C —R ’ OH R —C —R ’ O R —CH —R ’ OH [O] CH 3 CH 3

甲醇的氧化机理研究进展

甲醇电催化氧化可能的机理及研究进展 甲醇在电极上氧化为 CO2需要传输 6 个电子,但是 6 个电子同时传递是不太可能的。部分电子的传输导致一系列稳定的、可溶的中间产物的形成也是不太可能的。很明显,在铂电极催化剂表面上一定有表面吸附物质,正是这些物质抑制了催化剂的活性。关于甲醇氧化反应的机理研究,在不同的电解质中可能不同。一般认为在酸性电解质中,甲醇在 Pt 电极上的氧化机理为[i],[ii]: 2Pt + CH3OH → Pt-CH2OH + Pt-H ( 1-4) 2Pt + Pt-CH2OH → Pt2-CHOH + Pt-H (1-5) 2Pt + Pt2-CHOH → Pt3-COH + Pt-H (1-6) Pt-H → Pt + H+ +e- (1-7) Pt3-COH → Pt2-C=O + H+Pt + e-→ Pt-C≡O + Pt (1-8) 可以看出甲醇首先吸附在 Pt 的表面,同时脱去氢,反应速度由大到小依次为是(1-6),(1-5),(1-4)。Pt3-COH 是主要的吸附物质,即甲醇氧化的中间体,(1-7)反应极快,但在缺少活性氧时,(1-8)占主导地位。从上述方程式中不难看出,要保证催化剂不被毒化,就必须尽量避免反应(1-8)的发生,而只有电极表面含有大量含氧物种时,氧化反应才能发生。活性含氧物种通过如下反应发生: M + H2O → M-OHads + H+ + e- (1-9) 其中 M 可以是 Pt 或其它金属,如 Ru,Sn 等,对于 Pt 来说,Pt-OH ads很难在低电位时大量产生,不能有效阻止中毒现象的发生,因此往往引入其它金属,使得在较低电位下就能够生成大量的含氧物种,促进氧化发应的发生。活性含氧物种与甲醇吸附中间体之间的反应如下: Pt-CH2OH + M-OH ads→ HCHO + Pt + M + H2O (1-10) Pt2-CHOH + M-OH ads→ HCOOH + 2Pt + M + H2O (1-11) Pt3-COH + M-OH ads→ CO2+ 3Pt + M + 2H++ 2e- (1-12) 在阳极上甲醇氧化的总反应为:CH3OH + H2O → CO2↑ + 6H++ 6e- (1-13) 分析这些反应表明,甲醇氧化是一个涉及多步脱氢的复杂过程,只有在电极表面生成大量含氧物种,甲醇才能完全氧化生成 CO2。同时,对于实用的直接甲醇燃料电池在降低催化剂中毒的同时还要避免反应(1-8)的发生,保证甲醇完全氧化生成 CO2。 目前对甲醇电化学氧化的机理在某些方面还存在争议。其中一个主要争议是:甲醇在Pt电极上的氧化究竟是通过平行反应路径 (在平行路径中,CO是作为一个副产物形成,甲醇被直接氧化成CO2) 还是通过连续反应路径进行。Wang等人[iii]采用双薄层电解池与质谱结合定量测定了甲醇氧化中间产物,认为两种路径同时存在,即一个路径是通过吸附CO进行,另一个路径是通过溶解中间物 (甲醛和甲酸) 进行,这

乙醇催化氧化

乙醇的催化氧化进阶练习4 1.下列物质不能从溴水中萃取溴的是( ) A .乙醇 B .苯 C .四氯化碳 D .戊烷 2.酒精灯的火焰分为三层,由外到内依次为外焰、内焰、焰心,若把一根洁净的铜丝,由外焰逐渐深入到内焰,能观察到的现象是( ) A. 始终是红色 B. 由红色变为黑色 C. 在外焰变为黑色,到内焰变为红色 D. 在外焰是红色,到内焰变为黑色 3.苯中混有乙醇杂质,除去乙醇的方法是( ) A .加热蒸发 B .过滤 C .加水、萃取、分液 D .加CCl4、萃取、分液 4.以下四种有机物的分子式皆为 C 4H 10O : 其中能被氧化为含相同碳原子数醛的 是( ) A. ①和② B. 只有② C. ②和③ D. ③和④ 5.乙醇的下列实验现象或性质,可以证明乙醇分子中有1个氢原子与另外的氢原子不同的是( ) A .1 mol 乙醇完全燃烧可以生成3 mol 的水 B .乙醇可以按任意比例与水混溶 C .1 mol 乙醇可以在一定条件下氧化成l mol 的乙醛 D .1 mol 乙醇跟足量的金属钠反应可得0.5 mol 的氢气 乙醇的催化氧化进阶练习1 【答案和解析】 1. B 解析:无水CuSO 4 是白色粉末,当遇到水,就会与水结合生成 CuSO 4·5H 2O 为蓝色晶体 2. D 解析:铜片灼烧后生成CuO ,硝酸可以与铜反应,使铜片质量减少;盐酸使生成的CuO 溶解,铜片质量不变。石灰水不与CuO 反应,铜片的质量增加;乙醇可以实现CuO Cu 的转变:CH 3CH 2OH +CuO CH 3CHO +Cu +H 2O ,铜片质量不变; 3. B 4. C 解析:乙醇与钠反应生成乙醇钠,是羟基中的O —H 键断裂,A 正确;乙

(完整)金属有机化学中的钯催化的反应全解

(完整)金属有机化学中的钯催化的反应全解 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)金属有机化学中的钯催化的反应全解)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)金属有机化学中的钯催化的反应全解的全部内容。

XXXX大学研究生学位课程论文 (2012 —--— 2013 学年第一学期) 学院(中心、所):化学化工学院 专业名称: 应用化学 课程名称:高等有机化学 论文题目: 金属有机化学中的钯催化的反应 授课教师(职称) XXXX(教授) 研究生姓名: XXXX 年级: 2012级 学号: XXXXXXXXX 成绩: 评阅日期: XXXX大学研究生学院 2012年 12 月 25 日 金属有机化学中的钯催化的反应 XXXXXX (XXXX大学化学化工学院,山西,太原,030006) 摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一.本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。 关键词:钯,催化剂,反应机理,研究进展 1钯催化的反应类型及反应机理

在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂.对石油重整反应,钯也是常选取的催化剂组分之一。 1.1氢化反应 钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂. 1。1.1反应式及反应机理 反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ—键。 1.1.2反应方程式举例 1.2氧化反应 烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。 1。2.1分子氧参与的钯催化烯烃的氧化反应 根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C—O、C-N和C—C键。 1。2.1.1反应机理 钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β—H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。 1。2。1。2形成C—C键 1。2。1.2。1烯—烯偶联 化合物3含有两个烯丙基,通过串联环化反应可以合成具有单萜柏木烷骨架的产物。1.2.1。2.2烯—芳环偶联 Iida等以Pd(OAc)2和Cu(OAc)2为催化剂,乙睛为溶剂,实现了芳氨取代的环己烯酮9的分子内环化反应生成咔唑酮衍生物10。 1。2.1。2.3烯—杂环化合物的偶联 烯基取代的吲哚13在钯催化下可以发生分子内环化偶联反应生成具有三环结构的吲哚衍生物14 .

负电荷化的铂催化剂对甲醇氧化催化的影响

负电荷化的铂催化剂对甲醇氧化催化的影响 铂(Pt)是现在广泛应用于电极反应的星形催化剂。最近,越来越多的实验证明表明,向Pt催化剂注入电子可以改善对反应物(例如CH 3 OH)的表面催化反应性。然而,下面的分子机制仍不清楚。在这项工作中,通过进行密度泛函理论计算,我们首次在电子中性和注入一个电子的条件下研究了Pt晶格(Pt13)单层甲醇脱氢。在中性Pt13上,O位点是比甲基位点更优选的吸附,尽管后者可以动力诱导更容易的键断裂。与之形成鲜明对比的是,在阴离子Pt13-上,甲基位点是更优选的吸附并且可以诱导更容易的键断裂。 由于高能量转换效率,系统简单性和环境友好性,使用甲醇直接作为可燃物(直接甲醇燃料电池-DMFC)的燃料电池越来越受到移动,固定和便携式应用的电源的关注[1] 其中铂基催化剂由于其优异的催化性能而被广泛用作甲醇氧化的阳极催化剂。因此,为了提供彻底的机械洞察力和开发更有效的DMFCs,大量的研究已经被用于了解中性铂电极上的甲醇氧化反应过程。[2-4]迄今为止,现有的研究已经公开了两个不同的进化 频道(见方案1)。一个是甲基吸附引发的键断裂,[3]另一个是吸氧 方案告了在中性铂电极上甲醇首次脱氢的可能途径引发键断裂[4] 甲基吸附比中性Pt上的吸氧弱得多。 最近,为了促进甲醇的催化活性,实验化学家已经用新的化学合成方法合成了许多纳米复合Pt催化剂。例如PDDA / Pt-CNT,Pt-CeO2 / CNTs,Pt-WC和Pt-CePO4,它们比铂Pt 催化剂具有更高的电催化活性和对甲醇氧化的化学稳定性。在Wang等人的工作中,[6]使用循环伏安法将甲醇电氧化电流从383增加到638A g,在Pt催化剂中引入CeO2后,Pt-CeO2 / CNT表现出更高的催化活性甲醇电氧化活性比裸Pt和Pt / CNT。Park等人[8]已经表明,Ce / Pt = 0.15的Pt-CePO4与裸铂相比表现出更好的甲醇氧化催化活性。通过氢潜下沉积,对于裸Pt和Ce / Pt = 1.5,形成氢氧化的电化学表面积值分别为1.27和2.1(cm2 / cm2样品),这意味着Pt-CePO4中甲氧基氧化的催化活性几乎是裸铂的两倍。此外,实验化学家还发现纳米支撑体的表面可以通过一种给电子效应为Pt原子提供更强的负电子性质。似乎改善甲醇氧化的电子注入非常重要。

金属有机化学中的钯催化的反应

XXXX大学研究生学位课程论文 (2012 ---- 2013 学年第一学期) } 学院(中心、所):化学化工学院 专业名称:应用化学 课程名称:高等有机化学 论文题目:金属有机化学中的钯催化的反应 授课教师(职称)XXXX(教授) ! 研究生姓名:XXXX 年级:2012级 学号:XXXXXXXXX 成绩: 评阅日期: XXXX大学研究生学院 } 2012年12 月25 日

金属有机化学中的钯催化的反应 XXXXXX (XXXX大学化学化工学院,山西,太原,030006) 摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。 关键词:钯,催化剂,反应机理,研究进展 1钯催化的反应类型及反应机理 } 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。 氢化反应 钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。 反应式及反应机理 反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。 反应方程式举例 > 氧化反应 烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。 分子氧参与的钯催化烯烃的氧化反应 根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。 反应机理 钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。 ! 形成C-C键

甲醇电催化氧化

甲醇在电极上氧化为CO2需要传输 6 个电子,但是6 个电子同时传递是不太可能的。部分电子的传输导致一系列稳定的、可溶的中间产物的形成也是不太可能的。很明显,在铂电极催化剂表面上一定有表面吸附物质,正是这些物质抑制了催化剂的活性。关于甲醇氧化反应的机理研究,在不同的电解质中可能不同。一般认为在酸性电解质中,甲醇在Pt 电极上的氧化机理为 2Pt + CH3OH → Pt-CH2OH + Pt-H (1-4) 2Pt + Pt-CH2OH → Pt2-CHOH + Pt-H (1-5) 2Pt + Pt2-CHOH → Pt3-COH + Pt-H (1-6) Pt-H → Pt + H+ +e- (1-7) Pt3-COH → Pt2-C=O + H+Pt + e-→ Pt-C≡O + Pt(1-8) 可以看出甲醇首先吸附在Pt 的表面,同时脱去氢,反应速度由大到小依次为是(1-6),(1-5),(1-4)。Pt3-COH 是主要的吸附物质,即甲醇氧化的中间体,(1-7)反应极快,但在缺少活性氧时,(1-8)占主导地位。从上述方程式中不难看出,要保证催化剂不被毒化,就必须尽量避免反应(1-8)的发生,而只有电极表面含有大量含氧物种时,氧化反应才能发生。活性含氧物种通过如下反应发生: M + H2O → M-OHads + H+ + e- (1-9) 其中M 可以是Pt 或其它金属,如Ru,Sn 等,对于Pt 来说,Pt-OH ads很难在低电位时大量产生,不能有效阻止中毒现象的发生,因此往往引入其它金属,使得在较低电位下就能够生成大量的含氧物种,促进氧化发应的发生。活性含氧物种与甲醇吸附中间体之间的反应如下: Pt-CH2OH + M-OH ads→ HCHO + Pt + M + H2O (1-10) Pt2-CHOH + M-OH ads→ HCOOH + 2Pt + M + H2O (1-11) Pt3-COH + M-OH ads→ CO2 + 3Pt + M + 2H+ + 2e-(1-12) 在阳极上甲醇氧化的总反应为:CH3OH + H2O → CO2↑ + 6H+ + 6e-(1-13) 分析这些反应表明,甲醇氧化是一个涉及多步脱氢的复杂过程,只有在电极表面生成大量含氧物种,甲醇才能完全氧化生成CO2。同时,对于实用的直接甲醇燃料电池在降低催化剂中毒的同时还要避免反应(1-8)的发生,保证甲醇完全氧化生成CO2。

钯催化卤代芳烃Ullmann偶合反应

2005年第25卷 有 机 化 学 V ol. 25, 2005 第2期, 147~151 Chinese Journal of Organic Chemistry No. 2, 147~151 * E-mail: jhli@https://www.360docs.net/doc/0b13256086.html, Received January 31, 2004; revised April 29, 2004; accepted June 7, 2004. 国家自然科学基金(No. 20202002)、湖南省教育厅(No. 02C211)和湖南师范大学资助项目. 1 钯催化还原Ullmann 偶合反应 1.1 零价钯催化还原Ullmann 偶合反应

148 有 机 化 学 V ol. 25, 2005 Scheme 1 Sasson 等[4]首先研究了使用氢气为还原剂, 以Pd/C 为催化剂催化卤代芳烃Ullmann 偶合反应. 由于氢气具有价廉和易大量处理分离等优点, 从而有利于大规模的工业应用. 但由于这一反应是多相催化反应, 因此对相转移催化剂依赖性很大. 他们发现使用PEG-400为相转移催化剂取得较好的结果, 可以有效地促进选择性地朝偶合反应进行 (Eq. 2). Sasson 等[5]还研究了锌和水体系代替氢气为还原剂, Pd/C 为催化剂催化卤代芳烃的偶合反应(Eq. 3). 该方法操作简单安全, 不需要高压反应釜. 但其反应机理类似于直接提供氢气为还原剂的Pd/C 催化卤代芳烃偶合反应.这一体系中利用锌与水反应当场生成氢气使二价钯还原生成零价钯催化剂, 从而实现新的催化循环 . Sasson 等[6]还研究了在甲酸盐的水溶液体系中Pd/C 催化卤代芳烃的偶合反应(Eq. 4). 该反应的关键利用零价钯催化甲酸盐与水反应生成氢气(Eq. 5). Bamfield 等[7]也报道了同一类型的反应, 他们特别研究了相转移催化剂作用, 通过一系列相转移催化剂的筛选, 发现溴化十六烷基三甲基铵的效果最好. 总之、在上述反应体系中相转移催化剂的使用非常 重要, 因为它们都属于多相催化反应. 此外, 碱的加入 也是必须的, 因为碱的存在能够促使零价钯的生成, 从而有利于催化循环过程进行下去. 研究还显示, 要提高偶合反应的选择性, 从上述反应机理可知, 要控制适合的氢气压力, 高压力有利于零价钯的生成, 从而提高反应速度, 但同时也有利于副反应即芳香卤还原脱卤反应的进行. 实验结果还表明温度升高有利于朝着卤代芳烃偶合反应方向进行. Li 等[8]报道了利用Pd/C 作催化剂, 在空气和过量的锌的存在等条件下, 在丙酮和水为共溶液中偶合卤代芳烃, 可以得到较高产率的偶合反应产物. 例如间碘基苯乙酮的偶合反应, 以Pd/C (300 mg, 质量分数为5%)和锌粉(400 mg)为催化体系, 水/丙酮(1/4, 体积比)为反应溶剂, 间碘基苯乙酮可以顺利的发生偶合反应, 产率为73% (Eq. 6). 在该反应中不加锌或者不加水, 偶合反应的产率非常低, 其原因可能是没有还原剂, 催化剂无法 发生催化循环 . Li 等[9]还研究了以锌为还原剂, 在相转移催化剂18-冠-6存在下, Pd/C 为催化剂催化碘代和溴代芳烃的偶 合反应(Eq. 7). 该反应操作简单, 偶合反应的选择性也比前面报道的方法[8]有所提高 . 1.2 二价钯催化还原Ullmann 偶合反应 二价钯催化的Ullmann 类型的偶合的反应, 然而二价钯并不能直接催化芳香卤的偶合, 因此它必须在化学

实验三甲醇在Pt、GC表面的电化学行为

电化学基础实验报告 姓名 学号 实验日期

一、实验目的 (1)掌握循环伏安技术 (2)甲醇燃料电池的电化学反应 一、实验原理 (1)甲醇燃料电池的电化学反应 (-)CH 3OH+H 2O-6e →6H ++CO 2 (+)O 2+4e+4H +→2H 2O 总反应CHOH+3/2O 2→CO 2+2H 2O (2) DMFC (Direct Methanol Fuel Cells),即直接甲醇燃料电池。 直接甲醇燃料电池是直接利用甲醇水溶液作为燃料,氧或空气作为氧化剂的 一种燃料电池。 虽然甲醇电化学活性与氢氧燃料电池比起来相对较低, 但它具有结构简单、 燃料补充方便、体积和质量比能量密度高、红外信号弱等特点。因而在手机、 笔记本电脑、摄像机等小型民用电和军事上的单兵携带电源等方面具有极大 竞争优势。 如图1,DMFC 单元是由甲醇阳极、氧阴极和质 子交换膜构成。其中催化层是电化学反应发生的场所,扩散层起到支撑催化层、收集电流及传导反应物作用。 使用铂电极时,实验表明,甲醇的电氧化过程与溶液酸碱性和甲醇的浓度有着密切的关系; 不同的介质中,甲醇电催化氧化活性的顺序为: 酸性>中性>碱性;在浓度为10M 甲醇氧化的CV 曲线上,首次观测到甲醇氧化在负向电位扫描中出现两个氧化峰;并指出甲醇电催化氧化是通过解离吸附产物和反应中间体双途径机理进行的.【1】 图2为铂黑电极吸附氢的CV 曲线, 由左到右为氢区、双层区、氧区。 氢在铂电极上的反应可分三步: a.氢扩散 b.电荷转移 c.产物离开电极表面,由于三步速率都很快,氢区峰峰对称程度很高。 由图可知,铂电极上至少存在三种吸附形式的氢:过电位沉积氢(OPD ),强吸附氢(H s )、弱吸附氢(H w ),后两种属于欠电位沉积(UPD ),也有说H s 和H w 之间的小峰属于潜表面H 。【2】 1引用《不同介质中甲醇在 Pt 电极上氧化特征》 2 引用《氢吸附在铂电极上的量子化学研究》

钯炭催化剂

钯炭催化剂 英文名称:Palladium-carbon catalyst 中文名称:钯炭催化剂 钯——化学符号Pd ,就是银白色金属,较软,有良好的延展性与可塑性,能锻造,压延与拉丝。块状金属钯能吸收大量氢气,使体积显著胀大,变脆乃至破裂成碎片。 钯炭催化剂就是将金属钯负载到活性炭里形成负载型加氢精制催化剂,用于精制处理对苯二甲酸原料,生产精制对苯二甲酸。钯炭催化剂已经先后 在不同工艺的PTA(精对苯二甲酸)装量,如北京燕山、上海石化、辽阳石化、洛阳石化与天津石化等炼化企业,成功进行了工业应用。其主要 技术指标: 项目SAC-05 外观椰壳片状 钯含量% 0、48-0、52 粒度(4-8目)% ≥95 压碎强度N ≥40 比表面积m2/g 1000-1300 堆密度g/ml 0、4-0、5 磨耗% ≤1 反应收率% ≥99 钯碳的作用 钯碳就是一种催化剂,就是把金属钯粉负载到活性碳上制成的,主要作用就是对不饱与烃或CO的催化氢化。具有加氢还原性高、选择性好、性能稳定、使用 时投料比小、可反复套用、易于回收等特点。广泛用于石油化工、医药工业、电子工业、香料工业、染料工业与其她精细化工的加氢还原精制过程。钯碳的提纯 钯合金可制成膜片(称钯膜)。钯膜的厚度通常为0、1mm左右。主要于氢气与杂质的分离。钯膜纯化氢的原理就是,在300—500℃下,把待纯化的氢通入钯膜的一侧时,氢被吸附在钯膜壁上,由于钯的4d电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应就是可逆的),在钯的作用下,氢被电离为质子其半径为1、5×1015m,而钯的晶格常数为3、88×10-10m(20℃时),故可通过钯膜,在钯的作用下质子又与电子结合并重新形成氢分子,从钯膜的另一侧逸出。在钯膜表面,未被离解的气体就是不能透过的,故可利用钯膜获得高纯氢。虽然钯对氢有独特的透过性能,但纯钯的机械性能差,高温时易氧化,再结晶温度低,易使

醇的催化氧化

为你成材 尽我所能 - 37 - 师生同心 金石为开 已知: 1、 如何鉴别1-丙醇与2-丙醇。 2、 分子式为C 5H 12O 的醇,其中能被氧化为醛的结构是哪几种?能被氧化为酮的是哪几种?不能被氧化的是哪几种? 3、分子式为C 4H 8的烃可以发生如图转化: 其中E 、F 均呈酸性。 写出下列物质的结构简式: C 4H 8: C : D : E : F : C 4H 8 R —CH 2OH R —CHO ; 氧化 R’ R CH —OH 氧化 R ——R ’ O (酮); 则很难被氧化(R 、R ’、R ’’表示烃基)。 R —C —OH R ’ R ’’

为你成材 尽我所能 - 38 - 师生同心 金石为开 4、(2012房山期末1,16分)已知:Ⅰ. 质谱分析测得有机化合物A 的相对分子质量为92.5 ;其含碳、氢的质量分数分别为51.89% 、9.73% ,其余为氯。 Ⅱ. A 有如下转化关系: Ⅲ. 与羟基相连的碳上没有氢原子的醇(结构: )不能发生催化氧化反应。 Ⅳ. F 的核磁共振氢谱有两种峰,峰高比值为1:9 , 不能发生催化氧化反应。 Ⅴ. E 和G 都能和新制的Cu(OH)2悬浊液反应, H 是一种有果香味的液体。 写出下列物质的结构简式: F : C : B : A : D : E : G : H : 5、由选择合适的途径制备 ( C COOH CH 2 )。(写流程图) C=CH 3 CH 2 CH 2C=COOH

为你成材 尽我所能 - 39 - 师生同心 金石为开 6. (11东城期末)23.(14分)上海世博会英国馆――种子圣殿,由六万多根透明的亚克力[其分子式是(C 5H 8O 2)n ]杆构建而成。某同学从提供的原料库中选择一种原料X ,设计合成高分子亚克力的路线如下图所示: 原料库: a 、CH 2=CHCH 3 b 、CH 2=CHCH 2CH 3 c 、CH 2=CCH 3 , d 、CH 2CHCH 3 已知:① (不易被氧化成羧酸) ② 不易被氧化成醛或酮 ③ (R 、R ’、R ’’表示烃基) 写出下列物质的结构简式: X : A : B : C : D : E : F : 亚克力: R ——R ’(H) O HCN R ——R ’(H) OH CN H + /H 2O R ——R ’(H) OH COOH ’’ R —C —R ’ OH R ——R ’ O R ——R ’ OH [O] CH 3 CH 3

钯催化的插羰反应-060410

经典化学合成反应标准操作钯催化的插羰反应 编者:钱占山 药明康德新药开发有限公司化学合成部

Contents 1.前言...........................................................................2-3 2.插羰反应制备羧酸及其衍生物.......................................4-15 3.插羰反应制备羧酸实验操作..........................................15-16 4.插羰反应制备羧酸酯实验操作....................................16-19 5.插羰反应制备酰胺实验操作.......................................19-20 6.插羰反应制备醛 (20) 7.插羰反应制备醛实验操作………………………………………21-22 8.插羰反应制备酮………………………………………22-30 9.插羰反应制备酮实验操作………………………………………30-31

1. 前言 在有机合成中,钯催化的反应是一类特别有用的反应,它提供了一种形成碳-碳键的独特的方法。这类反应的优点:1、不需要加入其他氧化剂催化;2、只需催化量的钯催化剂。钯催化的插羰反应是这类反应中应用最为广泛的反应之一,在这里我们将重点介绍它。 众所周知,在格氏反应中单质镁金属与带有sp3杂化碳原子的有机卤化物(烷基卤化物)反应要比带有sp2杂化碳原子的有机卤化物(芳基和烯基卤化物)反应更容易。而与此相反,钯的络合物与含有sp2杂化碳原子的有机卤化物反应更容易。换句话说,烯基和芳基卤化物非常容易与Pd(0)发生氧化加成反应,从而生成含有钯-碳б-键的络合物中间体1;然后,不饱和化合物(例如:烯烃、共轭二烯、炔烃和一氧化碳等)插入到钯-碳键之间;最后,经过还原消去或者β-氢消去反应生成相应的目标化合物。与此同时,Pd(0)催化剂得以再生并开始新的催化循环。由此可见,正是因为生成了这种含有钯-碳б-键的络合物中间体,才使得接下来的插入和金属转移过程变成可能。 实验证明,Pd的配合物比较容易与碘化物和溴化物发生氧化加成反应。碘化物可以在不加入任何膦配体的条件下,只用Pd(dba)3、Pd(OAc)2甚至是Pd/C作催化剂即可发生反应。而溴化物的反应一般是需要膦配体的。但是氯化物在一般的条件下是非常惰性的,只有用较强给电子性的具有双配位基(bidentate)的配体(如dppp),同时在非常剧烈的条件下才能发生反应。例如氯苯的钯催化反应往往要加入Cr(CO)3,目的是利用它的强吸电子性活化Cl-C键。应该指出的是,为了中和反应生成的HX酸,碱(R3N、NaOAc、KOAc、Na2CO3、K2CO3等)的使用是必需的。 除了卤化物以外,类卤化物R-X = ArCO-Cl, ArSO2-Cl, Ar-N2+X-, R-OP(O)(OR)2, R-OSO2CF3 (OTf), R-OSO2R f (R f = perfluoroaikyl), R-OSO2F, R-OSO2CH3和Ar-ArI+是很好的离去基团,它们也能与Pd(0)发生氧化加成反应从而形成芳基和烯基钯配合物中间体。但是,这些离去基团对于Pd(0)的反应活性是各不相同的,它们中的某些化合物往往只能和某些特定的底物在非常特殊条件下发生反应。 最有用的类卤化物是酚的三氟甲磺酸芳基酯和从羰基化合物派生出来的三氟甲磺酸烯醇酯。芳酰基卤化物和磺酰基卤化物通过先与Pd(0)发生氧化加成反应,紧接着脱去CO和SO2就形成了芳基钯配合物。另外,苯的重氮盐是形成芳基钯配合物的最活泼反应源。 烷基卤化物和Pd(0)的氧化加成反应是非常缓慢的。而且,通过烷基卤化物的氧化

相关文档
最新文档