一-、锻造过程质量控制教学内容

一-、锻造过程质量控制教学内容
一-、锻造过程质量控制教学内容

一、锻造过程质量控制

1,锻造

?什么叫做锻造:

□在加压设备及工(模具)的作用下,使坯料产生局部或全部的塑性变形,以获得一定的几何形状,形状和质量的锻件的加工方法称为锻造 .

?锻造的分类:

□自由锻造只用简单的通用性工具,或在锻造设备上、下砧间直接使坯料变形而获得所需的几何形状及内部质量的锻件.

模锻

利用模具使毛坯变形而获得锻件的锻造方法 .

□自由锻造的方法

镦粗:使毛坯高度减小,横断面积增大的锻造工序 .

局部镦粗:在坯料上某一部分进行的镦粗 .

镦粗的过程控制 :

1.为了防止镦粗时产生纵向弯曲,圆柱体坯料的高度与直径之比不应超过

2.5-3, 且镦粗前坯料端面应平整 ,并与轴心

线垂直 . 镦粗时要把坯料围绕着轴心线不断转动坯料发生弯曲时必须立即矫正。

芯棒拔长:

它是在空心毛坯中加芯棒进行拔长以减小空心处径(壁厚)而增加其长度的锻造工序,用于锻造长筒类锻件芯棒拔长的过程控制 :

1.芯棒拔长都应以六角形为主要变形阶段

即圆T六角T圆,芯棒拔长应尽可能在 V

型下砧或 110°下槽中进行 .

2.翻转角度要准确,打击量在均匀,发现有壁厚不均匀及两端面过度歪斜现象,应及时把芯棒抽出,用矫正镦粗法矫正

毛坯 .

3?芯棒加工应有1/100?2/100日锥度.

拔长:使毛坯横断面积减小,长度增加的

锻造工序?

拔长锻造工艺参数的选择就是要在保证质量的前提下提高效率

1. 每次锤击的压下量应小于坯料塑性所允许的数值,并避免产生折叠,因此每次压缩后的锻件宽度与高度之

比应小于2~2.5, b/h v 2~2.5,否则翻转90°再锻造时容易产生弯曲和折叠。

2?每次送进量与单次压下量之比应大于1~1.5,即L/ △ h/2 > 1~1.5生产中一般采用 L=(0.6~0.8) h (h为坯料高度)。如图

送进*

3.

为保证得到平滑的表面质量,每次送进量应小于( 0.75~0.8) B (B 为砧宽)要避免在锻件的同一变形位置反复

锤击。

4. 方形坯料的对角线倒棱形锤击时

,应打击得轻一些可加大送进量(和砧宽相等)减小压下量。避免中心部

位产生裂纹。 5. 防止端部产生内凹和夹层,拔长坯料端部时,坯料端部应留出足够的长度或锻成圆鼓形。如图

园形断面 方形断面当B/H >1.5时,

A > 0.4B

当 B/H < 1.5 时,A > 0.5B

6. 为了提高生产率和保证锻件质量,拨长过程应以方形断面为主,如果坯料原始截面为圆形,最终断面也 是圆形,应按圆形T 方

形T 八角形T 圆形的顺序进行拨长,并以方形拨长为主要变形阶段。也可采用型 砧拨长,生产效率更高?

7. 上下砧的边缘应作出适当圆角,防止表面夹层

8. 对长坯料应从中间向面端拨长,可将疏松和偏折区挤到顶部去。短坯料可从一端开始拨长,向前推进

9?为保证锻件质量,避免出现折纹,每次送进后的打击压下量不能太大 ,应使单边压下量△ H/2小于送进量L 即2L/ △

A>0 . 3D

H > 1 如图》》

孔或不透孔的锻造工

序。

冲孔要求:

1?实心冲子冲孔,冲孔坯料尺寸应符合以下条件,以避免冲孔发生

走样”裂纹和孔冲偏等质量问题。如图所示:

当Do/di > 5时,可取Ho=H

当 Do / di v 5 时,应取 Ho= (1.1-1.2) H 3?冲子必须放正,打击方向应和冲头端面垂直

4?在冲子的冲孔内应撒上煤末或木炭粉,以便取出冲头

5?在冲孔过程中要不断地移动冲头并且让坯料绕轴心线传动,以避免孔位置偏斜

6?冲头要经常在水中冷却 ?

扩孔:减小空心毛坯壁厚而增加其内、外径

冲头扩孔: 的锻造工序。

是利用冲头锥面引起的径向分力

而进行扩孔的一种方法。

冲头扩孔应注意以下几方面 ---

1 —— a

I

冲孔:在坯料上冲出透

1?冲头扩孔时,由于坯料切向受拉应力,容 易胀裂,每次扩孔量不宜太大。

匚目一扩孑L 冲子 ”■厂坯料

垫环

如图:

2?冲孔扩孔时坯料的高度尺寸:

H 仁1.05H (H1为扩孔前坯料 H 为扩孔后高度). 3?为防止内孔胀裂,每次扩孔量不宜太大每次冲孔后允许扩孔

1~2次一般取20~40mm 当需要多次扩孔时应中间 加热,每次加热一次允许扩孔 2~3次? 4?马架扩孔时,芯轴应随孔径的扩大而逐步更换,芯轴直径应尽量可能选大

二、锻件缺陷分类

为了保证质量,对于金属锻件,必须进行质量检验。对检验出有缺陷的锻件,根据使用要求(检验标准) 和缺陷的程度,确

定其合格、报废或经过修补后使用。

锻件缺陷分类的方法很多,下面介绍比较实用的两种分类方法:

1,锻件缺陷表现形式分类

锻件的缺陷如按其表现形状来区分,可分为外部的、内部的、和性能的三种。

外部缺陷如几何尺寸和形状不符合要求,表面裂纹,折迭、缺肉、错差、模锻不足、表面麻坑、表面气 泡和桔皮状表面。这

类缺陷显露在锻件的外表面上,比较容易发现或观察到。

内部缺陷又可以细分为低倍缺陷和显微缺陷两类。前者如内裂、缩孔、疏松、白点、锻造流纹紊乱、偏 析、粗晶、石状断

口、异金属夹杂等;后者如脱碳、增碳、带状组织、铸造组织残留和碳化物偏析不符 合要求等,内部缺陷存在于锻件的内

部,原因复杂,不易辨认,常常给生产造成较大的困难。

反映在性能方面的缺陷,如温室强度、塑性、韧性或疲劳性能等不符合;或者高温瞬时强度,持久强度、 持久塑性、蠕变强

度不符合要求等。性能方面的缺陷,只有在进行了性能试验之后,才能确切知道。 值得注意的是,外部、内部和性能方面的

缺陷这三者之间,常常有不可分割的联系。例如,过热和过烧 表现于外部为裂纹的形式;表现于内部则为晶粒粗大或脱碳,

表现的性能方面则为塑性和韧性和降低。 因此,为了准确确定锻件缺陷的原因,除了必须辨明它们的形态和特征之外,还应

注意拭出它们之间的 内在联系。

按生产缺陷的工序或过程分类

锻件缺陷按其产生于那个过程来区分,可分为:原材料生产过程产生的缺陷、锻造过程产生的缺陷和热 处理过程产生的缺

陷。按照锻造过程中各工序的顺序,还可将锻造过程中产生的缺陷,细分为以下几类: 由下料产生的缺陷;由加热产生的缺

陷;由锻造产生的缺陷;由冷却产生的缺陷和由清理产生缺陷等。 不同的工序可以产生形式的缺陷,但是,同一种形式的缺

陷也可以来自不同的工序。由于产生锻件缺陷 的原因往往与原材料生产过程和锻造热处理过程有关。

三、引发锻件缺陷的主要原因造

一、原材料的主要缺陷及其引起的锻件缺陷 锻造用的原材料为铸锭、轧材、挤材及锻坯。而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成 品。一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。例如,内部的成分与组织偏析等。原材 料存在的各种缺陷,不仅会影响锻件的成形,而且将影响锻件的最终质量。

由于原材料的缺陷造成的锻件缺陷通常有

1. 表面裂纹 表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。造成这种缺陷的 原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。又如在 轧制时, 坯料的表面如被划伤, 冷却时将造成应力集中, 从而可能沿划痕开裂等等。 这种裂纹若在锻造前不去掉, 锻造时便可能扩展引起锻件裂纹。

2.折叠折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,

形成和材料表面成一定倾角的折缝。对钢材,折缝内有氧化铁夹杂,四周有脱碳。折叠若在锻造前不去掉,可能引起锻件折叠或开

裂。

3.结疤结疤是在轧材表面局部区域的一层可剥落的薄膜。

结疤的形成是由于浇铸时钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜,贴附在轧材的表面,即为结疤。锻后锻件经酸洗清理,薄

膜将会剥落而成为锻件表面缺陷。

4.层状断口层状断口的特征是其断口或断面与折断了的石板、树皮很相似。

层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。如果杂质过多,锻造就有分层破裂的危险。层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的。

5.亮线(亮区)亮线是在纵向断口上呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。亮线主要

是由于合金偏析造成的。

轻微的亮线对力学性能影响不大,严重的亮线将明显降低材料的塑性和韧性。

6.非金属夹杂非金属夹杂物主要是熔炼或浇铸的钢水冷却过程中由于成分之间或金属与炉气、容器之间的化学反应形成的。另外,

在金属熔炼和浇铸时,由于耐火材料落入钢液中,也能形成夹杂物,这种夹杂物统称夹渣。在锻件的横断面上,非金属夹杂可以呈点状、片状、链状或团块状分布。严重的夹杂物容易引起锻件开裂或降低材料的使用性能。

7.碳化物偏析碳化物偏析经常在含碳高的合金钢中出现。其特征是在局部区域有较多的碳化物聚集。它主要是钢中的莱氏体共晶碳

化物和二次网状碳化物,在开坯和轧制时未被打碎和均匀分布造成的。碳化物偏析将降低钢的锻造变形性能,易引起锻件开裂。锻

件热处理淬火时容易局部过热、过烧和淬裂。制成的刀具使用时刃口易崩裂。

加热工艺不当常产生的缺陷

1.脱碳脱碳是指金属在高温下表层的碳被氧化,使得表层的含碳量较内部有明显降低的现象。

脱碳层的深度与钢的成分、炉气的成分、温度和在此温度下的保温时间有关。采用氧化性气氛加热易发生脱碳,高碳钢易脱碳,含硅量多的钢也易脱碳。

脱碳使零件的强度和疲劳性能下降,磨损抗力减弱。

2.增碳

经油炉加热的锻件,常常在表面或部分表面发生增碳现象。有时增碳层厚度达1.5?1.6mm,增碳层的含碳量达1%

(质量分数)左右,局部点含碳量甚至超过2%(质量分数),出现莱氏体组织。

这主要是在油炉加热的情况下,当坯料的位置靠近油炉喷嘴或者就在两个喷嘴交叉喷射燃油的区域内时,由于油和空气混合得不太好,因而燃烧不完全,结果在坯料的表面形成还原性的渗碳气氛,从而产生表面增碳的效果。增碳使锻件的机械加工性能变坏,切削时易打刀。

3.过热过热是指金属坯料的加热温度过高,或在规定的锻造与热处理温度范围内停留时间太长,或由于热效应使温升过高而引起的

晶粒粗大现象。

碳钢(亚共析或过共析钢)过热之后往往出现魏氏组织。马氏体钢过热之后,往往出现晶内织构,工模具钢往往以一次碳化物角状化为特征判定过热组织。钛合金过热后,出现明显的B相晶界和平直细长的魏氏组织。合金钢过热后的断口会出现石状断口或条状断口。过热组织,由于晶粒粗大,将引起力学性能降低,尤其是冲击韧度。一般过热的结构钢经过正常热处理(正火、淬火)之后,组织可以改善,性能也随之恢复,这种过热常被称之为不稳定过热;而合金结构钢的严重过热经一般的正火(包括高温正火)、退火或淬火处理后,过热组织不能完全

消除,这种过热常被称之为稳定过热。

4.过烧

过烧是指金属坯料的加热温度过高或在高温加热区停留时间过长,炉中的氧及其它氧化性气体渗透到金属晶粒间

的空隙,并与铁、硫、碳等氧化,形成了易熔的氧化物的共晶体,破坏了晶粒间的联系,使材料的塑性急剧降低。过烧严重的金属,

撤粗时轻轻一击就裂,拔长时将在过烧处出现横向裂纹。

过烧与过热没有严格的温度界线。一般以晶粒出现氧化及熔化为特征来判断过烧。对碳钢来说,过烧时晶界熔化、严重氧化工模具钢(高速钢、 Cr12 型钢等)过烧时,晶界因熔化而出现鱼骨状莱氏体。铝合金过烧时出现晶界熔化三角区和复熔球等。锻件过烧

后,往往无法挽救,只好报废。

5.加热裂纹在加热截面尺寸大的大钢锭和导热性差的高合金钢和高温合金坯料时,如果低温阶段加热速度过快,则坯料因内外温差较大而产生很大的热应力。加之此时坯料由于温度低而塑性较差,若热应力的数值超过坯料的强度极限,就会产生由中心向四周呈辐

射状的加热裂纹,使整个断面裂开。

锻造工艺不当常产生的缺陷

1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。

2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。耐热钢及高温合金对晶粒不均匀特别敏感。晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。

3.冷硬现象

变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。严重的冷硬现象可能引起锻裂。

4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂

5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。②高温长时

间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。③燃料含硫量过高,有硫渗人钢料表面。

6.飞边裂纹

飞边裂纹是模锻及切边时在分模面处产生的裂纹。飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。

7.分模面裂纹分模面裂纹是指沿锻件分模面产生的裂纹。原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。

8.折叠

折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部分金属局部变形,被压人另一部分金属内而形成。折叠与原材料和坯料的形状、模具的设计、成形工序的安排、润滑情况及锻造的实际操作等有关。

折叠不仅减少了零件的承载面积,而且工作时由于此处的应力集中往往成为疲劳源。

9.局部充填不足

局部充填不足主要发生在筋肋、凸角、转角、圆角部位,尺寸不符合图样要求。产生的原因可能是:①锻造温度低,金属流动性差;

②设备吨位不够或锤击力不足;③制坯模设计不合理,坯料体积或截面尺寸不合格;④模膛中堆积氧化皮或焊合变形金属。

10.欠压

欠压指垂直于分模面方向的尺寸普遍增大,产生的原因可能是:①锻造温度低。②设备吨位不足,锤击力不足或锤击次数不足。

11.错移

错移是锻件沿分模面的上半部相对于下半部产生位移。产生的原因可能是:①滑块(锤头)与导轨之间的间隙过大;②锻模设计不合理,缺少消除错移力的锁口或导柱;③模具安装不良。

17.轴线弯曲

锻件轴线弯曲,与平面的几何位置有误差。产生的原因可能是:①锻件出模时不注意;②切边时受力不均;③锻件冷却时各部分降温速度不一;④清理与热处理不当。

锻件缺陷的主要特征及产生原因

1.偏心

主要特征 : 对多台阶齿轴锻件表现为各直径段中心不一致,对齿轮类锻件表现为内外孔中心偏移

产生原因 :

1.加热温度不匀

2.锻造工艺或操作不当

3.冲孔前冲子没放正

2.弯曲

主要特征 : 齿轴锻件的中心线弯曲变形

产生原因 :

1.锻造矫直不当

2.热处理操作不当

3.端面不平

主要特征 : 圈类及饼类锻件端面变形

产生原因 :

1.锻造工艺或操作不当

2.热处理操作不当

4.折叠

主要特征 : 在外观上与裂纹相似,实际上是金属流线产弯曲

产生原因 :

1.砧子圆角不合适

2..送进量小于压下量

5.表面横向裂纹

主要特征 :

横向较浅裂纹

产生原因 :

1.钢锭皮下气泡暴露于表面不能焊合

2.拔长时相对送进量过大

6.表面纵向裂纹

主要特征 : 第一和拔长时或镦粗时出现的沿钢锭纵向出现的裂纹产生原因 :

1.钢锭模内壁有缺陷,新钢锭模使用前热处理不当

2.钢水浇铸操作不当

3.钢锭脱模后冷却不当

4.倒棱时压下量过大

7.表面龟裂

主要特征 : 锻件表面出现龟甲状较浅裂纹产生原因 :

1.钢中铜、锡、砷、碳含量过高

2.始锻温度过高

8.内部裂纹

主要特征 : 裂纹出现于锻件中心区域产生原因 :

1.加热未烧透,内部温度过低

2.在平砧上拔长圆形件

3.V 型砧角度过大

9.缩孔残余

主要特征 : 在低被试片上呈不规则褶皱状缝隙,为深褐色或灰白色产生原因 :

1.锭模设计不合理,浇铸过程控制不当

2.锻造时切头不足

10.过热、过烧与温度不均匀加热温度过高或高温停留时间过长时易引起过热、过烧。过热使材料的塑性与冲击韧性显著降低。过烧时材料的晶界剧烈氧化或者熔化,完全失去变形能力。

当加热温度分布严重不均匀,表现为锻坯内外、正反面、沿长度温差过大,在锻造时引起不均变形,偏心锻造等缺陷,亦称欠热。过热

过烧

图片(1)是钢锻坯过热组织,因加热温度太高引起的过热特征。试样用10% (体积分数)硝酸水溶液和10% (体积分数)硫酸水溶液腐蚀,金相显微镜( LM )观察,晶粒粗大,晶界呈黑色,基体灰白色,显示为过热特征。

图片(2)所示为轴承钢 GCr15SiMn锻件过烧引起的裂纹,晶界上有熔化痕迹及低熔点剧相,裂纹沿晶界扩展。

试样用4% (体积分数)硝酸酒精溶液侵蚀后呈黑色晶界,明显烧坏,锻坯过烧报废采取措施

1)严格执行正确的加热规范;

2)注意装炉方式,防止局部加热;

3)调准测温仪表,精心加热操作,控制炉温、炉气流动,防止不均匀加热。

11.疏松

主要特征:

沿钢锭中心的疏松组织未锻合,多与非金属夹杂等并存

产生原因:

1?锭型选择不当

2?锻造比不合适,变形方案不当

3?相对送给量过小

4?工具形状不合适

12.白点

主要特征:

白点是锻件在锻后冷却过程中产生的一种内部缺陷。其形貌在横向低倍试片上为细发丝状锐角裂纹,断口为

银白色斑点。照片 6-13为Cr— Ni - Mo钢锻件纵向断口上的白点。其形状不规则,大小悬殊,最小长轴尺寸仅

2mm,最大的为24mm。

白点

上图片宏观断口上的白点形貌白点实质是一种脆性锐边裂纹,具有极大的危害性,是马氏体和珠光体钢中十分危险的缺陷。

白点成因是钢中氢在应力作用下向拉应力区富集,使钢产生所谓氢脆,发生脆性断裂,所以氢和附加应力联合作用是白点产生的原因。

*防止白点的对策主要是:

1)降低钢中氢含量,如注意烘烤炉料,冶炼时充分沸腾,真空除气,炉外精炼脱气等。

2)采用消除白点的热处理,主要任务是扩散钢中氢,消除应力,如扩氢退火热处理等。

3)控制锻后冷却

13.非金属夹杂物

主要特征:

在锻件内部呈被拉长状或已被破碎的金属夹杂物

产生原因:

炼钢过程中的生成物或耐火材料沙子等落入钢液

14.组织性能不均匀

大型锻件因其尺寸大,工序多,周期长,工艺过程中不均匀,不稳定因素多,所以常常造成组织性能严重不均匀, 以致在力学性能试验,金相组织检查和无损探伤时不能通过。由于钢锭中化学成分偏析,夹杂物聚集,各种孔隙性缺陷的影响;加热时温度变化缓慢,分布不均,内应力大,缺陷较多;高温长时间锻造,局部受力局部变形,塑流状况、压实程度、变形分布差别较大;冷却时扩散过程缓慢,组织转变复杂,附加应力大。以上诸因素都可能导致组织性能严重不均匀,质量不合格。

提高锻件均匀性的措施:

1)采用先进的冶铸技术,提高钢锭的冶金质量;

2)采用控制锻造,控制冷却技术,优化工艺过程,提高大锻件生产的技术经济水平。

锻造工艺质量控制规范

锻造工艺质量控制规范 1 主题内容与适用范围 本标准规定了对锻造工艺进行全过程质量控制的通用原则和要求。 本标准适用于锻造车间的锻造工艺质量控制。 2 引用标准 GB 12361 钢质模锻件通用技术条件 GB 12362 钢质模锻件公差及机械加工余量 GB 13318 锻造车间安全生产通则 GB/T 12363 锻件功能分类 JB 4249 锤上钢质自由锻件机械加工余量与公差 JB 4385 锤上钢质自由锻件通用技术条件 JB/T 6052 钢质自由锻件加热通用技术要求 JB/T 6055 锻造车间环境保护导则 3 锻件分类 本标准质量控制所涉及的锻件分类按GB/T 12363 执行。 4 环境的控制 锻造厂的工作环境包括厂房地面、天窗、温度、通风、照明、噪声、通道、管道以及坯料、锻件和工夹模具的存放等均应按GB 13318 第3 章和JB/T 6055 第3、4 章的要求和国家的有关法规、法律制订本企业的具体实施要求。 5 设备、仪表与工装的控制 5. 1 设备、仪表

5. 1. 1 各类设备必须完好,并有操作规程和维修、检定制度。 5. 1. 2 各类在用主要设备必须挂有完好设备标牌,并有检验有效期及下次检定日期。不合格设备及超过检定合格有效期的设备必须挂“停用”标牌。 5. 1. 3 设备的控制系统及检测显示仪表应定期检查,确保仪表和其精度的显示数值准确。 5. 1. 4 加热设备的温度显示及测点布置应正确反应加热区炉温及炉温均匀性。 5. 1. 5 所用设备都必须建立档案,其具体内容包括 a. 设备使用说明书 b.台时记录 c.故障记录 d.修理记录 e. 历年检定报告及检定合格证。 5. 2 模具及其他工装 5. 2. 1 新模具应按模具图的要求制造,检验合格后进行试模,确认达到设计、制造要求后方可投入生产。 5. 2. 2 在每批锻件生产结束时,应将锻造的尾件上打标记并经检验尺寸合格后,模具方可返库继续使用。 5. 2. 3 锻造所用工具,必须按工艺文件的规定选用,并经检查完好方可使用。 5. 2. 4 每套模具(含预锻模、切边模等)必须建立“模具履历表”,并建

一-、锻造过程质量控制教学内容

一、锻造过程质量控制 1,锻造 ?什么叫做锻造: □在加压设备及工(模具)的作用下,使坯料产生局部或全部的塑性变形,以获得一定的几何形状,形状和质量的锻件的加工方法称为锻造 . ?锻造的分类: □自由锻造只用简单的通用性工具,或在锻造设备上、下砧间直接使坯料变形而获得所需的几何形状及内部质量的锻件. 模锻 利用模具使毛坯变形而获得锻件的锻造方法 . □自由锻造的方法 镦粗:使毛坯高度减小,横断面积增大的锻造工序 . 局部镦粗:在坯料上某一部分进行的镦粗 . 镦粗的过程控制 : 1.为了防止镦粗时产生纵向弯曲,圆柱体坯料的高度与直径之比不应超过 2.5-3, 且镦粗前坯料端面应平整 ,并与轴心 线垂直 . 镦粗时要把坯料围绕着轴心线不断转动坯料发生弯曲时必须立即矫正。 芯棒拔长: 它是在空心毛坯中加芯棒进行拔长以减小空心处径(壁厚)而增加其长度的锻造工序,用于锻造长筒类锻件芯棒拔长的过程控制 : 1.芯棒拔长都应以六角形为主要变形阶段 即圆T六角T圆,芯棒拔长应尽可能在 V 型下砧或 110°下槽中进行 . 2.翻转角度要准确,打击量在均匀,发现有壁厚不均匀及两端面过度歪斜现象,应及时把芯棒抽出,用矫正镦粗法矫正 毛坯 . 3?芯棒加工应有1/100?2/100日锥度. 拔长:使毛坯横断面积减小,长度增加的 锻造工序? 拔长锻造工艺参数的选择就是要在保证质量的前提下提高效率 1. 每次锤击的压下量应小于坯料塑性所允许的数值,并避免产生折叠,因此每次压缩后的锻件宽度与高度之 比应小于2~2.5, b/h v 2~2.5,否则翻转90°再锻造时容易产生弯曲和折叠。 2?每次送进量与单次压下量之比应大于1~1.5,即L/ △ h/2 > 1~1.5生产中一般采用 L=(0.6~0.8) h (h为坯料高度)。如图

铸造质量控制

铸造质量控制 摘要:铸造是一个复杂的生产过程,环境、设备、工艺、人员、原辅材料等都可能引起铸造质量的波动,铸件质量也包含两方面的内容:一是铸件产品质量,二是铸造过程质量。铸造过程质量直接决定着产品质量,控制好铸造过程,必须从细节抓起,通过工艺文件、指控点建立、企业文化凝聚、设备保证等多方面一起建立一个稳定的铸造质量控制全过程。 关键词:铸造质量控制过程控制质量 一、铸造质量 铸件是铸造生产的产品,铸造质量的本质体现是各类铸件产品的质量。铸件质量也包含两方面的内容:一是铸件产品质量,二是铸造过程质量。铸件产品质量,即铸件满足用户要求的程度;或按其用途在使用中应取得的功效,这种功效是反映铸件结构特征、材质的工作特性和物理力学特性的总和,是评价铸件质量水平和技术水平的基本指标。铸造过程质量直接决定着产品质量,是指铸件产品的生产过程对产品质量的保证程度,即铸件在具体使用条件下的可靠性,这个指标在相当大的程度上决定于所取得的功效,还与稳定性、耐用性和工艺性等指标有关。 在现在的生产条件下,随着铸造技术的不断发展,虽然设备和技术的保证能力不断提高,但是中国的铸造过程仍存在许多不稳定的质量控制盲区,也只有从过程控制的细节入手,不断深入过程质量控制,保证工艺的有效实施才能从根本上提高改善铸造过程和铸件产品质量。 二、铸造质量控制要点: 1、工艺控制文件 1.1作业指导书 作业指导书是工序质量控制点必备的重要控制文件,是在工序卡片的基础上发展起来的一种新形式的工艺文件,它比工序卡片更加细化和完善,是正确指导现场生产工人操作、控制和检查的规程。但是作业指导书必须防止“两张皮”和不协调现象。作业指导书是指导现场操作的基础,必须保证能通过作业指导书能够准确的进行现场操作,一般情况下作业指导书的内容有如下四大部分组成:1)简介明了的工序示意图。(铸造一般现实工序件的照片为佳,例如组芯工序应该添加本工序组芯照片,然后标出哪些地方需要增加粘结剂,哪些地方需要补刷灰等,一定要形象具体。) 2)通俗易懂的操作要领和工艺规程(如最简单的取放芯子,应该标出手拿芯子那个部位最好不会引起损伤芯子,不易脱手,保证第一操作也不会出错)。 3)明确严格的控制要求:检验项目、检验频次、检具要求、控制手段等。 4)符合现场要求的工艺参数。 制定作业指导书要注意如下问题: 1)在操作要领、工艺规程中要将生产工人所积累的经验和加工技巧总结进去,以利于指导工人正确进行操作。 2)注意与工序质量分析表相呼应。 3)作业指导书所要求的内容要做到完整、准确。 4)操作要领、工艺规程要规定得详细、具体,不应出现诸如“见某某文件”等现象。

铸造品质如何控制

如何做好铸造质量 一.要有好的模具 1.模具预量(加放量)的合理控制 1.1生产的机器设备考虑(铸造机的精度要好) 1.2铸造方式考虑(重力、低压、压铸等) 1.3金属(铝合金)缩收考虑 1.4铸件的部位考虑(如浮渣面、一工程耳部) 1.5铸造后站作业考虑(切冒口夹变形,T6变形、加工定位、加工精度) 1.6脱模角度考虑(铝合金一般大于7°) 1.7模具设计的圆角考虑(消除内应力、主要为内尖角) 1.8经济性及结晶质量考虑(避免无谓增加余量) 1.9脱模时变形考虑 2.0黑皮的产生和防范 2.流路系统的设计 2.1流路系统的组成(a.滤槽b.浇道c.流道d.补水块e.铸口f.浇口) 2.2流路系统设计考虑因素 2.2.1收缩之处的补水(补水块) 2.2.2模具中的气体疏导 2.2.3防范杂质进入模具 2.2.4入水口处的咬模考虑 2.2.5敲除流路的变形考虑 2.2.6流体进入模穴的平稳、迅速、均匀性考虑 2.2.7透气之考虑 2.3流路系统的设计原理 2.3.1蛇形原理 2.3.2凹凸原理(沉淀、浮渣) 2.3.3由大到小及上大下小原理 2.3.4瓶颈原理 2.4多处入水(分枝流路)利弊 2.4.1有利因素:a.模温均匀b.缩短浇注时间c.减少入水口咬模d.强度好 e.适于冷凝度h.改善水痕 2.4.2不利因素:a.熔料(铝料)增加b.入水口质量不良因素增加c.冷却增加 d.模具制作费用增加 2.5浇道、流道、铸口的比例分配(铸喉与反铸喉设计) 3.冒口设计

3.1冒口的种类:有敞开式的冒口(现厂内叫冒口)及封闭式冒口(盲冒口)或顶 冒口及侧冒口(厂内设计的小流道) 3.2冒口的作用:补水功能(它属于铸模内馈补给系统) 3.3影响冒口效能的因素:冒口的大小、形状、位置、铸件的重量、尺寸、形 状、材料种类及其收缩性、浇注速度、流路系统的设计、冒口相接面的 绝热性与温度 3.4冒口设计的重点 3.4.1在铸件截面的最大处即最后凝固的位置 3.4.2冒口的直径为铸件截面厚度的1.5倍以上 3.4.3冒口的高度与直径相等为佳 3.4.4冒口设计的经济性(避免过大造成铝料浪费及铸造时间延长) 3.4.5冒口的凝固终了时间必须晚于铸件 3.4.6冒口的保温性考虑(除保温材料) 4.模具冷却盒及冷激件和冷凝件的设计 4.1入水口处的冷却盒(边模、上模冷却盒) 4.2冷激件和冷凝件适用于砂模 4.3冷却盒之大小(因模具的大小而定,同模具的尺寸成正比) 5.模具冷凝梯度的设计 5.1模具的厚度应结合铸件所需之冷凝梯度 5.2模具厚较不易散热亦不利铸件凝固(此点仅为经验只作参考) 5.3铝合金轮圈铸件冷凝梯度介绍 6.铸件的设计控制 6.1铸件设计追求完美:功能、强度、美观、铸造性、加工性、经济性 6.2铸件设计必须考虑因素 6.2.1金属收缩的考虑 A.金属于冷凝时及凝固后由高温至常温皆有收缩 B.收缩产生的铸疵a.黑皮、凹陷b.热裂c.缩孔d.变形e.漏气f.影响强度 C.凝固规律:由底温到高温、由外到内、由薄到厚 D.造成缩孔的原因:a.模温过低或不均b.熔料温度太低c.冒口的设计不合 理d.冷却或保温(含涂模)不当e.铸件肉厚梯度不合理f.流路系统设计不 合理等 6.2.2脱模角度考虑 A.铝合金脱模角度大于7°为佳设计时适当考虑加大 B.脱模角度不足之危害:a.容易拉裂b.严重变形c.影响产能d.容易咬伤 C.脱模角度对经济性的影响(须适度考虑) 6.2.3铸件肉厚的控制(同第1点) 7.变形量具的制作与使用 7.1量具测量点确立(直径四点定位或造型吻合)

铸造质量控制

一、铸件质量控制 铸件质量决定于每一道工艺过程的质量。对铸件质量进行控制,实际上是全过 程质量控制(%&’),将过程处于严格控制之中,不出现系统误差(由异常原因造成的误 差)。过程中由随机原因产生的随机误差,其频率分布是有规律的。这种利用数理统 计方法将铸造过程中系统误差和随机误差区分开来是质量控制 的基本方法。这种方 法又称之为统计过程控制(()’)。 ·+$*# · 第一章铸件质量 铸件质量控制首先在于稳定生产过程,避免系统误差的出现和随机误差的积累。 其次要提高工艺过程精度,缩小误差频率分布范围或分散程度。过程控制包括技术准备过程、图样和验收条件的制订;铸造工艺、工装设计的验 证;原材料验收;设备检查;工装几何形状、尺寸精度和装配关系检查等;另外,还包括 熔炼、配砂、造型、制芯等工艺参数的控制。 控制方法是定期记录工艺参数进行统计分析,判断车间参数误差频率分布及性

质,对每一中间工序的结果进行检查。图! " # " $ 表示出铸铁车间的铸造工艺过程 质控站(%&)及整个控制程序。 图! " # " $ 铸铁件生产过程质控站(%&)布置 建立过程质量控制站(简称质控站)或管理站是质量管理中行之有效的措施。质 控站能为缺陷分析提供生产过程背景材料以及原始记录和统计资料,凡是对铸件质 量特性有重大影响的工序或环节,一般都应设置质控站。 质控站还应贯彻并使操作者严格执行操作规程。工厂考核铸件质量,按铸件产 生缺陷的原因,追究个人或生产小组的责任。由于铸件产生缺陷的原因是多方面的 和复杂的,有些缺陷是由多个因素引起的,故不容易划分各自应承担责任的百分比。 为了解决由于划分不公引起争端,应该加强中间检查,应对每一道工序的质量(特别 是主要工艺参数和执行操作规程的情况)进行严格的控制,从而确定个人或小组的质 ·’)(’ · 第九篇铸造生产质量检验与铸件缺陷分析处理 量责任。例如质控站按规程抽查型砂的性能,如果不符合标准的

浅析汽车零部件的制造质量控制

浅析汽车零部件的制造质量控制 发表时间:2020-04-08T09:01:54.080Z 来源:《基层建设》2019年第31期作者:衣海峰徐学波施连青黄承砖[导读] 摘要:目前来说,我国汽车销售量一直保持着稳定增长的态势。 宝能汽车有限公司 650000 摘要:目前来说,我国汽车销售量一直保持着稳定增长的态势。对于汽车行业的未来发展来说,其不单单是看企业规模的大小,也不单是看品牌知名度的大小;汽车行业能否获得长远发展,其实更为看重的是汽车相关产品的质量与性能的优劣。所以,加强汽车零部件制造的质量管理与控制,能够从根本上提高汽车的质量,这也是我国汽车零部件生产企业实现可持续发展的必然选择。 关键词:汽车;零部件;制造;质量控制 引言:随着新能源汽车的发展,我国汽车行业进入了全新的发展阶段,人们对汽车整体的制造质量也有了更高的要求。而零部件作为汽车的重要组成部分,其制造质量直接影响汽车的整体质量和性能。同时由于汽车零部件的种类较多,也给零部件制造的质量控制工作增加了一定的难度。这就需要专业人员加强对零部件制造质量的重视,以提高汽车零部件的质量,促进我国汽车行业的可持续发展。 1、汽车零部件制造质量控制现状 1.1制造过程中的监督力度不够 随着我国汽车行业的迅猛发展,汽车零部件的制造检测标准越来越多。但是这些标准多为行业内所规定的制造工艺规范、产品环保等方面,虽然在一定程度上可以保障汽车零部件的生产质量,但其中的一些规定对消费者的消费需求考虑较少,以及对产品的使用寿命、性价比等方面还有欠缺。 另外,生产过程质量管理会涉及到车间现场质量信息的录入,车间技术人员对汽车零部件质量缺陷的判定,汽车操作人员对质量问题的解决方式。而这一切对质量的追溯都需要有效的监督,对工作人员技术规范的遵守、对生产流程标准化的执行,对信息系统变动的更正等都需要专门的监督人员参与完成。但是现阶段由于相关人员无法有效对零部件制造生产过程进行有力的监督,导致汽车零部件的制造质量也参差不齐。 1.2相关制度、人才与技术有所缺乏 就现阶段而言,我国汽车零部件在制造及生产的过程中仍存在很多与质量控制方面有关的隐患及问题,这就需要相关企业以及相关人员对其加以重视,并制定相应的解决策略。比如,我国现有的很多汽车制造企业都存在着规模较小、制度与人才严重匮乏的现象,这就导致这些汽车制造企业无法对与之相关的行业信息进行准确掌握,再加上各部门间缺乏有效沟通,使得该领域发展趋势的预测出现偏差,最终对汽车零部件制造的质量控制造成了严重影响。再比如,零部件的研发技术比较落后,无法实现对其的质量控制,就导致所研发出的产品无法满足客户需求。 2、汽车零部件制造质量的影响因素 2.1质量体系对汽车零部件制造质量的影响 一个完整的质量体系可以确保从材料选定、采购、加工以及到最终销售时每个环节的质量稳定。体系内部的审核、设备维护、工装检验和人员培训都是质量体系不可获取的环节。每一个质量体系都是由同样的三个过程构成,分别是最高管理者过程(如策划、资源配置等),实现过程(与顾客交流的有关过程,设计研发,产品实现)和支持过程(人员培训和机器维护等),但是一样的构成过程,其侧重点和运行效率也是有所不同的。此外,体系内的执行力度也是影响生产的又一大要素,当执行力度不够时,制造质量就会面临损失严重的危机。 2.2过程控制对汽车零部件制造质量的影响 汽车零部件的制造过程,就是指从原材料的采购,生产到出厂的所有步骤和环节。为了零部件质量的更好提高,现代的生产工艺也越来越多样化。但主要常用到的工艺有以下几种,分别是铸造、冲压、焊接、锻造、电镀、铆接等,选用不同的工艺制造,对制造零部件的参数和质量影响都不一样,例如在铸造过程中的浇筑金属温度和速度,这些会直接影响零部件的成形效果,温度过高过低会导致浇筑不充分,速度过快或慢不利于零部件成型,再说电镀,它的复杂性直接增加了过程控制的难度。这些问题都会对汽车零部件的制造质量产生一定的影响。 3、汽车零部件制造质量的有效控制措施 3.1健全质量管理与控制流程 为了能够有效地对汽车零部件制造质量进行控制,相关企业就需要建立健全质量管理体系,同时制定统一的质量规范和标准,促进汽车零部件制造企业向产业化、规模化方向发展。加强对制造企业的质量管理培训,确保零部件使用的材料和生产工艺都能严格按照规范标准中的要求执行,全面落实对制造企业的质量管理意识,提升全体人员的质量管理意识。 为推进质量管理行为和促进零部件生产的顺利开展,应完善汽车零部件管理的流程和制度,保证零部件生产工作的可操作性。在制度的制定时应以完成工作量的质量为主要原则,并确保制度的可行性。在对工作人员的工作内容进行约定时,必须要求员工端正态度,规范及时地完成各自工作。此外,制度中应明确责任主体,对各岗位员工的职责进行明确划分,避免责任与权力的重叠,并且要将责任从部门到个人一一落实。为避免制度流于形式化,发挥制度和体系的积极功能,应从上至下、全面系统地逐层推进制度的执行。 3.2采用先进的制造技术 生产环节是汽车零部件成型的重要阶段,既是对设计环节的成果展现,又是质量检验环节的对象,生产制造水平至关重要。为了确保汽车零部件生产加工质量,应该采用先进的制造技术,提高加工人员的技术水平。因此相关工作人员在进行汽车零部件的加工与制造之前,应该详细认真地研究设计图纸,明确设计图纸中的每一个数据信息和对加工的要求。 现阶段,我国汽车零部件生产加工基本都采用数控机床,自动化程度较高,适合大批量生产。为了提升数控机床的加工精度和效率,可引进先进的智能控制技术,通过智能控制,可有效提升生产效率,对生产过程中出现的偏差,可通过处理器的智能程序对参数进行调整。智能控制可大大提高零部件加工的精度,同时使操作更加简便,只需要更换运行程序,就可以生产其他零部件。在生产加工的过程中,应该加强对半成品和成品的质量检验,确保每个环节加工的产品都符合质量标准。 3.3加强汽车零部件产品质量检验和审核力度

铸造生产过程控制程序

铸造生产过程控制程序 1.目的 为使产品铸件的整个生产过程的质量、环境、职业健康安全处于受控状态。 2.适用范围 铸造车间所生产的本公司铸件的生产全过程。 3.职责 3.1车间主任负责各工序的生产管理,组织贯彻实施质量管理、环境管理、职业健康安全管理各控制程序,对铸件生产中的质量、环境、职业健康安全负责。 3.2车间计划调度员根据公司生产技术部下达的生产指令安排组织生产活动。3.3车间技术组负责编制工艺文件,并对工艺文件的正确性、完整性、适用性负责。 3.4车间安全员负责车间生产的环境管理和职业健康安全管理的日常工作。 3.5各班组长对本班组的产品质量、生产作业计划及进度、环境管理、职业健康安全管理的完成情况负责。 4.工作程序 4.1过程准备 4.1.1车间计划调度员按照生产技术部下发的项目计划编制各班组的生产计划,及时下发到各班组,完成调度指令兑现率,准备好各种工装器具及原材料。 4.1.2车间生产所需各种工装器具及原材料放在有明显标识的指定区域,由车间统一管理。 4.1.3车间技术组由专人负责管理图纸和技术资料,进行分类、标识、定址存放,建立文件资料目录及管理规定。

4.1.4技术组的技术人员根据当月车间生产计划准备技术资料、图纸,并保证这些资料正确、清晰、完整、有效。 4.1.5原料、辅料和工艺装备上场前有关人员应检验其是否符合规定要求,检验结果应记录并明确标识。 4.1.6车间设备员要做好设备的日常管理和检查,其结果应记录备案。 4.1.7操作者上岗前应经过培训,培训合格后持证上岗,特殊过程(熔炼、浇注、造型、焊接、热处理、机动车司机)必须经过专门培训,考试结果记录备案。 4.2过程控制 4.2.1图纸资料的控制 4.2.1.1车间技术组负责图纸、技术文件的收发、归档、管理和更改。 4.2.1.2车间技术组签收图纸、资料后,加盖本车间专用标记章,填写《收图登记》,分类放置。 4.2.1.3车间技术组收到改图通知后,按要求更改,保证零件图、工艺图、工装图的有效性,做出更改标识并通知到相关技术人员。车间技术组对车间图纸、资料的正确性、完整性负责,保证在生产过程中使用的图纸资料为有效版本。 4.2.1.4归口本部门管理的定型产品工艺改进、工装设计及新增零件的工艺、工装设计、履行审核、批准手续。 4.2.1.5车间的图纸、资料一律不外借,外部门人员借用需经主管主任批准,并填写《借阅登记》,当日归还,特殊情况当日不能归还的,需经车间主任签字批准限期归还。 4.2.2工艺设计控制 4.2.2.1车间技术组负责铸件铸造工艺的编制,并对其正确性、适用性负责,主管技术人员校对、审核、标准化后,主管主任签字批准,并正确执行冶炼工艺。

铸造用的硅砂及质量控制

铸造用的硅砂及进厂质量控制 林州市合鑫铸业公司李海军 铸造用的硅砂作为造型的主要原材料,其质量的好坏对型砂性能的影响很大。特别是原 砂含泥量过高,使型砂和旧砂中的含泥量增高,导致型砂透气性下降,含水量上升,铸件气 孔缺陷增多。除了强烈影响透气性低和含水量高以外,还会引起型砂韧性变差,造型时起模 困难,砂型棱角易碎,吊砂易断,铸件砂眼废品率增高。对于树脂砂造型或制芯,原砂含泥 量过高还会造成树脂加入量增大,芯子发气量增高等问题。故一般工厂均对型砂和旧砂的含 泥量有明确规定,并至少每周要检测一次。单一砂机器造型铸铁用型砂含泥量一般为 10%-13%,旧砂含泥量为8%-11%。对于粘土型砂用硅砂的含泥量最好<0.8%,树脂等有机粘结剂砂芯用硅砂含泥量最好<0.3%,而且越低越好。所以有效的控制采购原砂的含泥量对提 高铸件的质量很有必要。 对于中部地区,为了就地取才,降低生产成本,一般采购黄河水洗烘干砂做为造型用的 原砂。值得一提的是,黄河砂与河北的承德砂、内蒙的大林砂相比,虽然价格比较便宜,但 含泥量一般均偏高。表1为我厂对进厂的黄河水洗烘干砂的化验数据。 表1 试样号含水量(%)含泥量(%) 粒度(70/140,三筛≥75%) 平均细度1# 0.05 1.12 81.12 76 2# 0.05 0.98 82.86 78 3# 0.05 1.0 79.04 73 4# 0.10 0.98 82.24 76 5# 0.15 1.16 73.78 66 6# 0.10 1.28 73.4 66 7# 0.05 1.30 74.82 71 通过上表可以看出,经过烘干的砂,含水量一般都能满足标准≤0.3%的要求,但含泥量均偏高,70/140目的粒度波动也较大。我们厂曾较长时间的用过河北的承德砂,其含泥量均低于0.6%,而且质量较稳定。 对于手工造型和一般机器造型的工厂来说,为了有效的降低生产成本,可以使用黄河砂 做为造型用的原砂,但要尽量控制其含泥量不要超过1%,否则对型砂性能影响较大。对于树脂砂造型、制芯或生产覆膜砂用的原砂,其含泥量最好低于0.6%或更低。

锻造基础知识大汇集

forming1950专注锻造、冲压、钣金成形行业,汇聚作者与读者、用户与装配商、行业与市场最新动态,通过行业市场类、技术交互类、技术文章类题材为锻压行业打造一流的交流学习、技术传播、信息服务平台。锻造工艺(Forging Process)是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。 变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 坯料 根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。 1、自由锻。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。 2、模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦、辊锻、径向锻造和挤压等等。 3、闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 锻模 根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。摆辗、摆旋锻和辗环也可用精锻加工。为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品,例如生产品种多、尺寸大的汽轮机叶片等锻件。锻造设备的模具运动与自由度是不一致的,根据下死点变形限制特点,锻造设备可分为下述四种形式: 1、限制锻造力形式:油压直接驱动滑块的油压机。 2、准冲程限制方式:油压驱动曲柄连杆机构的油压机。 3、冲程限制方式:曲柄、连杆和楔机构驱动滑块的机械式压力机。 4、能量限制方式:利用螺旋机构的螺旋和磨擦压力机。 重型航空模锻液压机进行热试为了获得高的精度应注意防止下死点处过载,控制速度和模具位置。因为这些都会对锻件公差、形状精度和锻模寿命有影响。另外,为了保持精度,还应注意调整滑块导轨间隙、保证刚度,调整下死点和利用补助传动装置等措施。 滑块 还有滑块垂直和水平运动(用于细长件的锻造、润滑冷却和高速生产的零件锻造)方式之分,利用补偿装置可

锻造成形工艺及其质量控制

锻造成形工艺及其质量控制 汽车前梁成形辊锻工艺日趋成熟,特别是近几年,前梁生产逐步采用整体辊锻模锻复合工艺,它是成形辊锻工艺基础上,引入模锻工艺,原理上汲取各自优点,但组成优于两者的新工艺,该工艺适用于各类轻、中、重型汽车前梁锻件的生产。为少投入、高质量、大批量生产复杂类汽车零部件探索了一条新途径。 1、汽车前轴成形辊锻工艺 汽车前轴(图2-1左右对称)成形辊锻工艺流程如下: 图2-1 汽车前轴锻件图 (1)下料采用G4032带锯条下料。 (2)加热采用KGPS250-1型中频感应炉加热。 (3)成形辊锻采用D42-1000辊锻机,进行制坯、预成形、终成形三道次辊锻或四道次。 (4)弯形局部整形采用6300T磨擦压力机整体弯形、整形。 (5)切边采用1600T摩擦压力整体切边。 (6)热校正采用1600T磨擦压力机整体热校正。 该工艺将圆钢通过制坯、预成形、终成形三道次辊锻制成带飞边直坯锻件,然后通过局部整形、切边、弯形、热校正完成锻件生产,从而达到工艺要求的几何尺寸。 2、下料是将原材料切割成所需尺寸的坯料。 3、锻造所用的原材料种类繁多,有各种钢号和非铁金属,有不同的截面形状,不同的尺寸规格,不同的化学成份的物理学性质等,所以下料方法是多种多样的。

4、辊锻工艺辊锻前轴一般利用圆钢作为初始材料,直径和长度都是设计出来的。 5、不同型号前轴所需圆钢尺寸不一样。印度产品FA90 所需原钢尺寸为Φ150×740 6、因辊锻工艺所需圆钢长度精确,端面平整,所以辊锻工艺采用锯床下料。但存在生产率较低、锯口损耗较大等缺陷。 2.1.1加热 在锻造生产中,金属坯料锻前一般均需加热,其目的是:提高金属塑性,降低变形抗力,使之易于流动成形并获得良好锻压组织。因此,锻前加热是整个锻造过程中的一个重要环节,对提高锻造生产率,保证锻件质量及节约能源消耗等都有直接影响。 圆钢加热主要采用电加热。电加热是通过把电能转变为热能来加热金属坯料。其中有感应电加热,接触电加热,电阻炉加热和盐浴加热等。辊锻工艺要求加热速度快,加热质量好,温度控制准确,金属烧损较少(一般小于0.5%),故一般采用感应加热。并且感应加热还具有操作简单,工作稳定,便于和锻压设备组成生产线实现机械化一自动化,劳动条件好,对环无污染等优点。 感应加热的原理如图2-2在感应器通入变电流产生的交变磁切作用下,金属坯料内部产生交变涡流。由于涡流发热机磁化发热(磁性转变点以下)便直接将金属坯料加热。 图2-2 感应电加热原理图1—感应器2—坯料

制造全过程质量控制技术

制造全过程质量控制技术 一、技术概述 制造全过程质量控制技术是一种既包括生产技术,又包括生产质量管理的系统工程。实现制造全过程的质量控制其内涵包括两个方面。一是要保证优化工艺,提高产品质量,二是要保证稳定不变的工艺条件,得到分散度极小的均一产品质量。制造全过程质量控制不仅要靠生产过程的自动化、工艺参数的在线控制、生产工艺参数对工艺效果的模拟优化来实现,而且还必须尽可能控制过程的智能化,这是当前质量控制技术发展的主要方向。 二、现状及国内外发展趋势 1.国内外现状 随着计算机技术的提高和普及,智能控制技术迅猛发展,为成形与改善生产技术的质量控制的实际应用打下了基础。目前各工业国家都相继建立了专门的科研机构,成立了相应的学术团体,出版了有关的刊物和专著。以热处理生产的智能控制为例,我国上海交通大学近二十年来在热处理计算机模拟与智能化理论和实践方面取得了瞩目成就,国家机械工业局北京机电研究所已建立的数据库和专家决策系统以及当前开展的材料热处理组织和性能模拟技术的研究开发亦获得了明显成绩。1995年,国际热处理与表面工程联合会(IFHT)增设了热处理智能化技术委员会,我国上海交通大学潘建生教授担任首任主席。 热处理工艺数据库和专家决策系统的建立,为实现热处理质量控制创造了条件。早在七十年代初,美国金属学会(ASM)、英国的沃尔夫逊热处理中心(Wolfson Heat Treatment Center)以及原南斯拉夫(现克罗地亚)都相继建立了材料与热处理数据库,做到了可以根据机件热处理后力学性能要求进行计算机辅助选材,或已知材料和热处理工艺预见最后的组织和性能。随后欧美、日本等先进工业国家开发出用计算机对各种热处理工艺过程的控制技术,开展了计算机控制下的工艺参数数模控制技术研究,并在生产中获得了应用。目前国际知名厂家的许多连续式和周期式热处理生产线都采取了用可编程控制器(Programable Controller)或微处理机的单控或群控,使整个生产工艺过程、炉气碳势、氮势以及其浓度沿深度的分布规律都能实现按预定的要求严格控制。我国的科研院所、大专院校、汽车行业的一些大厂在消化吸收引进技术和自行开发的基础上已基本掌握了这些先进技术。当前,在热处理界已开创了一个广泛利用计算机实现质量控制的新时代。 2.发展趋势 质量控制技术发展的前沿突出表现在以下四个方面: (1)质量在线控制技术 热处理质量的在线控制技术中温度、时间和炉气成分是最基本的控制参数。在温度控制方面,国内外已广泛采用可控硅控温技术,结合PID仪表可使热过程温度控制在相当精确范围。对于大型零件和大装炉量的热处理和锻造加热过程,在整炉工件的真空加热中目前已采用专用仪表、可编程控制器、微处理机等实现按工艺要求规定温度变化规律(加热速度、保温台阶、保温时间、随炉冷速、气冷冷速等)施行加热和冷却,并可在工艺过程的自始至终实现时温度的跟踪。在炉气控制方面,从传感器角度在国内外都经历了一个露点法——红外仪——氧探头的发展过程。目前在吸热式气氛、氮基合成气氛和滴注式气氛中渗碳,利用氧探头作传感器,在严格控制炉温和炉气良好笔循环的前提下可以使炉气碳势(钢表面含碳量)达到±0.05~0.02%的精度。利用微处理机对温度、炉气碳势、强渗与扩散时间的精确控制,现在国内外都可以实现表面碳含量、渗层深度、渗层碳浓度梯度按一定规律分布的质量的在线控制。 对于热处理质量的在线控制技术,目前迫切需要考虑的是直生式可近期气氛渗碳时的碳势精确控制、

铸造过程的质量控制3

铸造过程的质量控制 铸造是我们通过熔炼金属,制造铸型,并将熔炼金属液浇入铸型,凝固后获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。 我们制造成型的金属零件毛坯铸件,在许多领域已成为重要构件,并占有一定的比例。在汽车制动配件、减速机箱体、阀门配件、管道修配件、电梯配件是我们的主导产品。 铸造过程质量是从原材料进厂到合格铸件出厂的铸造全过程质量,它包括铸造过程中每一个生产环节的质量,如原材料的质量、铸造工艺装备的质量、型砂芯砂的配制质量、造型制芯与合箱的质量、熔炼与浇注的质量、落砂清理与后期处理的质量等。 铸造原材料质量是保证铸件质量的先决条件,通过原材料进厂检验,获得合格的原材料和外购件。铸造用造型原材料:新砂应符合GB/T9442标准要求;膨润土应符合JB/T9227标准要求;煤粉应符合JB/T9222标准要求。铸造用熔炼原材料:铸造用生铁应符合GB/T718;球墨铸铁用生铁应符合GB/T1412标准要求;废钢铁应符合GB4223标准要求。几十年的经验告诉我们,这对保证铸件材质质量特别重要。每批原材料必须经化验确认合格后,方可交付车间使用,不经检验的原材料不准卸车。化验不合格的原材料不准使用,并隔离存放予以退货处理。 铸造工艺装备的质量优劣,直接影响到铸件毛坯的质量,是生产合格毛坯铸件的关键。依据模样图、制模工艺规程、模样技术要求和标准,对模具、芯盒和砂箱的材料、尺寸、结构及技术要求进行控制验收,有效地保证铸件的毛坯形状公差。 型砂的配制质量,其性能是否符合要求,也直接影响铸件质量。为了获得优质铸件,对型砂性能予以控制:①具有良好的成形性,包括良好的流动性、可塑性韧性和不粘模性;②足够的强度,包括常温湿强度、硬度和高温强度;③一定的透气性、较小的吸湿性,较低的发气量;④较高的耐火度,较好的热化学稳定性,较小的膨胀率与收缩率;⑤较好的退让性、溃散性和耐用性。我们通过每小时对型砂含水量、湿透气性、湿压强度、紧实率检测一次,有效控制了型砂的性能。芯砂的质量要求同型砂的质量要求基本相同,通常,根据芯砂类型不同,其检验项目与检验方法亦不同。树脂自硬砂通过对其可使用时间、流动性和强度的检测,保证了树脂自硬砂的性能;通过对树脂砂型涂料物理性能、工艺性能、工作性能和流变特性的质量控制,降低了树脂沙铸件表面粗糙度值、防止或减少铸件粘砂缺陷、提高了铸件落砂和清整效率。 造型前应对模具等工艺装备的精度进行检查,不符合要求的模具和砂箱,不准使用。造型操作人员严格按造型工艺规程操作,定时对砂型硬度、尺寸和形状进行检查,不符合要求的砂型,要予以损坏不准下芯合箱。制芯前应对芯盒等工艺装备的精度进行检查,不符合要求的芯盒不准使用。严格按照制芯工艺规程、烘干或硬化规范操作,对砂芯强度、刚度、排气、尺寸和形状进行检查,不符合要求的芯子不准使用。下芯子时,要检查砂芯间及砂芯与砂型的相对位置和配合间隙、芯头紧固、砂箱定位以及出气孔和排气道等。依据作业指导书和工艺规程,通过目视、手感对合箱质量进行检查,并对零件号、金属液牌号进行标识。 熔炼前的正确备料与配料,不仅可以减少废品,保证铸件质量,还可以降低炉料的消耗。开炉前操作人员依据原材料标准、理化检验报告单,对炉料目视检

锻造工艺质量控制规范

衡阳振洋汽车配件有限公司锻造工艺质量控制规范 一主题内容与适用范围: 本标准规定了对锻造工艺进行全过程质量控制的通用原则和要求。本标准适用于衡阳振洋 汽车配件有限公司锻造车间的锻造工艺质量控制。 二引用标准: GB 12361钢质模锻件通用技术条件 GB 12362钢质模锻件公差及机械加工余量 GB 13318 锻造车间安全生产通则 GB/T 12363锻件功能分类JB 4249锤上钢质自由锻件机械加工余量与公差JB 4385锤上钢质自由锻件通用技术条件JB/T 6052钢质自由锻件加热通用技术要求JB/T 6055锻造车间环境保护导则 三.锻件分类本标准质量控制所涉及的锻件分类按GB/T 12363执行。 四环境的控制: 锻造厂的工作环境包括厂房地面、天窗、温度、通风、照明、噪声、通道、管道以及坯料、锻件和工夹模具的存放等均应按GB 13318第3章和JB/T 6055第3、4章的要求和国家的有关法规、法律制订本企业的具体实施要求。 五设备、仪表与工装的控制: 5. 1设备、仪表 5. 1. 1各类设备必须完好,并有操作规程和维修、检定制度。 5. 1.2各类在用主要设备必须挂有完好设备标牌,并有检验有效期及下次检定日期。不合 格设备及超过检定合格有效期的设备必须挂“停用”标牌。 5. 1.3设备的控制系统及检测显示仪表应定期检查,确保仪表和其精度的显示数值准确。 5. 1. 4加热设备的温度显示及测点布置应正确反应加热区炉温及炉温均匀性。 5. 1.5所用设备都必须建立档案,其具体内容包括: a. 设备使用说明书 b. 台时记录

c. 故障记录 d. 修理记录 e. 历年检定报告及检定合格证 5. 2 模具及其他工装 5. 2. 1 新模具应按模具图的要求制造 ,检验合格后进行试模 , 确认达到设计、制造要求后方 可投入生产。 5. 2. 2 在每批锻件生产结束时 ,应将锻造的尾件上打标记并经检验尺寸合格后 , 模具方可返库继续使用。 5. 2. 3 锻造所用工具 ,必须按工艺文件的规定选用 ,并经检查完好方可使用。 5. 2. 4 每套模具(含预锻模、切边模等)必须建立“模具履历表” , 并建立严格的模具管理制度。 六原材料的控制: 6. 1 锻件用原材料(含钢锭)应有质量证明书,并符合工艺文件规定的材料牌号、尺寸规格、性能要求。 6. 2 原材料和坯料进厂后需经材料检验部门复验 , 锻造用的棒材及锻坯 , 都必须有复验合格报告单, 复验合格的原材料应有复验印记 , 不合格料应做出明显的标记。 6. 3 合格料、待检料、不合格料应有明显标记 ,且应分区存放 ,严禁混料。 6. 4 合格料的入库、出库必须严格遵守公司的管理制度。 七文件与资料的控制: 7. 1 必备的技术文件锻件生产应具有零件图、锻件图、工序图、模具图、技术标准、生产说明书、工艺规程等技术文件。 7. 2 技术文件要求: 7. 2. 1 技术文件内容的表达要准确、简明、通俗易懂且有逻辑性 ,并应符合标准化的要求 , 各种技术文件必须统一、完整。 7. 2. 2 所有的技术文件均应按规定的程序审批签字后 ,方能生效。技术文件如有更改 ,其审批

锻造基础知识大汇集

2015-06-08锻压世界锻压世界 forming1950专注锻造、冲压、钣金成形行业,汇聚作者与读者、用户与装配商、行业与市场最新动态,通过行业市场类、技术交互类、技术文章类题材为锻压行业打造一流的交流学习、技术传播、信息服务平台。锻造工艺(Forging Process)是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。 变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 坯料 根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。 1、自由锻。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。 2、模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦、辊锻、径向锻造和挤压等等。 3、闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。 锻模 根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。摆辗、摆旋锻和辗环也可用精锻加工。为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品,例如生产品种多、尺寸大的汽轮机叶片等锻件。锻造设备的模具运动与自由度是不一致的,根据下死点变形限制特点,锻造设备可分为下述四种形式: 1、限制锻造力形式:油压直接驱动滑块的油压机。 2、准冲程限制方式:油压驱动曲柄连杆机构的油压机。 3、冲程限制方式:曲柄、连杆和楔机构驱动滑块的机械式压力机。 4、能量限制方式:利用螺旋机构的螺旋和磨擦压力机。

锻造基本知识

锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

铸造全过程质量管理实战

2009 中国铸造活动周论文集 - 1 - 铸造全过程质量管理实战要点 童思艺 (广西玉柴机器股份有限公司,广西玉林) 摘要:通过对铸造全过程质量管理的特点分析,结合实例,阐述从接订单到生产技术准备、生产、售后全 过程质量管理的要点。达到使质量稳定受控,满足顾客要求的目的。 关键词:铸造;质量管理;要点 提高铸件的质量,由铸造大国成为铸造强国是我们共同的理想和使命。为此,提高我们的技术水平十 分必要,但我们统计发现,不少造成损失大的质量事故的原因,从技术的层面看原因并不复杂,技术并不 高深,也不需要花很多钱,是质量管理的体系有漏洞所造成,也就是说有的影响产品质量的因素我们没有 识别出来,并进行有效控制。下面从整个铸造过程分析,结合实例,分析各环节质量管理要点。 1 铸造过程 铸造过程是特殊过程。特殊过程也就是对形成的产品是否合格不易或不能经济地进行验证的过程。在 实际生产中,我们看不到铸件及其铸造缺陷实际的形成过程,因而不能在缺陷形成时发现它,只能控制缺 陷产生的条件,即对影响质量的因素进行识别与控制。 2 影响铸造质量的因素 影响铸造质量的因素众多,我们对这些因素的识别不可能一蹴而就,而是不断识别,逐步完善。铸造 过程的质量管理任务就是识别及控制影响铸件质量的因素,其效果与对影响铸件质量因素识别的广度和深 度,以及控制措施的落实程度直接相关。这方面不同的企业或同一企业不同的阶段差别很大,也使铸造过 程的质量管理成效以及铸件的质量存在很大的差别。有的企业领导对铸造车间又爱又恨,爱的是没有铸造 车间,新品试制不方便,受制于人;恨的是铸件合格率很低,效益差,被称为“烧钱”的车间。因此,如 何改善铸造过程的质量管理,对增加企业的效益,实现铸造强国的理想有着重要的作用。影响铸造质量的众多因素中,有部分的因素对铸造质量的影响是互为条件的,如果用概率论的概念来 表述,这些因素对铸造质量的影响概率为条件概率。因此,在质量分析中就切忌用极端的思维方式,否则 就无法制订出质量改进的计划。如造成气孔缺陷的可能因素有铁水的化学成分、铁水的浇注温度、型砂的 水分、坭芯和铸型的排气是否通畅等等。有的员工为了推卸责任,提出单独做极端条件下的试验,如故意 调低C、或浇注温度、提高型砂的水分、堵塞坭芯和铸型的排气等等。这些极端条件下做的

相关文档
最新文档