非线性整数规划的蚁群算法

非线性整数规划的蚁群算法
非线性整数规划的蚁群算法

基于序列二次规划算法的再入轨迹优化研究

航 天 控 制Aer os pace Contr ol Dec 12009Vol 127,No .6 基于序列二次规划算法的再入轨迹优化研究 3 郑总准1  吴  浩2  王永骥 1 1.华中科技大学控制科学与工程系,武汉430074 2.北京航天自动控制研究所,北京100854 摘 要 介绍了序列二次规划算法在飞行器再入轨迹优化问题中的应用。首先 引入了能量替代变量对无量纲运动方程进行推导,使得运动方程和优化问题易于处理,考虑严格的过程约束和终端约束,以攻角和倾侧角为控制变量,总加热量最小为性能指标;然后通过直接配点法将最优控制问题转化为非线性规划问题,选取各节点的状态量和控制量作为优化参数;最后应用序列二次规划算法对非线性规划问题进行求解。针对多约束的再入飞行器的轨迹优化时对初值敏感的问题,提出一种参考轨迹快速规划算法,提高了优化速度。仿真结果表明提出的方法能够较快地搜索到最优轨迹,满足所有约束且落点精度高。关键词 轨迹优化;非线性规划;配点法;序列二次优化;参考轨迹中图分类号:V412 文献标识码:A 文章编号:100623242(2009)0620008206 3国家自然科学基金(60674105);教育部科研培育项目(20081383)和航天支撑基金(2008)资助 收稿日期:2008212212 作者简介:郑总准(1983-),男,福建福州人,博士研究生,研究方向为飞行器轨迹优化、制导与控制;吴 浩(1980-),男,湖北武汉人,博士,研究方向为飞行器制导与控制;王永骥(1955-),男,江西吉安人,教授,博士生导师,研究方向为网络控制、飞行器制导与控制。 Reen try Tra jectory O pti m i za ti on Usi n g Sequen ti a l Quadra ti c Programm i n g Z HE NG Z ongzhun 1  WU Hao 2  WANG Yongji 1 1.Huazhong University of Science and Technol ogy,W uhan 430074,China 2.Beijing Aer os pace Aut omati on Contr ol I nstitute,Beijing 100854,China Abstract Sequen tial quadratic programm ing for trajectory opti m iza tion of reentry vehicle is proposed . F irstly,Equations of m otion a re nor m a lized and an independen t variable is introduced to reduce the difficul 2ty of iterative co m putation .W ith the angle of a ttack and the bank ang le as control variables,the opti m al control proble m is set to m ini m ize hea t index,considering strict process and ter m inal constraints .A nd then,by choosing states and controls of discrete nodes as param eters,the opti m al control proble m is transfor m ed into a nonlinear programm ing proble m using direct colloca tion m ethod .F inally,sequential quadratic pro 2gramm ing is presented for solving the non linea r programm ing proble m.A ccord ing to the sensitivity to initial value in trajectory opti m ization for reen try vehicles w ith m ulti 2constraint,this paper develops a rapid refer 2ence trajectory prog ramm ing strategy .S i m ulation results sho w that the opti m al trajectory can consistently a 2chieve the desired target conditions w ithin allo w able tolerances and satisfy all the other constraints effectively . Key words Tra jectory opti m ization;N onlinear prog ramm ing;D irect colloca tion m ethod;Sequential ? 8?

非线性规划的粒子群算法

XX大学 智能优化算法课内实验报告书 院系名称: 学生姓名: 专业名称: 班级: 学号: 时间:

非线性规划问题的粒子群算法 1.1背景介绍 1.1.1 非线性规划简介 具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要的分支,非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的机制问题且目标函数和约束条件至少有一个是未知量的非线性函数,目标函数和约束条件都是线性函数的情形则属于线性规划。 非线性规划是20世纪50年代才开始形成的一门新兴学科。1951年H.W库恩和A.W塔克发表的关于最优性条件的论文是非线性规划正式诞生的一个重要标志。在50年代可得出了可分离规划和二次规划的n种解法,它们大都是以G.B.丹齐克提出的解线性规划的单纯形法为基础的。50年代末到60年代末出现了许多解非线性规划问题的有效的算法,70年代又得到进一步的发展。非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。 非线性规划问题广发存在于科学与工程领域,是一类比较难以解决的优化问题,没有普遍使用的解法。传统的求解该问题的方法(如罚函数,可行方向法,以及变尺度法等)是基于梯度的方法所以目标函数与约束式必须是可微的,并且这些方法只能保证求的局部最优解。 1.1.2 粒子群算法简介 粒子群算法(Particle Swarm optimization,PSO)的基本概念源于对于鸟群捕食行为的简化社会模型的模拟,1995年由Kenndy和Eberhart等人提出,它同遗传算法类似,通过个体间的协作和竞争实现全局搜索系统初始化为一组随机解,称之为粒子。通过粒子在搜索空间的飞行完成寻优,在数学公式中即为迭代,它没有遗传算法的交叉及变异算子,而是粒子在解空间追随最优的粒子进行搜索。 PSO算法的改进主要在参数选择、拓扑结构以及与其他优化算法相融合方面。据此当前典型的改进算法有:自适应PSO算法、模糊PSO算法、杂交PSO 算法、混合粒子算法(HPSO)和离散PSO算法等等。其中自适应和模糊PSO 算法是EberhartShi研究了惯性因子ω对优化性能的影响,发现较大的ω值有利于跳出局部极小点,较小的ω值有利于算法的收敛。自适应PSO算法通过线性地减少ω值动态的调整参数ω,而模糊PSO算法则在此基础上利用模糊规则动态调

二次规划起作用集方法

《非线性规划》课程设计 题目:二次规划起作用集方法院系:数理学院应用数学系 专业:数学与应用数学 姓名学号:119084112 数112 指导教师: 日期:2014年6月19日

摘要 二次规划(QP)是指目标函数为决策变量x的二次函数,而约束函数是线性函数的非线性规划.二次规划规划问题是最简单的一类非线性约束优化问题,并且某些非线性规划可以转化为求解一系列二次规划问题,因此二次规划的求解方法也是求解非线性规划的基础之一. 关键词:二次规划;起作用集;乘子向量 Abstract Quadratic programming (QP) refers to the objective function for the quadratic function of the decision variables x, and the constraint function is a linear function of nonlinear programming, quadratic programming problem is the simplest nonlinear constraint optimization problems, and some nonlinear programming can be transformed into solving a series of quadratic programming problem, so the solving methods of quadratic programming is also one of the basis of solving nonlinear programming. Keywords: Quadratic programming; Work set; Multiplier vector

非线性规划理论和算法

非线性最优化理论与算法 第一章引论 本章首先给出了一些常见的最优化问题和非线性最优化问题解的定义,并且根据不同的条件对其进行了划分。接着给出了求解非线性优化问题的方法,如图解法等,同时又指出一个好的数值方法应对一些指标有好的特性,如收敛速度与二次终止性、稳定性等。随后给出了在非线性最优化问题的理论分析中常用到的凸集和凸函数的定义和有关性质。最后给出了无约束优化最优性条件。 第二章线搜索方法与信赖域方法 无约束优化的算法有两类,分别是线搜索方法和信赖域方法。本章首先给出了两种线搜索方法即精确线搜索方法和非精确线搜索方法。线搜索方法最重要的两个要素是确定搜索方向和计算搜索步长,搜索步长可确保下降方法的收敛性,而搜索方向决定方法的收敛速度。 精确线搜索方法和非精确线搜索方法 对于精确线搜索方法,步长ακ满足 αk=arg min ?x k+αd k α≥0 这一线搜索可以理解为αk是f(x k+αd k)在正整数局部极小点,则不论怎样理解精确线搜索,它都满足正交性条件: d k T??(x k+αk d k)=0 但是精确搜索方法一般需要花费很大的工作量,特别是当迭代点远离问题的解时,精确的求解问题通常不是有效的。而且有些最优化方法,其收敛速度并不依赖于精确搜索过程。对于非精确搜索方法,它总体希望收敛快,每一步不要求达到精确最小,速度快,虽然步数增加,则整个收敛达到快速。书中给出了三种常用的非精确线搜索步长规则,分别是Armijo步长规则、Goldstein步长规则、Wolfe步长规则。第一个步长规则的不等式要求目标函数有一个满意的下降量,第二个不等式控制步长不能太小,这一步长规则的第二式可能会将最优步长排除在步长的候选范围之外,也就是步长因子的极小值可能被排除在可接受域之外。但Wolfe步长规则在可接受的步长范围内包含了最优步长。在实际计算时,前两种步长规则可以用进退试探法求得,而最后一种步长规则需要借助多项式插值等方法求得。紧接着,又介绍了Armijo和Wolfe步长规则下的下降算法的收敛性。 信赖域方法 线性搜索方法都是先方向再步长,即先确定一个搜索方向d k,然后再沿着这个搜索方向d k选择适当的步长因子αk,新的迭代点定义为x k+1=x k+αk d k。与线搜索方法不同,信赖域方法是先步长再方向,此方法首先在当前点附近定义目标函数的一个近似二次模型,然后利用目标函数在当前点的某邻域内与该二次模型的充分近似,取二次模型在该邻域内的最优值点来产生下一迭代点。它把最优化

遗传算法解决非线性规划问题的Matlab程序

通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab优 化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令 人满意的解。这时就需要针对问题设计专门的优化算法。下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考! 模型的形式和适应度函数定义如下: nun £ =迟叼匸[(1_冏)督 i-1 /-I J=K乙员-??严丿=12 M…严 ▼ 0 或1* 适应度函数为3 Fi tn叱O)=》〔?巾1口{>?(卡(£)一/;0?门))转幷亠 Z j'-i 50 4 S0 其中比=2、即士£ = £ =瓦%■,口(1-务),马;j^ = s = ■ x v' y- to.8,02)., /-I i-L i-1 E 这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其 中将多目标转化为单目标采用简单的加权处理。 fun ctio n Fit ness=FITNESS(x,FARM,e,q,w) %%适应度函数 %输入参数列表 % x 决策变量构成的 4X50的0-1矩阵 % FARM 细胞结构存储的当前种群,它包含了个体x

% e 4 X50的系数矩阵 % q 4 X50的系数矩阵 % w 1 X50的系数矩阵 %% gamma=0.98; N=length(FARM);% 种群规模 F1=zeros(1,N); F2=zeros(1,N); for i=1:N xx=FARM{i}; ppp=(1-xx)+(1-q).*xx; F1(i)=sum(w.*prod(ppp)); F2(i)=sum(sum(e.*xx)); end ppp=(1-x)+(1-q).*x; f1=sum(w.*prod(ppp)); f2=sum(sum(e.*x)); Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(min([sign(f2- F2);zeros(1,N)])); 针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方 function [Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm) %% 求解 01 整数规划的遗传算法 %% 输入参数列表

第5讲 整数规划、非线性规划、多目标规划1

第5讲整数规划、非线性规划、多目标规划 一、整数规划 1、概念 数学规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。 整数规划的分类:如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类:1)变量全限制为整数时,称纯(完全)整数规划。 2)变量部分限制为整数的,称混合整数规划。 2、整数规划特点 (i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。

例1原线性规划为 2 1min x x z +=s.t. ?? ?≥≥=+0 ,05422121x x x x 其最优实数解为:01=x ,4 52=x , 4 5min = z ③有可行解(当然就存在最优解),但最优值变差。例2原线性规划为 2 1min x x Z +=s.t. ?? ?≥≥=+0 ,06422121x x x x 其最优实数解为:01=x ,2 32=x ,2 3min = z 若限制整数得:11=x ,12=x , 2 min =z 。 (ii )整数规划最优解不能按照实数最优解简单取整而获得。

3、0-1整数规划 0?1型整数规划是整数规划中的特殊情形,它的变量 j x 仅取值 0或1。这时 j x 称为 0?1变量,或 称二进制变量。j x 仅取值0或1这个条件可由下述约束条件: 1 0≤≤j x ,且为整数 所代替,是和一般整数规划的约束条件形式一致的。在实际问题中,如果引入0?1变量,就可以把有各种情况需要分别讨论的线性规划问题统一在一个问题中讨论了。 引入10-变量的实际问题: (1)投资场所的选定——相互排斥的计划 例3某公司拟在市东、西、南三区建立门市部。拟议中有7个位置(点))7,,2,1( =i A i 可供选择。规定 在东区:由321,,A A A 三个点中至多选两个;在西区:由54,A A 两个点中至少选一个;

二次规划问题

序列二次规划法 求解一般线性优化问题: 12min (x) h (x)0,i E {1,...,m }s.t.(x)0,i {1,...,m } i i f g I =∈=?? ≥∈=? (1.1) 基本思想:在每次迭代中通过求解一个二次规划子问题来确定一个下降方向,通过减少价值函数来获取当前迭代点的移动步长,重复这些步骤直到得到原问题的解。 1.1等式约束优化问题的Lagrange-Newton 法 考虑等式约束优化问题 min (x) s.t.h (x)0,E {1,...,m} j f j =∈= (1.2) 其中:,n f R R →:()n i h R R i E →∈都为二阶连续可微的实函数. 记1()((),...,())T m h x h x h x =. 则(1.3)的Lagrange 函数为: 1(,)()*()()*()m T i i i L x u f x u h x f x u h x ==-=-∑ (1.3) 其中12(,,...,)T m u u u u =为拉格朗日乘子向量。 约束函数()h x 的Jacobi 矩阵为:1()()((),...,())T T m A x h x h x h x =?=??. 对(1.3)求导数,可以得到下列方程组: (,)()A()*(,)0(,)()T x u L x u f x x u L x u L x u h x ??? ???-?===?????-???? (1.4) 现在考虑用牛顿法求解非线性方程(1.4). (,)L x u ?的Jacobi 矩阵为: (,)()(,)() 0T W x u A x N x u A x ?? -= ?-??

非线性规划模型

非线性规划模型 在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解。实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。 一、非线性规划的分类 1无约束的非线性规划 当问题没有约束条件时,即求多元函数的极值问题,一般模型为 ()min 0 x R f X X ∈??? ≥?? 此类问题即为无约束的非线性规划问题 1.1无约束非线性规划的解法 1.1.1一般迭代法 即为可行方向法。对于问题()min 0x R f X X ∈??? ≥?? 给出)(x f 的极小点的初始值)0(X ,按某种规律计算出一系列的 ),2,1()( =k X k ,希望点阵}{)(k X 的极限*X 就是)(x f 的一个极小点。 由一个解向量) (k X 求出另一个新的解向量)1(+k X 向量是由方向和长度确定的,所以),2,1()1( =+=+k P X X k k k k λ 即求解k λ和k P ,选择k λ和k P 的原则是使目标函数在点阵上的值逐步减小,即 .)()()(10 ≥≥≥≥k X f X f X f 检验}{)(k X 是否收敛与最优解,及对于给定的精度0>ε,是否 ε≤?+||)(||1k X f 。 1.1.2一维搜索法 当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。一维搜索的方法很多,常用的有: (1)试探法(“成功—失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等);

第一章 非线性规划理论(1)

第一章非线性规划理论(1) 第一节非线性优化规划模型及其解的概念, 第二节凸函数与凸规划, 第三节下降迭代算法 第四节一维搜索方法 第一节非线性优化规划模型及其解的概念 线性规划的目标函数和约束条件都是其自变量的线性函数,如果目标函数或约束条件中含有自变量的非线性函数,则这样的规划问题就是非线性规划。有些实际问题可以表示成线性规划,但有些实际问题则需要用非线性规划模型来表达。 例1 求,使得 (1) 该数学模型中目标函数是一个二次函数,因此它是一个非线性规划。 又如:求,使得 (2) 是一个非线性规划。 1.1 非线性规划问题的数学模型 非线性规划数学模型的一般形式为 (3) 其中是维欧氏空间中的向量(点),是目标函数,为约束条件,、都是元实函数。 说明: (1)由于我们有,当需使目标函数极大化时,只需使其负值极小化即可,因而仅考虑极小化的情况不失一般性。 (2)若某约束条件是“”不等式,仅需要在约束两端乘以“-1”,即可将这个约束变为“”。又由于约束等价于 因而我们可以将非线性规划模型写成下面的形式: (4) 或 (5) 模型中的称为非线性规划的可行域,而中的元素称为可行解。 1.2 二维问题的图解法 当只有两个决策变量时,求解非线性规划也可以像线性规划那样用图解法。 例2

解:先画出可行域 X2 A B C D O x1 可行域 等值线 最优解 画出抛物线 , 即图中的曲线,再画出 直线,即图中的 直线,得可行域。 画出等值线 ,图中有一条等值线与抛物线 交于B点,当动点从A点出发延 抛物线移动时,动点从A移向B时,目标函数值下降,动点从B移向C 时,目标函数值上升,所以在可行域范围内B点的函数值最小,所以B 点是一个极小点。当动点由C点向D点移动时,目标函数再次下降,在D(4,1)点目标函数值最小,所以D点是最优解。 本例中,B点称为局部极小点,而D点称为全局极小点,即最小点。 1.3 非线性规划的基本概念 1.3.1关局部极小和全局极小的定义 设为定义在维欧氏空间的某一个区域上的元实函数,对于,如果存在某一个使得所有与距离小于的都有,则称为在上的局部极小点,而为局部极小值。如果当时,有,则称为在上的严格局部极小点,而为严格局部极小值。 设为定义在维欧氏空间的某一个区域上的元实函数,如果存在,对于所有,都有,则称为在上的全局极小点,而为全局极小值。如果当时,有,则称为在上的严格全局极小点,而为严格全局极小值。

非线性规划

非线性规划(nonlinear programming) 1.非线性规划概念 非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是线性函数的情形则属于线性规划。 2.非线性规划发展史 公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。其倒数至今在优选法中仍得到广泛应用。在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。例如阿基米德证明:给定周长,圆所包围的面积为最大。这就是欧洲古代城堡几乎都建成圆形的原因。但是最优化方法真正形成为科学方法则在17世纪以后。17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。以后又进一步讨论具有未知函数的函数极值,从而形成变分法。这一时期的最优化方法可以称为古典最优化方法。 最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。反之,某些最优化方法可适用于不同类型的模型。最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。 (1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。 (2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。此时可采用直接搜索的方法经过若干次迭代搜索到最优点。这种方法常常根据经验或通过试验得到所需结果。对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。 (3)数值计算法:这种方法也是一种直接法。它以梯度法为基础,所以是一种解析与数值计算相结合的方法。 (4)其他方法:如网络最优化方法等。

基于序列二次规划算法的发动机性能寻优控制

收稿日期:2004-10-24;修订日期:2005-03-07基金项目:航空科学基金资助(04C 52019) 作者简介:孙丰诚(1979-) 男 山东泰安人 南京航空航天大学能源与动力学院博士 主要从事发动机数字控制方面研究. 第20卷第5期2005年10月 航空动力学报 Journal of Aerospace Power Vol.20No.5 : :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::Oct.2005 文章编号:1000-8055(2005)05-0862-06 基于序列二次规划算法的发动机 性能寻优控制 孙丰诚 孙健国 (南京航空航天大学能源与动力学院 江苏南京210016) 摘要:提出用非线性序列二次规划(SOP Seguential Ouadratic Programming )算法解决发动机性能寻优控制问题,分析了线性规划(LP Linear Programming )算法用于发动机性能寻优的固有缺陷以及SOP 算法的优点,给出了SOP 算法与LP 算法用于最大推力模式和最小油耗模式仿真结果对比曲线,数字仿真实验的结果表明 SOP 算法具有比LP 算法更好的优化效果 在工程实际中有很大的应用潜力,关 键 词:航空~航天推进系统;序列二次规划;线性规划;涡扇发动机;性能优化;最大推力模式; 最小油耗模式 中图分类号:V 231 文献标识码:A Aero -Engine Perf ormance Seeking control Based on Seguential Ouadratic Programming Algorithm SUN Feng -cheng SUN Jian -guo (College of energy and Power engineering Nanjing University of Aeronautics and Astronautics Beijing 210016 China )Abstract :A methodology based on the nonlinear algorithm of Seguential Ouadratic Programming (SOP )in aero -engine performance seeking control was presented .This article is aimed at analyzing the inherent limitation of Linear Programming used for aero -engine performance seeking control and to solve the problem of aero -engine performance optimization using nonlinear SOP method .The results of numerical simulations of maximum thrust mode and minimum fuel consumption mode using SOP and LP respectively show that SOP algorithm has better optimization result than LP algorithm .SOP algorithm has great application potential in engineering . Ke !words :aerospace propulsion system ; Seguential Ouadratic Programming (SOP )algorithm ;Linear Programming (LP )algorithm ;turbofan engine ;performance optimization ;maximum thrust mode ;minimum fuel consumption mode 推进系统性能优化是飞"推综合控制#1$ 研究 中非常重要的一个方面 系统性能优化可以在保 证发动机安全稳定工作的同时 最大限度地提高发动机的工作潜力,在不同飞行任务段 有不同的

非线性规划的概念和原理

第五章 非线性规划的概念和原理 非线性规划的理论是在线性规划的基础上发展起来的。1951年,库恩(H.W.Kuhn )和塔克(A.W.Tucker )等人提出了非线性规划的最优性条件,为它的发展奠定了基础。以后随着电子计算机的普遍使用,非线性规划的理论和方法有了很大的发展,其应用的领域也越来越广泛,特别是在军事,经济,管理,生产过程自动化,工程设计和产品优化设计等方面都有着重要的应用。 一般来说,解非线性规划问题要比求解线性规划问题困难得多,而且也不像线性规划那样有统一的数学模型及如单纯形法这一通用解法。非线性规划的各种算法大都有自己特定的适用范围。都有一定的局限性,到目前为止还没有适合于各种非线性规划问题的一般算法。这正是需要人们进一步研究的课题。 5.1 非线性规划的实例及数学模型 [例题6.1] 投资问题: 假定国家的下一个五年计划内用于发展某种工业的总投资为b 亿元,可供选择兴建的项目共有几个。已知第j 个项目的投资为j a 亿元,可得收益为j c 亿元,问应如何进行投资,才能使盈利率(即单位投资可得到的收益)为最高? 解:令决策变量为j x ,则j x 应满足条件() 10j j x x -= 同时j x 应满足约束条件 1 n j j j a x b =≤∑ 目标函数是要求盈利率()1121 ,,,n j j j n n j j j c x f x x x a x === ∑∑L 最大。 [例题6.2] 厂址选择问题: 设有n 个市场,第j 个市场位置为() ,j j p q ,它对某种货物的需要量为j b ()1,2,,j n =L 。 现计划建立m 个仓库,第i 个仓库的存储容量为i a ()1,2,,i m =L 。试确定仓库的位置,使各仓库对各市场的运输量与路程乘积之和为最小。 解:设第i 个仓库的位置为(),i i x y ()1,2,,i m =L ,第i 个仓库到第j 个市场的货物供应量为i j z ()1,2,,,1,2,,i m j n ==L L ,则第i 个仓库到第j 个市场的距离为

多目标非线性规划程序Matlab完整版

多目标非线性规划程序 M a t l a b Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

f u n c t i o n[e r r m s g,Z,X,t,c,f a i l]= BNB18(fun,x0,xstat,xl,xu,A,B,Aeq,Beq,nonlcon,setts,options1,options2,maxSQPit,varargin ); %·Dêy1£Díóa·§¨μü′ú·¨£úDê1ó£DèOptimization toolbox §3 % Minimize F(x) %subject to: xlb <= x <=xub % A*x <= B % Aeq*x=Beq % C(x)<=0 % Ceq(x)=0 % % x(i)éaáD±á£êy£ò1ì¨μ % ê1óê %[errmsg,Z,X]=BNB18('fun',x0,xstat,xl,xu,A,B,Aeq,Beq,'nonlcon',setts) %fun£o Mt£±íê×Dˉ±êoˉêyf=fun(x) %x0: áDòᣱíê±á3μ %xstat£o áDòá£xstat(i)=0±íêx(i)aáD±á£1±íêêy£2±íê1ì¨μ %xl£o áDòᣱíê±á %xu: áDòᣱíê±áé %A: ó, ±íêD2μèêêμêy %B: áDòá, ±íêD2μèêêé %Aeq: ó, ±íêDμèêêμêy %Beg: áDòá, ±íêD2μèêêóòμ %nonlcon: Mt£±íê·Dêoˉêy[C,Ceq]=nonlin(x),DC(x)a2μèêê, % Ceq(x)aμèêê %setts: ·¨éè %errmsq: ·μ′íóìáê %Z: ·μ±êoˉêy×Dμ %X: ·μ×óa % %àyìa % max x1*x2*x3 % -x1+2*x2+2*x3>=0 % x1+2*x2+2*x3<=72 % 10<=x2<=20 % x1-x2=10 % èD′ Moˉêy % function f=discfun(x) % f=-x(1)*x(2)*x(3); %óa % clear;x0=[25,15,10]';xstat=[1 1 1]'; % xl=[20 10 -10]';xu=[30 20 20]'; % A=[1 -2 -2;1 2 2];B=[0 72]';Aeq=[1 -1 0];Beq=10; % [err,Z,X]=BNB18('discfun',x0,xstat,xl,xu,A,B,Aeq,Beq); % XMAX=X',ZMAX=-Z %

二次规划解法

2、对于二次规划模型求解: 问题1: 先求出ij c ,结果如下表: 330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302 370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347 385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287 420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257 410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242 415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178 435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162 由于二次规划模型中约束条件151 {0}[500,],1,2,7,ij i j X s i =∈=∑的存 在,必须加以处理。引进0-1变量15,...2,1,=i n i ,则 151{0}[500,],1,2,7,ij i j X s i =∈=∑可以等价转换为下面的三个约束条件: i j ij s X ≤∑=151 i j ij Mn X ≤∑=151 i j ij n X *500151≥∑= 其中M 为一个很大数。 这样就可以得到下面的lingo 程序: sets : s/1..7/:sx; a/1..15/:z,y,n,t; links(s,a):c,x; endsets

0-1二次规划的全局最优性条件及算法

0-1二次规划的全局最优性条件及算法 全局优化问题广泛见于工程、国防、经济等诸多重要领域,是数学规划理论的一个重要研究领域。本文首先讨论一类特殊结构的全局优化问题:二次规划的全局优化问题。我们给出了0-1二次规划的全局最优性条件,并讨论了其相应的算法。 然后,对于一般结构的全局优化问题,我们给出了一个新的无参数的填充函数方法。本论文的第一章介绍全局优化理论的一些研究成果。第二章讨论无约束0-1二次规划的全局最优性条件。 在第二节得到一个充分条件和一个必要条件的基础上,我们希望能够得到一些充要条件。为此,我们首先在第三节中给出在线性约束条件下,(?)成为一个凸的二次函数的全局极大点的充分必要条件。从这个结论出发,在第四节,我们得到了无约束0-1二次问题全局最优的充分必要条件及其等价形式。 在第五节,我们将注意力放在全局最优的必要条件上。我们得到的必要条件都不含对偶变量,仅用到原问题的数据。这样,这些条件在实际中都是可以被检验的。 进一步,为了使必要条件在实际中易被检验、易操作,我们降低了必要条件中的维数,在比原问题维数更低的空间中,给出一些简洁的必要条件,以达到方便检验的目的。在第三章,我们进一步研究有约束的0-1二次规划的全局最优条件。对于带有线性不等式约束的0-1二次问题,我们在第一节中得到了它全局最优的充分条件和必要条件。 必要条件也不含对偶变量。当系数矩阵正定时,我们建立了原0-1问题的解与松弛问题的解之间的联系。对于带有线性等式约束的0-1二次问题,我们在第

二节证明了一个带有线性等式约束的0-1二次规划问题,它的全局最优解集和其相应的罚问题的全局最优解集是相等的。 这样,带有线性等式约束的0-1二次问题的解,可以通过无约束0-1二次规划问题的解得到。第三章的另一个内容是讨论0-1二次规划问题的实际应用。将我们得到的一些结论运用于极大团问题和二次分派问题,我们得出了一些相关的结论。 将全局最优条件发展成为可实现的算法,是全局优化研究中的重要的工作。本文的第四章讨论无约束0-1二次规划问题的算法。首先我们将原0-1问题化为一个等价的半正定的0-1二次问题。 在得到这个半正定二次问题的松弛解x之后,取与x“最接近的”0-1解y,在一定的条件之下,y就是原0-1问题的全局最优解。由于松弛后的问题是凸的二次规划问题,可以在多项式时间内求解,所以,我们的算法是可实现的。为了确定y是否是原问题的最优解,我们设计了三种算法。 在研究了第二章所给。

多目标非线性规划程序(Matlab)

function [errmsg,Z,X,t,c,fail] = BNB18(fun,x0,xstat,xl,xu,A,B,Aeq,Beq,nonlcon,setts,options1,options2,ma xSQPit,varargin); %·???D???êy1????£Dí?ó?a·??§?¨??μü′ú??·¨?£?úMATLAB5.3?Dê1ó?£?DèOptimizat ion toolbox 2.0?§3?? % Minimize F(x) %subject to: xlb <= x <=xub % A*x <= B % Aeq*x=Beq % C(x)<=0 % Ceq(x)=0 % % x(i)?é?aá?D?±?á?£???êy£??ò1ì?¨?μ % ê1ó???ê? %[errmsg,Z,X]=BNB18('fun',x0,xstat,xl,xu,A,B,Aeq,Beq,'nonlcon',setts) %fun£o M???t??£?±íê?×?D??ˉ??±êoˉêyf=fun(x) %x0: áD?òá?£?±íê?±?á?3??μ %xstat£o áD?òá?£?xstat(i)=0±íê?x(i)?aá?D?±?á?£?1±íê???êy£?2±íê?1ì?¨?μ %xl£o áD?òá?£?±íê?±?á????? %xu: áD?òá?£?±íê?±?á?é??? %A: ???ó, ±íê???D?2?μèê???ê??μêy %B: áD?òá?, ±íê???D?2?μèê???ê?é??? %Aeq: ???ó, ±íê???D?μèê???ê??μêy %Beg: áD?òá?, ±íê???D?2?μèê???ê?óò???μ %nonlcon: M???t??£?±íê?·???D???ê?oˉêy[C,Ceq]=nonlin(x),???DC(x)?a2?μèê???ê?, % Ceq(x)?aμèê???ê? %setts: ??·¨éè?? %errmsq: ·μ??′í?óìáê? %Z: ·μ????±êoˉêy×?D??μ %X: ·μ??×?ó??a % %àyìa % max x1*x2*x3 % -x1+2*x2+2*x3>=0 % x1+2*x2+2*x3<=72 % 10<=x2<=20 % x1-x2=10 % ?èD′ Moˉêydiscfun.m % function f=discfun(x) % f=-x(1)*x(2)*x(3); %?ó?a % clear;x0=[25,15,10]';xstat=[1 1 1]'; % xl=[20 10 -10]';xu=[30 20 20]'; % A=[1 -2 -2;1 2 2];B=[0 72]';Aeq=[1 -1 0];Beq=10; % [err,Z,X]=BNB18('discfun',x0,xstat,xl,xu,A,B,Aeq,Beq); % XMAX=X',ZMAX=-Z % % BNB18 Finds the constrained minimum of a function of several possibly integer variables. % Usage: [errmsg,Z,X,t,c,fail] = % BNB18(fun,x0,xstatus,xlb,xub,A,B,Aeq,Beq,nonlcon,settings,options1,opti ons2,maxSQPiter,P1,P2,...) % % BNB solves problems of the form: % Minimize F(x) subject to: xlb <= x0 <=xub

非线性整数规划的遗传算法Matlab程序

非线性整数规划的遗传算法Matlab程序(附图) 通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab优化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令人满意的解。这时就需要针对问题设计专门的优化算法。下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考! 模型的形式和适应度函数定义如下: 这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其中将多目标转化为单目标采用简单的加权处理。 function Fitness=FITNESS(x,FARM,e,q,w) %% 适应度函数 % 输入参数列表 % x 决策变量构成的4×50的0-1矩阵 % FARM 细胞结构存储的当前种群,它包含了个体x % e 4×50的系数矩阵 % q 4×50的系数矩阵 % w 1×50的系数矩阵 %%

gamma=0.98; N=length(FARM);%种群规模 F1=zeros(1,N); F2=zeros(1,N); for i=1:N xx=FARM{i}; ppp=(1-xx)+(1-q).*xx; F1(i)=sum(w.*prod(ppp)); F2(i)=sum(sum(e.*xx)); end ppp=(1-x)+(1-q).*x; f1=sum(w.*prod(ppp)); f2=sum(sum(e.*x)); Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma )*sum(min([sign(f2-F2);zeros(1,N)])); 针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方function [Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm) %% 求解01整数规划的遗传算法 %% 输入参数列表 % M 遗传进化迭代次数 % N 种群规模 % Pm 变异概率 %% 输出参数列表 % Xp 最优个体 % LC1 子目标1的收敛曲线 % LC2 子目标2的收敛曲线 % LC3 平均适应度函数的收敛曲线 % LC4 最优适应度函数的收敛曲线 %% 参考调用格式[Xp,LC1,LC2,LC3,LC4]=MYGA(50,40,0.3)

相关文档
最新文档