线性时变周期系统的能控性分析

线性时变周期系统的能控性分析
线性时变周期系统的能控性分析

线性系统的时域分析法(第七讲)

第三章 线性系统的时域分析法 3.1 引言 分析控制系统的第一步是建立模型,数学模型一旦建立,第二步 分析控制性能,分析有多种方法,主要有时域分析法,频域分析法,根轨迹法等。每种方法,各有千秋。均有他们的适用范围和对象。本章先讨论时域法。 实际上,控制系统的输入信号常常是不知的,而是随机的。很难用解析的方法表示。只有在一些特殊的情况下是预先知道的,可以用解析的方法或者曲线表示。例如,切削机床的自动控制的例子。 在分析和设计控制系统时,对各种控制系统性能得有评判、比较的依据。这个依据也许可以通过对这些系统加上各种输入信号比较它们对特定的输入信号的响应来建立。 许多设计准则就建立在这些信号的基础上,或者建立在系统对初始条件变化(无任何试验信号)的基础上,因为系统对典型试验信号的响应特性,与系统对实际输入信号的响应特性之间,存在着一定的关系;所以采用试验信号来评价系统性能是合理的。 3.1.1 典型试验信号 经常采用的试验输入信号: ① 实际系统的输入信号不可知性; ② 典型试验信号的响应与系统的实际响应,存在某种关系; ③ 电压试验信号是时间的简单函数,便于分析。 突然受到恒定输入作用或突然的扰动。如果控制系统的输入量是随时间逐步变化的函数,则斜坡时间函数是比较合适的。 (单位)阶跃函数(Step function ) 0,)(1≥t t 室温调节系统和水位调节系统 (单位)斜坡函数(Ramp function ) 速度 0,≥t t ∝ (单位)加速度函数(Acceleration function )抛物线 0,2 12 ≥t t (单位)脉冲函数(Impulse function ) 0,)(=t t δ 正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。 通常运用阶跃函数作为典型输入作用信号,这样可在一个统一的基础上对各种控制系统的特性进行比较和研究。本章讨论系统非周期信号(Step 、Ramp 、对正弦试验信号相应,将在第五章频域分析法,第六章校正方法中讨论)作用下系统的响应。 3.1.2 动态过程和稳态过程

线性系统的时域分析方法

第三章线性系统的时域分析方法 教学目的:通过本章学习,熟悉控制系统动态性能指标定义,掌握线性系统稳定的充要条件和劳斯判椐的应用,以及稳态误差计算方法,掌握一阶、 二阶系统的时域分析方法。 教学重点:掌握系统的动态性能指标,能熟练地应用劳斯判椐判断系统稳定性,二阶系统的动态响应特性分析。 教学难点:高阶系统的的动态响应特性分析。 本章知识结构图: 系统结构图闭环传递函数 一阶标准式 二阶标准式 特征方程稳定性、稳定域 代数判据 误差传递函数误差象函数终值定理稳态误差开环传递函数系统型别、开环增益 公式 静态误差系数 第九讲

3.1 系统时间响应的性能指标 一、基本概念 1、时域分析方法:根据系统的数学模型求出系统的时间响应来直接分析和评价系统的方法。 (1)响应函数分析方法:建立数学模型→确定输入信号→求出输出响应→ 根据输出响应→系统分析。 (2)系统测试分析方法:系统加入扰动信号→测试输出变化曲线→系统分析。 系统举例分析:举例:原料气加热炉闭环控制系统 2、分析系统的三大要点 (1)动态性能(快、稳) (2)稳态性能(准) (3)稳定性(稳) 二、动态性能及稳态性能 1、动态过程(过渡过程):在 典型信号作用下,系统输出从初始状态到最终状态的响应过程。(衰减、发散、等幅振荡) 2、稳态过程:在典型信号作 用下,当t → ∞ 系统输出量表现的方式。表征输出量最终复现输入量的程度。(稳态误差描述) 3、动态稳态性能指标 图3-1温度控制系统原理图 (1)上升时间tr :从稳态值的10%上升到稳态值的90%所需要的时间。 (2)峰值时间tp :从零时刻到达第一个峰值h(tp)所用的时间。 (3)超调量δ%:最大峰值与稳态值的差与稳态值之比的百分数。(稳) (3-1) %100)(()(%?∞∞-= h h t h p ) δ

第四章线性系统的可控性和可观性1

第四章 线性系统的可控性和可观性 §4-1 问题的提出 经典控制理论中用传递函数描述系统的输入—输出特性,输出量即被控量,只要系统是因果系统并且是稳定的,输出量便可以受控,且输出量总是可以被测量的,因而不需要提出可控性和可观性的概念。 现代控制理论是建立在用状态空间法描述系统的基础上的。状态方程描述输入)(t u 引起状态)(t x 的变化过程;输出方程描述由状态变化所引起的输出)(t y 的变化。可控性和可观性正是定性地分别描述输入)(t u 对状态)(t x 的控制能力,输出)(t y 对状态)(t x 的反映能力。它们分别回答: “输入能否控制状态的变化”——可控性 “状态的变化能否由输出反映出来”——可观性 可控性和可观性是卡尔曼(Kalman )在1960年首先提出来的。可控性和可观性的概念在现代控制理论中无论是理论上还是实践上都是非常重要的。例如:在最优控制问题中,其任务是寻找输入)(t u ,使状态达到预期的轨线。就定常系统而言,如果系统的状态不受控于输入)(t u ,当然就无法实现最优控制。另外,为了改善系统的品质,在工程上常用状态变量作为反馈信息。可是状态)(t x 的值通常是难以测取的,往往需要从测量到的)(t y 中估计出状态)(t x ;如果输出)(t y 不能完全反映系统的状态)(t x ,那么就无法实现对状态的估计。 状态空间表达式是对系统的一种完全的描述。判别系统的可控性和可观性的主要依据就是状态空间表达式。 【例如】 (1)u x x ?? ? ???+??????=202001 []x y 01= 分析:上述动态方程写成方程组形式:?? ? ??=+==1221122x y u x x x x 从状态方程来看,输入u 不能控制状态变量1x ,所以状态变量1x 是不可控的;从输出方程看,输出y 不能反映状态变量2x ,所以状态变量2x 是不能观测的。 即状态变量1x 不可控、可观测;状态变量2x 可控、不可观测。

自动控制原理》实验2(线性系统时域响应分析

实验二 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 二、基础知识及MATLAB 函数 (一)基础知识 时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。 用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 1.用MATLAB 求控制系统的瞬态响应 1)阶跃响应 求系统阶跃响应的指令有: step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线 随即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如 t=0:0.1:10) [y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量 在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。 考虑下列系统: 25 425 )()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s

实验五 线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) ()(0.5)(0.7)(3) s G s s s s s += +++,用MATLAB 编写程序来判断闭环系统的稳定性, 并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=poly2str(dc{1},'s') 运行结果如下: dens= s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 dens 是系统的特征多项式,接着输入如下MATLAB 程序代码: den=[1,4.2,3.95,1.25,0.5]

p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i k = 0.2000

线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈:。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题 系统结构如题图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 3.1 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 3.2 思考与习题祥解 题3.1 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响? (5)系统误差与哪些因素有关?试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关? 答:(1)二阶系统特征根在复平面上分布情况如图3.1所示。 图3.1 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξσe 。在工程设计中,对于恒值控制系 统,一般取 ξ=0.2~0.4;对于随动控制系统ξ=0.6~0.8。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈ 。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题3.2系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题3.3 系统结构如题3.3图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系?

线性系统的时域分析

第3章 线性系统的时域分析 本章讨论线性系统的运动分析。主要介绍连续系统与离散系统的状态空间模型的求解、状态转移矩阵的性质和计算以及连续系统状态方程的离散化。本章最后介绍基于Matlab的状态空间模型求解与控制系统的运动仿真问题的程序设计与仿真计算。 建立了系统的数学描述之后,接下来要对系统作定量和定性分析。定量分析主要研究系统对给定输入信号的响应问题,也就是对描述系统的状态方程和输出方程的求解问题。定性分析主要研究系统的结构性质,如能控性、能观性、稳定性等。本章先讨论用状态空间模型描述的线性系统的定量分析问题,即状态空间模型的求解问题。根据常微分方程理论求解一个一阶定系数线性微分方程组是很容易的,可是求解一个一阶变系数线性微分方程组却非易事。状态转移矩阵的引入,使得定常系统和时变系统的求解公式具有一个统一的形式。为此,本章将重点讨论状态转移矩阵的定义、性质和计算方法,并在此基础上导出状态方程的求解公式。本章讨论的另一个中心问题是连续系统状态方程的离散化,即建立连续系统的离散系统状态方程。随着计算机在控制系统分析、设计和实时控制中的广泛应用,这个问题显得越来越重要。在离散系统状态方程建立的基础上,本章也将讨论相应的状态方程求解问题,并将导出在形式上与连续系统状态方程的解一致的离散系统状态方程的解。 3.1 线性定常连续系统状态方程的解 在讨论一般线性定常连续系统状态方程的解之前,我们先讨论线性定常齐次状态方程的解,以便引入矩阵指数函数和状态转移矩阵的概念。所谓齐次状态方程,就是指状态方程中不考虑输入项的作用,满足方程解的齐次性的一类状态方程。研究齐次状态方程的解,就是研究系统本身在无外力作用下的自由运动。 3.2 状态转移矩阵及其计算 在状态方程求解过程中,关键是状态转移矩阵Φ(t)的计算。对于线性定常连续系统,该问题又归结到矩阵指数函数e At的计算。上一节已经介绍了基于拉氏反变换技术的矩阵指数函数e At的计算方法,下面讲述计算矩阵指数函数的其他3种常用方法。 3.2.1级数求和法

(完整word版)线性系统的稳定性分析

第三章 线性系统的稳定性分析 3.1 概述 如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够 的准确度恢复到原来的平衡状态,则系统是稳定的。否则,系统不稳定。一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。因此,稳定性问题是系统控制理论研究的一个重要课题。对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。 应用于线性定常系统的稳定性分析方法很多。然而,对于非线性系统和线性时变系 统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。 本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫 稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。 虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地 位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。技巧和经验在解决非线性问题时显得非常重要。在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。 3.2 外部稳定性与内部稳定性 3.2.1 外部稳定: 考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件: 1()u t k ≤<∞ 的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立: 2()y t k ≤<∞ 则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。 注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。 系统外部稳定的判定准则 系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。

现代控制理论试题

现代控制理论试题 一、 名词解释(15分) 1、 能控性 2、能观性 3、系统的最小实现 4、渐近稳定性 二、 简答题(15分) 1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质? 2、如何判断线性定常系统的能控性?如何判断线性定常系统的能观性? 3、传递函数矩阵 的最小实现A 、B 、C 和D 的充要条件是什么? 4、对于线性定常系统能够任意配置极点的充要条件是什么? 5、线性定常连续系统状态观测器的存在条件是什么? 三、 计算题(70分) 1、RC 无源网络如图1所示,试列写出其状态方程和输出方程。其中,为系统的输入,选两端的电压为状态变量 , 两端的电压为状态变量 ,电压 为为系统的输出 y 。 2、计算下列状态空间描述的传递函数 g(s) 3、 求出下列连续时间线性是不变系统的时间离散化状态方程: 其中,采样周期为T=2. 4、 求取下列各连续时间线性时不变系统的状态变量解 和 图1:RC 无源网络

5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的 取值范围: 6、对下列连续时间非线性时不变系统,判断原点平衡状态即是否为大范围渐近 稳定: 7、给定一个单输入单输出连续时间线性时不变系统的传递函数为 试确定一个状态反馈矩阵K,使闭环极点配置为,和。 现代控制理论试题答案 一、概念题 1、何为系统的能控性和能观性? 答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。 (2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t0 ),就称系统在t0时刻是能观测的。若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。 2、何为系统的最小实现? 答:由传递函数矩阵或相应的脉冲响应来建立系统的状态空间表达式的工作,称为实现问题。在所有可能的实现中,维数最小的实现称为最小实现。 3、何为系统的渐近稳定性?

线性系统的时域分析法

第3章 线性系统的时域分析法 3-1 一单位反馈系统的开环传递函数为)1(1)(+= s s s G K ,求系统的单位阶跃响应及动态性能指标p s r t t t 和,%,σ。 由题意可解得:5.0,1==ξωn 所以,系统的单位阶跃响应为: )sin(11)(2θωξξω+--=-t e t y d t n 其中047.1601arctan ,23122==-==-= ξξθξωωn d 所以)047.12 3sin(231)047.123sin(5.011)(5.025.0+-=+--=--t e t e t y t t 其动态性能性能指标为: s t s t s t p n s r 628.3615.033473.2% 3.16%==?====ξωσ 3-2 一单位反馈系统的开环传递函数为) 1()(+=Ts s K s G k ,其中单位阶跃响应曲线如图所示,图中s t y p p 5.1,25.1==。试确定系统参数K 、T 值。 图 题3-2图 4.0=ξ 28.2=n ω 可得T T K n n 12,2==ξωω 将参数(n ωξ,)值代入以上两式可得54.0,86.2==T K

3-3 一单位反馈系统的开环传递函数为) 2()(2n n K s s s G ξωω+=,已知系统的)(1)(t t r =,误差时间函数为t t e e t e 74.37.14.04.1)(---=,求系统的阻尼比ξ、自然振荡角频率n ω、系统的闭环传递函数及系统的稳态误差。 系统的闭环极点为74.3,7.121-=-=s s 相应的特征方程为 0358.644.5)74.3)(7.1(2=++=++s s s s 相应的特征方程为 0222=++n n s s ωξω 由此解得 079.1,52.2==ξωn 系统为?型系统,稳态误差为0。 3-4 一闭环反馈控制系统的结构图如图所示。 求:①当s t s 8.1%)5(%,20%=≤σ时,系统的参数K 和τ的值; ②求上述系统的位置误差系数p k ,速度误差系数v k ,加速度误差系数a k 。 图 题3-4图 由已知条件s t s 8.1%)5(%,20%=≤σ可知 s t e n s 8.13 %)5(% 20%100%21/==≤?=--ξωσξξπ 由此解得 21.0≥ξ,因此取3.0=ξ 则有 56.5=n ω 因此 1.0231 2 ====K K n n ξωτω 由于线性定常二阶系统各项系数均大于零,可推断系统稳定。

线性系统的稳定性分析

关于线性系统稳定性的进一步探究 任何一个实际系统总是在各种偶然和持续的干扰下运动或工作的。显然,我们首先要考虑的问题是,当系统承受这种干扰之后,能否稳妥地保持预定的运动轨迹或者工作状态,这就是稳定性。 此外,我们知道,描述系统的数学模型,绝大部分都是近似的,这或者是由于量测误差,或者是为使问题简化,而不得不忽略某些次要因素。近似的数学模型能否如实反映实际的运动,在某种意义上说,也是稳定性问题。 系统的稳定性在控制中是一个很重要的问题。在学习完稳定性理论之后,对此有了更为深刻的理解,不单单停留在输出跟踪输入的浅显印象之上,获益匪浅。因此,本文根据黄琳院士较为精炼的数学讲解,描述了一些自己对该问题的直观思考,并且结合线性系统和具体实例对稳定性作进一步分析,使内容不再过于抽象,更为深入地理解其应用价值。 1 预备理论 1.1 微分方程解的表示 考虑微分方程 00 (,)()x f x t x t x =?? =? 其解()x t 是自变量t 的函数,而0t ,0x 变动时对应的解也随着变动,故它应该是自变量t 与初值0t 、0x 的函数, 可记为00(;,)x t t x 。 例如: 000000(;,)()t t t t x x x x t t x e x t e x --=?=== 问题:当初值变动时,对应的解如何变动?在应用上的意义是:初值通常是用实验方法求得的,实验测得的数据不可能绝对准确,若微小的误差会引起对应解的巨大变动,那么所求的初值问题解的实用价值就很小。 1.2 Lipschitz 条件

00 1212(,)()(,)(,)(,):x f x t x t x t t t t t I x W R ==∈?-∞+∞=∈? (,)f x t 的定义域记为?W I 。若存在常数L ,使得对任何I,,W t x y ∈∈都有 (,)(,)f x t f y t L x y -≤- 则称f 在W I ?上满足Lipschitz 条件。这个定义可以推广到W 为任意有限n 维空间的情形。 注:满足Lipschitz 条件可保证微分方程解的存在性和唯一性 1.3 解的存在性、唯一性及对初值的连续依赖性 定理1-1 (存在性及唯一性定理)对于微分方程 (,)x f x t = 若(,)f x t 在W I ?域内连续且满足Lipschitz 条件,则对任意的初始条件 00(,)x x t W I ∈?总存在常数0a >,使得有唯一解00(;,)x x t t x =,在00[,]t a t a -+上 存在、对t 连续 ,且满足初始条件00()x t x =。 稳定性所要研究的是解的渐近性质,即当解()x t 在t →∞时的性状。故总假定在[)0,t ∞上解是存在的。 定理1-2 (解对初值的连续依赖性)在定理1的条件下,若(,)f x t 在域内连续且满足Lipschitz 条件,则微分方程的解00(;,)x t t x 作为t ,0t ,0x 的函数在它的存在范围内是连续的,即 ε?>,0δ?>,00()()x t t δ-ψ< ? 0000(;,())(;,())x t t x t t t t ε-ψψ<,0,a t b a t b ≤≤≤< 以上定理说明:若在初始时刻0()x t 和0()t ψ十分接近,则在定义域[],a b 内的解()x t 和()t ψ也会十分接近。因此,1.1中所提的问题也就迎刃而解了。 2 平衡状态的稳定性 李雅普诺夫稳定性的概念是微分方程解对初值的连续依赖性这一概念在无穷时间区间上的推广和发展。因此下面讨论时均假定所研究方程的解在无穷区间 []0,t ∞满足存在和唯一性条件。

线性系统的可控性和可观测性

8.4线性系统的可控性和可观测性 8.4.1可控性和可观测性的概念 第三节介绍了系统的稳定性,本节接着介绍系统另外两个重要特性,即系统的可控性和可观测性,这两个特性是经典控制理论所没有的。在用传递函数描述的经典控制系统中,输出量一般是可控的和可以被测量的,因而不需要特别地提及可控性及可观测性的概念。现 代控制理论用状态方程和输出方程描述系统,输出和输入构成系统的外部变量,而状态为系 统的内部变量,系统就好比是一块集成电路芯片,内部结构可能十分复杂,物理量很多,而 外部只有少数几个引脚,对电路内部物理量的控制和观测都只能通过这为数不多的几个引脚进行。这就存在着系统内的所有状态是否都受输入控制和所有状态是否都可以从输出反映出来的问题,这就是可控性和可观测性问题。如果系统所有状态变量的运动都可以通过有限的控制点的输入来使其由任意的初态达到任意设定的终态,则称系统是可控的,更确切的说是 状态可控的;否则,就称系统是不完全可控的,简称为系统不可控。相应地,如果系统所有的状态变量任意形式的运动均可由有限测量点的输出完全确定出来,则称系统是可观测的,简称为系统可观测;反之,则称系统是不完全可观测的,简称为系统不可观测。 可控性与可观测性的概念,是用状态空间描述系统引伸出来的新概念,在现代控制理论 中起着重要的作用。可控性、可观测性与稳定性是现代控制系统的三大基本特性。 下面举几个例子直观地说明系统的可控性和可观测性。 (a) (b) (c) 图8-20 电路系统可控性和可观测性的直观判别 对图8-20所示的结构图,其中图(a)显见洛受U的控制,但X2与U无关,故系统不可控。系统输出量丫=捲,但X!是受X2影响的,y能间接获得X2的信息,故系统是可观测的。图(b)中的,X2均受u的控制,故系统可控,但y与X2无关,故系统不可观测。图 (c)中的X i、X2均受u的控制,且在y中均能观测到X i、X2,故系统是可控可观测的。 只有少数简单的系统可以从结构图或信号流图直接判别系统的可控性与可观测性,如果系统结构复杂,就只能借助于数学方法进行分析与研究,才能得到正确的结论。

实验二 用MATLAB实现线性系统的时域分析

实验二基于MATLAB的线性系统时域分析 [实验目的] 1.研究线性系统在典型输入信号作用下的暂态响应; 2.熟悉线性系统的暂态性能指标; 3.研究二阶系统重要参数阻尼比ξ对系统动态性能的影响; 4.熟悉在MATLAB下判断系统稳定性的方法; 5.熟悉在MATLAB下求取稳态误差的方法。 [实验指导] MATLAB中有两类用于求解系统时域响应的方法。 其一是利用MATLAB 中的控制系统工具箱(Control System Toolbox)提供的函数(命令); 其二是Simulink仿真,它主要用于对复杂系统进行建模和仿真。 一、用MATLAB函数(命令)进行暂态响应分析 1 求取线性连续系统的单位阶跃响应的函数——step 基本格式为: step(sys) step(num,den) step(A,B,C,D) step(sys,t) step(sys1,sys2,…,t) y=step(sys,t) [y,t]=step(sys) [y,t,x]=step(sys) 其中模型对象的类型如下: sys = tf(num,den) 多项式模型 sys = zpk(z,p,k) 零点极点模型 sys = ss(a,b,c,d) 状态空间模型 参数无t,表示时间向量t的范围自动设定。 参数有t,表示给定时间向量t,应该有初值,时间增量,末值,如t=0:0.01:2。

前5种函数可以绘出阶跃响应曲线;后3种函数不绘阶跃响应曲线,而是返回响应变量y,时间向量t,以及状态变量x。 2 求取线性连续系统的单位脉冲响应的函数——impulse 基本格式为: impulse(sys) impulse(num,den) impulse (sys,tf) impulse (sys,t) impulse (sys1,sys2,…,t) y=impulse(sys,t) [y,t]=impulse(sys) [y,t,x]=impulse (sys) 3 求取线性连续系统的单位斜坡响应 MATLAB没有直接求系统斜坡响应的功能函数。在求取控制系统的斜坡响应时,通常用阶跃响应函数step()求取传递函数为G (s)/s的系统的阶跃响应,则其结果就是原系统G (s)的斜坡响应。原因是,单位阶跃信号的拉氏变换为1/s ,而单位斜坡信号的拉氏变换为1/s2。4.求取线性连续系统对任意输入的响应的函数——lsim 其格式为 y=lsim(sys,u,t) 其中,t为仿真时间,u为控制系统的任意输入信号。 5.暂态响应性能指标 在阶跃响应曲线窗口,使用右键弹出浮动菜单,选择其中的Characteristics子菜单,有4个子项: ①Peak Response 峰值响应,点击将出现标峰值记点,单击此标记点可获得峰值幅值,超调量和峰值时间。 ②Settling Time 调节时间,点击将出现调节时间标记点,单击此标记点即可获得调节时间。 ③Rise Time 上升时间,点击将出现上升时间标记点,单击此标记点即可获得上升时间。 ④Steady State 稳定状态,若系统稳定,点击将在稳态值处出现标记点,单击此标记点即可获得稳态值;若系统不稳定,标记点不会出现。 对于不同的系统响应类型,Characteristics菜单的内容并不相同。虽然不同响应曲线的特

线性系统的时域分析法

第三章线性系统的时域分析法 一、教学目的与要求: 对本章的讲授任务很重,要使学生通过本章的学习建立起分析系统特性的概念及方法,围绕控制系统要解决的三大问题,怎样从动态性能、稳态性能及稳定性三方面衡量控制系统,要求学生掌握一阶、二阶系统的典型输入信号响应,参数变化对系统性能的影响,尤其是二阶系统参数与特征根的关系,系统稳定性的概念与判据方法,精度问题,即稳态误差的分析与求法。 二、授课主要内容: 本章着重讨论标准二阶系统的阶跃响应,明确系统的特征参数与性能指标的关系。通过对系统阶跃响应的分析,明确系统稳定的充要条件,掌握时域判稳方法。 1.系统时间响应的性能指标 1)典型输入信号 2)动态过程与稳态过程 3)动态性能与稳态性能 2.一阶系统的时域分析 3.二阶系统的时域分析 1)二阶系统数学模型的标准形式 2)二阶系统的瞬态响应和稳态响应 3)系统参数与特征根及瞬态响应的关系 4.高阶系统的时域分析 1)高阶系统的单位阶跃响应 2)闭环主导极点 5.性系统的稳定性分析 1)系统稳定的充分必要条件 2)劳斯—赫尔维茨稳定判据 6.线性系统的稳态误差计算 1)误差与稳态误差

2)系统类型与静态误差系数 (详细内容见讲稿) 三、重点、难点及对学生的要求(掌握、熟悉、了解、自学) 重点:二阶系统的特点,劳斯稳定判据,稳态误差。 难点:二阶系统阶跃响应与特征根及参数ζ和ωn的关系。 要求: 1.掌握一阶系统对典型试验信号的输出响应的推导,理解系统参数T和K的物 理意义。 2.重点掌握不同二阶系统阶跃响应的特点,及阶跃响应与特征根在根平面位置 之间的关系;理解系统参数ζ和ωn的物理意义。 3.掌握控制系统阶跃响应性能指标的含义,以及计算二阶欠阻尼系统性能指标 的方法。 4.掌握劳斯稳定判据判别系统稳定性的方法。 5.理解系统稳态误差与系统的“型”及输入信号的形式之间的关系。 6.理解高阶系统主导极点的概念,以及高阶系统可以低阶近似的原理。 7.了解根据系统的阶跃和脉冲响应曲线获得系统数学模型的方法。 四、主要外语词汇 时域分析法 time scale analytical method 根轨迹法 root-locus plot method 频域分析法 phase scale analytical method 性能指标 performance specification 高阶系统 higher-order system 稳定性 stability 劳思-赫尔维茨判据 routh’s stability criterion 稳态误差 stability error 误差系数 error parameter 五、辅助教学情况(见课件) 六、复习思考题

第4章(1) 线性控制系统的能控性和能观性

第四章 线性控制系统的能控性和能观性 在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。 能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能力。 能控性严格上说有两种,一种是系统控制输入u(t)对系统内部状态x(t)的控制能力,另一种是控制输入u(t)对系统输出y(t)的控制能力。但是一般没有特别指明时,指的都是状态的可控性。 所以,系统的能控性和能观性研究一般都是基于系统的状态空间表达式的。 4-1 线性连续定常系统的能控性 定义 对于单输入n 阶线性定常连续系统 bu Ax x += 若存在一个分段连续的控制函数u(t),能在有限的时间段 [] f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每一个状态()0t x 都能控,那么就称系统是状态完全可控的。反之,只要有一个状态不可控,我们就称系统不可控。 对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。

4-2线性连续定常系统的能控性判别 4-2-1具有约旦标准型系统的能控性判别 1. 单输入系统 具有约旦标准型系统 bu x x +Λ= ????? ?? ?????????=Λn λλλλ 0000000 00 00003 2 1 n λλλλ≠≠≠≠ 321即为n 个互异根 或bu Jx x += ??????? ????? ???????? ??????=++n m m J λλλλλλ 0000000000000 0010000 00000121 1 11 m 个重根1λ n-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性 (1)u b x x ??????+??????=221 00 0λλ []x c c y 21 = 解:?=111x x λ 1x 与u 无关,即不受u 控制

实验五 线性系统时域响应仿真分析

MATLAB 实验报告 学生姓名:王朝 学号:1314080213 专业班级:电子信息科学与技术二班 实验类型:□ 验证 □ √ 综合 □ 设计 □ 创新 实验日期: 实验成绩: 一. 实验名称 实验5线性系统时域响应仿真分析 二.实验目的 1. 熟悉MA TLAB 软件分析系统时域响应方法。通过观察典型二阶系统在单位阶跃、脉冲、斜坡信号作用下的动态特性,熟悉各种典型的响应曲线。 2. 通过二阶系统定性及定量了解参数变化对动态特性的影响。分析参数变化时对系统响应的影响。 三.实验方法: 1. 一阶系统阶跃响应: 图示RC 网络为一阶系统 图9-1 研究图9-1所示电路,其运动方程为 )()()(t r t c t c T =+ 式中,T =RC 为时间常数.当初始条件为零时,其传递函数为 1 1)()()(+== Ts s R s C s φ 若R=1Ω,C=0.01F, 则T=RC=0.01s 。 传递函数 Ф(s)= 1/(0.01s+1) 求单位阶跃响应的MATLAB 程序如下: [设 K=1、 T=0.01 ] % Example

clear clear all num=[1]; den=[0.01 1]; step(num,den) 执行后可得如下图形: 图5-2 2. 求当K=1, T=0.1, 0.5, 1 , 2s 时的阶跃响应,记录曲线列表求出 ts 并分析。 [为读数方便,可加入step(num,den);grid on 。数据可保留两位有效数字] (二)位置随动系统可以用如下二阶系统模型描述: 2 2 2 2)()()(n n n s s s R s C s ωξωω++==Φ ωn—自然频率, ξ—相对阻尼系数 1.试绘制ωn=6, ξ=0.2, 0.4, …… 1.0, 2.0时的单位阶跃响应。 MATLAB 程序: % Example 2.1 wn=6; kosi=[0.1:0.2:1.0 ,2.0]; figure(1) hold on for kos=kosi num=wn.^2; den=[1,2*kos*wn,wn.^2]; step(num,den) end

相关文档
最新文档