平波电抗器原理及应用(DOC)

平波电抗器原理及应用(DOC)
平波电抗器原理及应用(DOC)

平波电抗器用于整流以后的直流回路中。整流电路的脉波数总是有限的,在输出的整直电压中总是有纹波的。这种纹波往往是有害的,需要由平波电抗器加以抑制。直流输电的换流站都装有平波电抗器,使输出的直流接近于理想直流。直流供电的晶闸管电气传动中,平波电抗器也是不可少的。平波电抗器与直流滤波器一起构成高压直流换流站直流侧的直流谐波滤波回路。平波电抗器一般串接在每个极换流器的直流输出端与直流线路之间,是高压直流换流站的重要设备之一。

平波电抗器和直流滤波器一起构成直流T型谐波滤波网,减小交流脉动分量并滤除部分谐波,减少直流线路沿线对通信的干扰和避免谐波使调节不稳定。平波电抗器还能防止由直流线路产生的陡波冲击进入阀厅,使换流阀免遭过电压的损坏。

当逆变器发生某些故障时,可避免引起继发的换相失败。可减小因交流电压下降引起逆变器换相失败的机率。当直流线路短路时,在整流侧调节配合下,限制短路电流的峰值。电感值并不是越大越好,因为电感的增大对直流输电系统的自动调节特性有影响。

在直流输电系统中,当直流电流发生间断时,会产生较高过电压,对绝缘不利,使控制不稳定。平波电抗器通过限制由快速电压变化所引起的电流变化率来防止直流电流的间断,从而降低换流器的换相失败率。

表1供货范围及设备技术规格一览表

本设备招标书技术文件要采购的干式空心平波电抗器,其安装地点的实际外部条件见表1.1:设备外部条件一览表。投标方应对所提供的设备绝缘水平、温升等相关性能参数在工程实际外部条件下进行校验、核对,使所供设备满足实际外部条件要求及全工况运行要求。

表1.1 设备外部条件一览表(项目单位填写)

1.1 正常使用条件

1.1.1 周围空气温度

最高不超过40℃,且在24h内测得的平均温度不超过35℃。

最低温度不低于-10℃。

1.1.2 环境相对湿度(在25℃时)

日相对湿度平均值不大于95%;

月相对湿度平均值不大于90%。

应考虑凝露对设备的影响。

1.1.3 太阳辐射强度

投标方所供设备应考虑阳光辐射强度的影响,晴天中午的辐射强度为1000W/m2。

1.1.4 海拔高度

适用于设备的外绝缘,绝缘水平的设计规定海拔高度不超过1000m。

1.1.5 污秽

按IV级防污选取设备的爬电比距。

1.1.6 覆冰厚度

不超过10mm。

1.1.7 降雨量

年最大:2600mm

日最大:300mm

1.1.8 风速

正常使用条件:不超过35m/s

1.1.9 振动

耐受地震烈度规定为8度:

水平分量0.25g

垂直分量0.125g

本设备应能承受用三周正弦波的0.25g水平加速度和0.125g垂直加速度同时施加于支持结构最低部分时,在共振条件下所发生的动态地震应力,并且安全系数应大于1.67。

4.2 特殊使用条件

凡不满足4.1条正常使用条件之外的特殊条件,如环境温度、海拔、污秽等级等条件项目单位应在表4.1中明确,且应在招标书的相应技术条款及表11 中对有关技术参数及要求加以修正、说明,并在提交需求计划及招标书时向物资部门特别明确。

1.2.1 周围空气温度和湿度

对于酷热气候,应优先选用的最低和最高温度的范围规定为:-25℃~+55℃。

日相对湿度平均值不大于98%。

1.2.2 海拔高度

对于使用在海拔高于1000m 处的设备,其外绝缘在标准参考大气条件下的绝缘水平是将适用场所要求的绝缘耐受电压乘以海拔修正系数K a 。

系数K a 可按下式计算:

4

101.11

-?-=

H K a

式中:H 为投标方所供设备安装地点的海拔高度,以m 为单位。

注1:在任一海拔处,内绝缘的绝缘特性是相同的,不需采取特别的措施。关于外绝缘和内绝缘的定义见GB/T 311.2。

注2:对于低压辅助设备和控制设备,海拔低于2000m 时, 不需采取特别措施。如用于2000m 以上海拔,需采取的措施见GB/T 16935.1。

注3:海拔高度可参照下列要求确定:

a. 海拔在1000-2000m 范围,设备外绝缘水平按2000m 海拔修正;

b. 海拔在2000-2500m 范围,设备外绝缘水平按2500m 海拔修正;

c. 海拔在2500-3000m 范围,设备外绝缘水平按3000m 海拔修正;

d. 海拔高于3000m ,应考虑实际运行地点的环境,经专题研究后确定。

1.2.3 污秽

对于沿海严重污秽地区,达到III 级污秽时,考虑到未来调整爬距困难,可按IV 级选取设备爬电比距。

1.2.4 覆冰厚度

覆冰对20级不超过20mm ,对30级不超过30mm 。

1.2.5 其它参数

设备在其它特殊使用条件下使用时,用户应参照GB/T 4796、GB/T 4797、GB/T 4798的规定提出其环境参数。 2 技术要求 1.1 基本参数 1.1.1 基本外部要求

交流系统参数

1) 系统额定频率: 50Hz

2) 系统标称电压: 35kV

3) 系统最高运行电压: 40.5kV

4) 系统中性点接地方式: 不接地

直流系统参数

1)整流方式:12脉动整流

2)额定输出直流电压:±12.5kV

3)最高运行直流电压:±20kV

4)额定输出直流电流:2000A

5) 安装地点: 户外

1.1.2 技术要求

1.2设计与结构要求

1.2.1 接线板

a) 应配备单片平板式接线板, 并应设计为防电晕式。满足自身回路机械强度(安全系数不小于2.5倍)要求,并满足动、热稳定要求。若采用高强螺栓连接,应提供紧固扭矩的要求。厂方须在图纸中标明接线板的材料及结构形式、厚度、大小。接线板应能承受技术规范

的机械强度要求,接线板具体细节应在图纸中加以说明。接线板接触面的电流密度应小于

0.15A/mm2。

b) 电抗器应能耐受施加在其上面的连续和短时联合荷载,联合荷载应由其相应荷载分量的向量和来计算。设备长期作用的组合负荷不小于:设备自重+导线水平拉力+设备最大风载。长期作用的组合荷载安全系数不小于2.5;同时,施加在接线板上的纵向水平张力,因地震在设备上引起的动力荷载,设备承受的25%的最大风压和设备的重量。其安全系数不应低于1.67。

c) 端子板接线板横断面和接触面的长期允许电流不应小于额定电流的1.3 倍。端子板与连接线的连接部位的接触电阻应尽可能小,温升不应超过DL/T593标准规定的温升极限,并提供该试验下的连接方式。

1.2.2起吊设施

电抗器应设有起吊设施。

1.2.3 对其它设备和金属部件最小磁净距不形成封闭回路应由制造厂满足

1.2.4 制造厂应提供电抗器安装与装配的特殊材料

1.2.5 绝缘材料应能承受:

a) 震动或变化的机械应力。

b) 重复的膨胀和收缩。

1.2.6对材料及工艺的要求

设备、部件制造中所用的材料应该是新的、优质的、无缺陷的和无损伤的。其种类、成份、物理性能应按照最佳的工程实践, 并适合相应的设备、部件的用途。材料应符合本条件书所列的类型、技术规范和等级或与之等效。材料的详细规范,包括等级、牌号、类别均应在厂家提供审查的详图中表示出来。

所有零部件应符合规定尺寸并遵照核准图纸加工并具有互换性。所有结合面、基准面和金属部件应精加工。所有铸件在有螺帽处要经加工整平。图纸上要标明规定加工等级的代号。所有螺栓、螺帽和管件螺纹应符合“国际标准化组织”关于这方面的最新标准, 并完全符合国际计量规格的规定。

1.2.7 铸件要求

铸件要符合模型、外形工整、质量均匀、形态一致, 并经X光探伤证明无气孔砂眼、夹渣、缩孔、裂纹和其他缺陷, 并应依其用途充分处理干净。铸件上的重大缺陷不得进行修理、填堵和施焊。在铸件关键部位出现过量的杂质或合金分凝即应予报废, 在变换截面的地方应

配置构造上容许的最大限度的加强筋。

1.2.8铭牌标志

电抗器铭牌应符合国标,铭牌用不锈钢材料制成,字样、符号应清晰耐久,铭牌在设备正常运行时其安装位置应明显可见。铭牌至少应标出下列内容:

1) 国名。

2) 制造厂名(不以工厂所在地地名为厂名者,应同时标出地名)。

3) 电抗器名称。

4) 电抗器型号。

5) 标准代号。

6) 设备额定电压及最高电压。

7) 额定电流(A)。

8 )额定频率。

9) 设备种类:户内或户外,及允许使用的最高海拔。

10) 额定绝缘水平。

11) 额定电抗率。

12) 电抗器的总重。

13) 出厂序号。

14) 制造年月。

1.3专业接口要求

暂无。

3试验

根据相关国标和行标等有关标准及其补充说明进行各项试验,有关条款的特殊要求和补充应在试验期间遵守并执行。

3.1 型式试验

型式试验是为了验证所设计和制造的设备的性能是否能够达到相应产品标准的要求。

1) 绝缘电阻测量

2) 直流电阻测量

3) 阻抗值测量

4) 损耗测量

5) 温升试验

6) 匝间耐压试验

★3.2 出厂试验

出厂试验是为了发现产品所用材料和制造中的缺陷,它不应损伤产品的性能和可靠性。出厂试验应在整体组装后进行,应该对每台成品进行检验,以确保每台产品与已经通过型式试验的产品相一致。

1) 绝缘电阻测量

2) 直流电阻测量

3) 阻抗值测量

4) 损耗测量

3.3 现场交接试验

设备安装完好并完成所有的连接后,应进行现场交接试验。交接试验是为了确认设备在经过运输、储存、现场安装和/或调整等过程后是否存在损坏、各个单元的兼容性、装配是否正确。

1) 测量绕组连同套管的直流电阻

2) 绕组连同套管的交流耐压试验

4产品对环境的影响

制造厂应该提供有关设备对环境影响所需要的材料。任何已知的化学危险和环境危害应在手册或使用说明中明确。

制造厂应该对有关设备的不同材料的使用寿命和拆除的程序给予必要的指导,对再循环使用的可能性给予简要说明。

附录A-5 平波电抗器技术数据

1) 型式

2) 额定值

(1) 电感值:

每个电抗器的额定电感值mH _________

确定此电感值的主要准则_________

(2) 电流额定值:

连续运行额定值 A _________

连续过负荷额定值 A _________

2小时过负荷额定值 A _________ 3) 重量和尺寸:

重量kg _________

尺寸(m×m×m)_________

平波电抗器原理及应用(DOC)

平波电抗器用于整流以后的直流回路中。整流电路的脉波数总是有限的,在输出的整直电压中总是有纹波的。这种纹波往往是有害的,需要由平波电抗器加以抑制。直流输电的换流站都装有平波电抗器,使输出的直流接近于理想直流。直流供电的晶闸管电气传动中,平波电抗器也是不可少的。平波电抗器与直流滤波器一起构成高压直流换流站直流侧的直流谐波滤波回路。平波电抗器一般串接在每个极换流器的直流输出端与直流线路之间,是高压直流换流站的重要设备之一。 平波电抗器和直流滤波器一起构成直流T型谐波滤波网,减小交流脉动分量并滤除部分谐波,减少直流线路沿线对通信的干扰和避免谐波使调节不稳定。平波电抗器还能防止由直流线路产生的陡波冲击进入阀厅,使换流阀免遭过电压的损坏。 当逆变器发生某些故障时,可避免引起继发的换相失败。可减小因交流电压下降引起逆变器换相失败的机率。当直流线路短路时,在整流侧调节配合下,限制短路电流的峰值。电感值并不是越大越好,因为电感的增大对直流输电系统的自动调节特性有影响。 在直流输电系统中,当直流电流发生间断时,会产生较高过电压,对绝缘不利,使控制不稳定。平波电抗器通过限制由快速电压变化所引起的电流变化率来防止直流电流的间断,从而降低换流器的换相失败率。 表1供货范围及设备技术规格一览表

本设备招标书技术文件要采购的干式空心平波电抗器,其安装地点的实际外部条件见表1.1:设备外部条件一览表。投标方应对所提供的设备绝缘水平、温升等相关性能参数在工程实际外部条件下进行校验、核对,使所供设备满足实际外部条件要求及全工况运行要求。 表1.1 设备外部条件一览表(项目单位填写) 1.1 正常使用条件 1.1.1 周围空气温度 最高不超过40℃,且在24h内测得的平均温度不超过35℃。

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

什么叫电抗器

电抗器的简介及应用 一.电抗器的种类与概述 电抗器又称为扼流圈、电感器或铁芯电感器,在电子设备中应用极为广泛,品种也很繁多。通常可分为电流滤波扼流圈、交流扼流圈、电感线圈三种。 1.按线圈数量可分为:单相电抗器(1只或2只线圈);三相电抗器(3只线圈). 2.按铁芯型式可分为:空芯电抗器、铁芯电抗器两种,而铁芯电抗器又分为有气隙铁芯电抗器和无气隙铁芯电抗器。 二.常用电抗器的介绍与主要技术指标 1.电源滤波电抗器(单相电抗器、有气隙铁芯电抗器)。 用途:用于平滑整流后的直流成分,减小其波纹电压,以满足电子设备对直流电源的要求。 主要技术指标:电抗器名称、型号、电感量、直流电位、直流磁化电流、波纹电压、波纹频率、绝缘等级和环境温度。 2.单相(三相)交流电抗器(输入、输出电抗器) 用途:用于交流回路中,作为平衡、镇流、限流和滤波的一种铁芯电感器。 主要技术指标:电抗器名称、型号、电感量、额定工作电流、工作频率、绝缘等级、环境温度。 三.电抗器工作环境及绝缘等级的分类 1.绝缘等级: Y A E B F H C 90℃105℃120℃130℃155℃180℃180℃以上2.环境温度:-5℃~+40℃

如有特殊要求时,应保证电抗器最高工作温度小于绝缘等级极限温度。 3.海拔高度:≤2000m.要求高海拔时,允许最大电流相应降低如下图所示: 0 1000 2000 3000 4000 5000M 4.空气相对湿度:≤90% 5.绝缘水平: 额定绝缘(工作)电压 介电性能试验电压 AC 660V 及以下 2.5 KV 750V ~800V 3 KV 1200V 3.5 KV 6KV 25 KV /1min 10KV 35 KV/1min 35KV 85 KV/1min 四.常用基本名词的定义 1.电感量L (H ) 电抗器的电感量是相电感,是在规定频率下相电压降为Δμ时相电感值。 2.电抗百分比(%) 电抗器的电抗值与串连的电容器容抗值之比,以百分值表示。 3.电压降Δμ(V ) 电抗器通过额定电流In 时,电抗器的相电压降。 4.相对电压降μx (%) 电抗器相电压降Δμ与电网进线的相电压u 相的比值的百分值表示。 5.额定电压Un (V ) 20 40 60 80 100 % 87%

电抗器的工作原理及在电力系统中的作用

电抗器的工作原理及在电力系统中的作用电抗器的工作原理: 由于电力系统中大量使用电力电子器件,直流用电,变频用电等,产生了大量的谐波,使得看是简单的问题变得复杂了,用以补偿的电容器频繁损坏,有的甚至无法投入补偿电容器,当谐波较小时,可以用谐波抑制器,但系统中的谐波较高时,就要用串联电抗器了,放大谐波电流. 电抗率为4.5%~7%滤波电抗器,用于抑制电网中5次及以上谐波;电抗率为12%~13 %滤波电抗器,用于抑制电网中3次及以上谐波.电抗器装于柜内,应加装通风设备散热.电抗器能在额定电压的 1.35倍下长期运行,常用电抗器的电抗率种类有4.5%、5%、6%、7%、12%、13%等,电抗器的温升:铁芯85K,线圈95K,绝缘水平:3kV/1min,无击穿与闪络,电抗器在1.8倍额定电流下的电抗值,其下降值不大于5%,电抗器有三相、单相之分,三相电抗器任二相电抗值之差不大于±3%,电抗器可用于400V或600V系统,电抗器噪声等级,不大于50dB,电抗器耐温等级H级以上. 电抗器在电力系统中的作用: 电力系统中所采取的电抗器,常见的有串联电抗器和并联电抗器。串联电抗器主要用来限制短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。并联电抗器用来吸收电网中的容性无功,如500kV电网中的高压电抗器,500kV变电站中的低压电抗器,都

是用来吸收线路充电电容无功的;220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括:1)轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压。2)改善长输电线路上的电压分布。3)使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动,同时也减轻了线路上的功率损失。4)在大机组与系统并列时,降低高压母线上工频稳态电压,便于发电机同期并列。5)防止发电机带长线路可能出现的自励磁谐振现象。6)当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用单相快速重合闸。 一般串联电抗器电抗率的选择方法: 在实际工程应用中,我们会遇到因为电抗器的电抗率选择不当,至使系统中的谐波放大或与系统发生谐振,对电网造成干扰的问题,下面本人结合实际工程中的经验,浅介一般串联电抗器如何选择电抗率。 仅用于限制涌流时,电抗率宜取0.1%到1%;不考虑背景谐波时,当并联电容器装置接入电网处含有5次及以上谐波时,电抗率宜取4.4%到6%;当并联电容器装置接入电网处含有3次及以上谐波时,电抗率宜取12%;而对于背景谐波,配置电抗率应遵循远离原则,如背景含有5次谐波,宜配置电抗率为1%的电抗器。

平波电抗器的设计

平波电抗器 1 引言 高压直流(High Voltage DirectCurrent,HVDC)换流站采用半控型的晶闸管器件,利用相控进行交—直和直—交两种变换,将产生大量的高次谐波。目前HVDC换流装置一般采用12脉动换流桥,在换流站的交流侧将产生12n±1次电流特征谐波,n为自然数;在直流侧则产生12n次电压特征谐波。各种各样的不对称(如不等间隔的触发脉冲、母线电压不对称、相间换相电抗的不对称及变压器励磁电流)将产生少量额外的非特征谐波。换流站交流侧的谐波电流进入交流系统后,将使系统电压波形发生畸变并造成不良影响和危害。换流站直流侧的谐波电压将在直流线路上分布谐波电压和电流,使邻近的通信线路受到干扰。 滤波装置可抑制上述谐波。HVDC采用的滤波装置数量多、电压等级高、等效容量大,且一般为户外式。滤波装置在换流站的投资和占地面积中均占有相当大的比重。其中,滤波装置费用大约占HVDC总体投资的10% ~ 15%[1]。典型的HVDC拓扑结构如图1所示。 整流站与逆变站一般具有对称结构。在HVDC系统直流侧首先采用平波电抗器减小直流线路中电压和电流的谐波分量;但仅靠平波电抗器的作用还不能满足谐波治理的要求,还需另外装设滤波器。传统HVDC主要装设的是针对特征谐波的无源滤波器(Passive Filter,PF)。 2 直流侧滤波装置性能评估标准 HVDC采用架空输电线时,通信干扰是很严重的问题。由于电力线路和通信线路的相对传输功率水平相差悬殊,且HVDC特征谐波频带与普通线路通话频带重合,因此对通话清晰度有明显干扰。谐波对换流站其他装置的安全运行也有严重危害。 现在各国HVDC输电工程主要根据通信干扰程度评估线路谐波水平,常采用等效干扰电流I eq 指标。I eq 是与直流输电线上的各次谐波电流等效的单一频率(800Hz或1000Hz)电流,其产生的干扰可等效为各次谐波电流所产生的干扰,它由整流站和逆变站谐波电流共同产生,在整流站和逆变站出站处取得最大值,其定义式为 式中 m为考虑的最高次谐波次数,对于HVDC系统通常取值为100;I n 为第n次谐波电流的有效值; h n 为第n次谐波的耦合系数;P n 为频率的加权系数。h n 、P n 与频率的对应关系见文 [2]。 在直流系统处于双极、平衡运行情况下,I eq 的允许值分为:高标准(I eq 为100 ~ 300mA);中 等标准(I eq 为300 ~ 1000mA);低标准(I eq 超过1000mA)。对于单极运行的直流系统,该标准可 增大2 ~ 3倍。近年来,随着光纤通信的普及,以上标准也有逐渐放宽的趋势。

电抗器工作原理及作用(用途)

电抗器 懂得放手的人找到轻松,懂得遗忘的人找到自由,懂得关怀的人找到幸福!女人的聪明在于能欣赏男人的聪明。生活是灯,工作是油,若要灯亮,就要加油!相爱时,飞到天边都觉得踏实,因为有你的牵挂;分手后,坐在家里都觉得失重,因为没有了方向。

内容简介一:电抗器在电力系统中的作用 二:电抗器的分类 三:详细介绍及选用方法 四:各种电抗器的计算公式 五:经典问答 一:电抗器在电力系统中的作用

由于电力系统中大量使用电力电子器件,直流用电,变频用电等,产生了大量的谐波,使得看是简单的问题变得复杂了,用以补偿的电容器频繁损坏,有的甚至无法投入补偿电容器,当谐波较小时,可以用谐波抑制器,但系统中的谐波较高时,就要用串联电抗器了,放大谐波电流. 电抗率为4.5%~7%滤波电抗器,用于抑制电网中5次及以上谐波;电抗率为12%~13 %滤波电抗器,用于抑制电网中3次及以上谐波.电抗器装于柜内,应加装通风设备散热.电抗器能在额定电压的1.35倍下长期运行,常用电抗器的电抗率种类有4.5%、5%、6%、7%、12%、13%等,电抗器的温升:铁芯85K,线圈95K,绝缘水平:3kV/1min,无击穿与闪络,电抗器在1.8倍额定电流下的电抗值,其下降值不大于5%,电抗器有三相、单相之分,三相电抗器任二相电抗值之差不大于±3%,电抗器可用于400V或600V系统,电抗器噪声等级,不大于50dB,电抗器耐温等级H级以上. 信息来自:输配电设备网 电力系统中所采取的电抗器,常见的有串联电抗器和并联电抗器。串联电抗器主要用来限制短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。并联电抗器用来吸收电网中的容性无功,如500kV电网中的高压电抗器,500kV变电站中的低压电抗器,都是用来吸收线路充电电容无功的;220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括:1)轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压。2)改善长输电线路上的电压分布。3)使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动,同时也减轻了线路上的功率损失。4)在大机组与系统并列时,降低高压母线上工频稳态电压,便于发电机同期并列。5)防止发电机带长线路可能出现的自励磁谐振现象。6)当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用单相快速重合闸。 电力网中所采用的电抗器,实质上是一个无导磁材料的空心线圈。它可以根据需要,布置为垂直、水平和品字形三种装配形式。在电力系统发生短路时,会产生数值很大的短路电流。如果不加以限制,要保持电气设备的动态稳定和热稳定是非常困难的。因此,为了满足某些断路器遮断容量的要求,常在出线断路器处串联电抗器,增大短路阻抗,限制短路电流。 由于采用了电抗器,在发生短路时,电抗器上的电压降较大,所以也起到了维持母线电压水平的作用,使母线上的电压波动较小,保证了非故障线路上的用户电

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

饱和电抗器原理

饱和电抗器原理 摘要:以去年首次在中国投运的高压电动机磁控软起动装置为背景,介绍作为软起动装置执行元件的磁饱和电抗器,指明它实质上是一个开关,阐述它的作用、特点和分析方法。 一、引言: 饱和电抗器是一种饱和度可控的铁芯电抗器。50~70年代是磁饱和电抗器在电气自动化领域较盛行的时期[1,2,3]。它既可以作为放大器件,又可以作为执行元件。相对于电真空器件,它耐受恶劣环境的优点令人瞩目,相对于交磁放大机系统,它的静止性受到垂青。当时,国内外关于磁饱和电抗器和磁放大器的著述和相关新铁芯材料的研制报导屡见不鲜。在我国,在70年代已形成磁放大器产品系列[2]。70年代以后,以双极型电子器件和SCR为代表的电力电子器件逐渐在电气控制领域占统治地位。饱和电抗器因惯性较大、功率放大倍数较小等缺点而被排挤,其发展受阻。但是,饱和电抗器是一种既有长处又有短处的电力器件。在电阻炉炉温等较慢过程的控制中,以饱和电抗器为功率器件的系列产品仍然在使用。在如何将它应用在较快过程的控制中,人们的研究和探索仍在继续。也取得了一些可喜的成果 [3]。我认为,高压电动机软起动是一个能够使饱和电抗器扬长避短发挥重要作用的领域。 二、三相饱和电抗器的基本形式 三相饱和电抗器有多种形式,在图1中表示了裂芯式和传统式的两种。 图1(a)为裂芯式结构,三相分立,一相一个铁芯。挨近小截面的是直流绕组(共6个)。绕在直流绕组外面的是交流绕组(共3个)。两个直流绕组产生的磁通在两个小截面铁芯上形成环路。而交流绕组产生的磁通通过大截面铁芯形成环路。 图1(b)为传统式。直流绕组套住6个铁芯和6个交流绕组。交流绕组每相2个,串连连接。一相交流电流在2个铁芯上产生2个环路的磁通。2个环路的时钟方向相同。 图1列出的仅是有代表性的形式。其它的可行形式还很多,例如图1(a),若将交流绕组挪位,令它套住大截面铁芯,就演绎为另一种可行形式。 所有可行形式的共性是:

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 什么是传感器(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 传感器特性在检测系统中起到什么作用 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 传感器由哪几部分组成说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图所示。 传感器的性能参数反映了传感器的什么关系静态参数有哪些各种参数代表什么意义动态参数有那些应如何选择 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=℃、S2=mV、S3=V,求系统的总的灵敏度。 某线性位移测量仪,当被测位移由变到时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

DLK直流平波电抗器说明书样本

上海民恩电气有限公司 DLK系列直流平波电抗器 安装使用说明书 上海民恩电气有限公司 Shanghai Minen Electric Co.,Ltd. 非常感谢您选用民恩牌电抗器, 为了您正确使用本电抗器 请在使用前仔细阅读本说明书, 并妥善保存以供今后使用 直流电抗器 DC Reactors 一.产品概述Product Profile 直流平波电抗器用于整流器的直流侧, 直流电流流过这些电抗器。如果整流器连接导致直流电机的直流纹波过高, 那么就必须使用这些电抗器来实现无故障的换相并降低电机损耗。在不超过额定直流电流I dn 的情况下, 电抗器的电感L几乎是恒定的。 二.结构特点Construction Features

1.铁心采用优质低损耗冷轧硅钢片, 铁心柱由多个气隙分成均匀小段, 气隙 采用环氧层压玻璃布板作间隔, 气隙间及铁饼与铁轭间采用耐高温高强度粘接剂粘接, 以保证电抗气隙在运行过程中不发生变化, 同时有效减少铁芯饼之间的震动, 从而降低噪音。 2.线圈采用F/H级绝缘系统, 有良好的绝缘性能和耐温性能。 3.电抗器采用整体真空压力浸漆工艺, 经高温热烘固化后产品整体机械强度 高, 防潮性能好; 产品在运行中大大降低了噪声和振动, 有效提高了产品长期运行的可靠性。 4.温升低,损耗小。 三. 产品作用Product function 1.改进电容滤波造成的输入电流波形畦变。 2.减少和防止因冲击电流造成整流桥损坏和电容过热。 3.提高功率因素, 降低直流母线交流脉冲。 4.限制电网电压的瞬变。 四. 性能参数Performance Parameters 1. 额定工作电压: 400V-1200V/50Hz 2. 额定工作电流: 3A至1500A@40℃ 3. 抗电强度: 铁芯-绕组3000VAC/50Hz/5mA/10s无飞弧击穿 4. 绝缘电阻: >100MΩ 5. 电抗器噪音: <65dB 6. 防护等级: IP00 7. 绝缘等级: F/H级 8、产品执行标准: GB10229-88电抗器, JB9644-1999半导体电气传动用电

分裂电抗器原理

1前言 分裂电抗器是限流电抗器的一种。它与普通的限流电抗器一样,是一个空心或无导磁材料的感抗线圈。在配电系统中安装此种电抗器,可以限制该系统回路发生故障时的短路电流,从而降低断路器的开断电流容量,保证断路器的正常开断。空心式分裂电抗器的特点是其电抗值不随流经电流的变化而变化。目前,电流从100A到 5 000A 用于户内装置的分裂电抗器一般采用干式空气自冷的绕包式结构。这种电抗器按其安装排列方式可分为三种:三相垂直排列、两垂一并排列和三相水平排列。用支柱绝缘子将各相之间及其与基础之间进行连接。用于垂直排列的电抗器,中间相线圈的绕向与其上下两相线圈相反,而三相水平排列的电抗器其绕向相同。分裂电抗器与普通限流电抗器仅在出线端上有所区别。普通电抗器只有两个出线端,分裂电抗器有三个出线端。由中间的出线端将整个线圈分为两个部分,并称之为分裂电抗器的两臂,这两臂的绕向相同,但两臂中_的电流方向是相反的。 设 n为分裂电抗器每一臂的自感电抗,为两臂间的互感电抗,其值为( ) 厂c为以分数表示的互感系数,它取决于分裂电抗器的结构形式,通常 .厂c=0.4-0.6。在理想运行情况下,分裂电抗器的两臂通过大小相等、方向相反的电流。运行中,分裂电抗器每臂中的实际电抗为,由于两臂中的电流产生的磁场量是相互减弱的,所

以,X = . n为负值,这样, n n n=(I ) ”= (0.4-0.6)X ,如每臂的电压降为,则 U=/X=(0.4~ 0.6)/XH。由此可以说明理想运行情况下,分裂电抗器每臂的电压降仅为普通电抗器电压降dx )的0.4-0.6 倍。当分裂电抗器的一臂发生短路故障时如图4 所示。这时,强大的短路电流,K只通过分裂电抗器的短路臂,而另一臂仍为原有的负载电流,其值与另一臂短路电流相比则显得很小,因此可忽略其对短路臂的互感影响,短路一臂的电抗仍可认为是。这样,分裂电抗器在正常运行中每臂的电压降比普通电抗器小 0.4-0.6倍;而短路时短路臂电抗仍为n ,起到了限制短路电流的作用,这正是分裂电抗器的一大优点。 3出口电压偏移 在应用分裂电抗器时,还应注意到其在正常状态和短路状态时的电压变动范围,如图5所示。由于电抗器的电阻很小,电压降主要是由电流的无功分量在电抗器的感抗中产生的,所以,当忽略电压降的有功分量时,母线 I上的出口电压 U 可写成: t= 。_、/3,、/3,2 = 将等代人上式得: Ul= (,。 Izpfc): 100V 3 IH (Ilsi 一I2sin~zfc) 同理,对于母线Ⅱ上的出口电压有: U2= { (, 2sin ,lsin 式中 Q 分裂电抗器每臂的额定电抗百分数。厂一分裂电抗器每臂的自感电抗,Q . ~互感系数,fc=M/C L——分裂电抗器每臂的自感,H 一分裂电抗器两臂的互感,H 』厂分裂电抗器的额定电流,A ,,——母线 I的负载电流,A ,2.一母线Ⅱ的负

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

传感器原理及应用习题及答案

习题集及答案 第1章概述 1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义? 1.2 传感器由哪几部分组成?试述它们的作用及相互关系。 1.3传感器如何分类?按传感器检测的畴可分为哪几种? 答案 1.1答: 从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 1.2答: 组成——由敏感元件、转换元件、基本电路组成; 关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 1.3答:(略)答: 按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 第3章电阻应变式传感器 3.1 何为电阻应变效应?怎样利用这种效应制成应变片? 3.2 图3-31为一直流电桥,负载电阻R L趋于无穷。图中E=4V,R1=R2=R3=R4=120Ω,试 求:① R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=1.2Ω时,电桥输出电压U0=? ②R1、R2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U0=? ③R1、R2为金属应变片,如果感应应变大小相反,且ΔR1=ΔR2 =1.2Ω,

知识讲解 传感器(原理及典型应用)

传感器(原理及典型应用) 编稿:张金虎审稿:代洪 【学习目标】 1.知道什么是传感器,常见的传感器有哪些。 2.了解一些传感器的工作原理和实际应用。 3.了解传感器的应用模式,能够运用这一模式去理解传感器的实际运用。 4.了解传感器在生活、科技中的运用和发挥的巨大作用。 【要点梳理】 要点一、传感器 1.现代技术中,传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转化为电路的通断。把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。 2.传感器原理 传感器感受的通常是非电学量,如压力、温度、位移、浓度、速度、酸碱度等,而它输出的通常是电学量,如电压值、电流值、电荷量等,这些输出信号是非常微弱的,通常要经过放大后,再送给控制系统产生各种控制动作。传感器原理如下图所示。 3.传感器的分类 常用传感器是利用某些物理、化学或生物效应进行工作的。根据测量目的不同,可将传感器分为物理型、化学型和生物型三类。 物理型传感器是利用被测量物质的某些物理性质(如电阻、电压、电容、磁场等)发生明显变化的特性制成的,如光电传感器、力学传感器等。 化学型传感器是利用能把化学物质的成分、浓度等化学量转换成为电学量的敏感元件制成的。 生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器,生物或生物物质主要是指各种酶、微生物、抗体等,分别对应酶传感器、微生物传感器、免疫传感器等等。 要点二、光敏电阻 光敏电阻能够把光照强弱这个光学量转换为电阻大小这个电学量,一般随光照的增强电阻值减小。 要点诠释:光敏电阻是用半导体材料制成的,硫化镉在无光时,载流子(导电电荷)极少,导电性能不好,随着光照的增强,载流子增多,导电性能变好。 要点三、热敏电阻和金属热电阻 1.热敏电阻 热敏电阻用半导体材料制成,其电阻值随温度变化明显。如图为某一热敏电阻的电阻—温度特性曲线。

并联电抗器及并联电抗器的作用

并联电抗器及并联电抗器的作用 并联电抗器 一般接在超高压输电线的末端和地之间,起无功补偿作用。并联连接在电网中,用于补偿电容电流的电抗器。 发电机满负载试验用的电抗器是并联电抗器的雏型。铁心式电抗器由于分段铁心饼之间存在着交变磁场的吸引力,因此噪音一般要比同容量变压器高出10dB左右。 220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括: 一、使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动同时也减轻 了线路上的功率损失。 二、改善长输电线路上的电压分布。 三、在大机组与系统并列时降低高压母线上工频稳态电压,便于发电机同期并列。 四、防止发电机带长线路可能出现的自励磁谐振现象。 五、当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容, 以加速潜供电流自动熄灭,便于采用。 六、轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压。 并联电抗器的作用 对超高压远距离输电线路而言,空载或轻载时线路电容的充电功率是很大的,通常充电功率随电压的平方面急剧增加,巨大的充电功率除引起上述工频电压升高现象之外,还将增大线路的功率和电能损耗以及引起自励磁,同期困难等问题。装设并联电抗器可以补偿这部分充电功率。 有利于消除发电机的自励磁。 当同步发电机带容性负载(远距离输电线路空载或轻载运行)时,发电机的电压将会自发地建立而不与发电机的励磁电流相对应,即发电机自励磁,此时系统电压将会升高,通过在长距离高压线路上接入并联电抗器,则可以改变线路上发电机端点的出口阻抗,有效防止发电机自励磁。 削弱空载或轻载时长线路的电容效应所引起的工频电压升高。 并联电抗器的中性点经小抗接地的方法来补偿潜供电流,从而加快潜供电弧的熄灭。 这种电压升高是由于空载或轻载时,线路的电容(对低电容和相间电容)电流在线路的

最新传感器原理及应用试题库

一:填空题(每空1分) 1 1.依据传感器的工作原理,传感器分敏感元件,转换元2 件,测量电路三个部分组成。 3 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。4 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应5 可以分为外光电效应,内光电效应,热释电效应三种。 6 4.光电流与暗电流之差称为光电流。 7 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域内。 8 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式9 应变计和箔式应变计结构。 10 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在11 后坡区与距离的平方成反比关系。 12 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温13 度传感器。 14 9.画出达林顿光电三极管内部接线方式: U C E 15 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定16 义为:传感器输出量的变化值与相应的被测量的变化值之比,用公17 式表示 k(x)=Δy/Δx 。 18 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特19

性的一种度量。按照所依据的基准之线的不同,线性度分为理论线性度、20 端基线性度、独立线性度、最小二乘法线性度等。最常用的是最21 小二乘法线性度。 22 12.根据敏感元件材料的不同,将应变计分为金属式和半导体23 式两大类。 24 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信25 息变换过程。 26 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法27 电桥补偿法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 28 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 29 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳30 定性。 31 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效32 应,入射光强改变物质导电率的物理现象称为内光电效应。 33 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 34 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随35 频率变化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有36 关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 37 20.内光电效应可分为光电导效应和光生伏特效应。 38 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测39 量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和40 转换元件组成。 41

平波电抗器

表1供货范围及设备技术规格一览表 本设备招标书技术文件要采购的干式空心平波电抗器,其安装地点的实际外部条件见表1.1:设备外部条件一览表。投标方应对所提供的设备绝缘水平、温升等相关性能参数在工程实际外部条件下进行校验、核对,使所供设备满足实际外部条件要求及全工况运行要求。 表1.1 设备外部条件一览表(项目单位填写) 1.1 正常使用条件 1.1.1 周围空气温度

最高不超过40℃,且在24h内测得的平均温度不超过35℃。 最低温度不低于-10℃。 1.1.2 环境相对湿度(在25℃时) 日相对湿度平均值不大于95%; 月相对湿度平均值不大于90%。 应考虑凝露对设备的影响。 1.1.3 太阳辐射强度 投标方所供设备应考虑阳光辐射强度的影响,晴天中午的辐射强度为1000W/m2。 1.1.4 海拔高度 适用于设备的外绝缘,绝缘水平的设计规定海拔高度不超过1000m。 1.1.5 污秽 按IV级防污选取设备的爬电比距。 1.1.6 覆冰厚度 不超过10mm。 1.1.7 降雨量 年最大:2600mm 日最大:300mm 1.1.8 风速 正常使用条件:不超过35m/s 1.1.9 振动 耐受地震烈度规定为8度: 水平分量0.25g 垂直分量0.125g 本设备应能承受用三周正弦波的0.25g水平加速度和0.125g垂直加速度同时施加于支持结构最低部分时,在共振条件下所发生的动态地震应力,并且安全系数应大于1.67。 4.2 特殊使用条件 凡不满足4.1条正常使用条件之外的特殊条件,如环境温度、海拔、污秽等级等条件项目单位应在表4.1中明确,且应在招标书的相应技术条款及表11 中对有关技术参数及要求加以修正、说明,并在提交需求计划及招标书时向物资部门特别明确。 1.2.1 周围空气温度和湿度 对于酷热气候,应优先选用的最低和最高温度的范围规定为:-25℃~+55℃。

相关文档
最新文档