激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案
激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案

0、引言

1、

当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。

1、雷达原理

目标标记:

目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定:

1、目标的斜距R;

2、方位角α;仰角β。

如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。

图1.1 用极(球)坐标系统表示目标位置

系统原理:

由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。

图1.2 雷达系统原理图

测量方法

1).目标斜距的测量

雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为

R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或

2

r

ct

R

图1.3 雷达测距

2). 目标角位置的测量

目标角位置指方位角或仰角, 在雷达测量这两个角位置基本上都是利用天

线的方向性来实现的。雷达天线将电磁能量汇集在窄波束内, 当轴时回天线波束轴对准目标时, 回波信号最强, 如图1.4实线所示。当目标偏离天线波束波信号减弱, 如图上虚线所示。根据接收回波最强时的天线波束指向, 就可确定目标的方向, 这就是角坐标测量的基本原理。天线波束指向实际上也是辐射波前的方向。

图1.4 角坐标测量

3). 相对速度的测量

对速度时, 接有些雷达除确定目标的位置外, 还需测定运动目标的相对速度, 例如测量飞机或导弹飞行时的速度。当目标与雷达站之间存在相收到回波信号的载频相对于发射信号的载频产生一个频移, 这个频移在物理学上称为多卜勒频移, 它的数值为

式中, fd 为多卜勒频移,单位为Hz; v r 为雷达与目标之间的径向速度,单位为m/s; λ为载波波长,单位为m 。

当目标向着雷达站运动时, v r >0, 回波载频提高; 反之v r <0, 回波载频降低。雷达只要能够测量出回波信号的多卜勒频移fd, 就可以确定目标与雷达站之间的相对速度。

4). 目标尺寸和形状

如果雷达测量具有足够高的分辨力, 就可以提供目标尺寸的测量。由于许

λ

r

d v f 2=

多目标的尺寸在数十米量级, 因而分辨能力应为数米或更小。目前雷达的分辨力在距离维已能达到, 但在通常作用距离下切向距离(RQ)维的分辨力还远达不到, 增加天线的实际孔径来解决此问题是不现实的。然而当雷达和目标的各个部分有相对运动时, 就可以利用多卜勒频率域的分辨力来获得切向距离维的分辨力。例如,装于飞机和宇宙飞船上的SAR(综合孔径)雷达, 与目标的相对运动是由雷达的运动产生的。高分辨力雷达可以获得目标在距离和切向距离方向的轮廓(雷达成像)。

2、数据采集系统

坤驰科技自主研发的QT1138是一款同时具备直流耦合程控放大器和支持宽带通讯信号输入的高速数据采集卡。这些特性使得QT1138成为激光雷达系统数字处理模块中应用的理想工具。QT1138提供快速的PCI Express 2.0 x8数据传输接口,尤其适合于OEM应用。QT1138的采样率在8通道工作工作模式下为250Msps/CH。模拟带宽在交流输入模式下高达300MHz,适合宽带IF采样应用;在直流程控输入模式下高达100MHz,适合高速窄脉冲采集;开发套件允许用户自定义实时处理算法。

系统性能

●最大支持8通道同步采集。

●最高250MSPS采样率。

●采用250MSPS单芯片双通道ADC。

●16bit 转换精度。

●支持AC、DC藕合方式;支持高频

脉冲信号输入。

●最大板载4GB DDR3存储器。

●支持外部触发输入或输出。

●PCIe x8 Gen2数据传输接口,连续传输率3.0GB/s。

● 具有板载FPGA 支持高速实时信号处理能力 ● FPGA 支持用户自定义逻辑开发。 ● 快速PCIe 总线实时传输采集数据 ● 捕获宽带信号。

● 提供开放的QTex 逻辑开发平台 ● 用户可自定义开发FPGA ● 大容量板载存储器

● 缩短开发时间,加快系统搭建速度

● 硬件可接受定制修改,如有此需求请联系坤驰科技

系统框图:

JTAG

CH1 INPUT REF CLK INPUT

Trig/GPIO

CH2 INPUT

CH3 INPUT

CH4 INPUT

CH5 INPUT CH6 INPUT

CH7 INPUT CH8 INPUT

硬件功能:

PCI Express x8 总线

QT1138 通过PCI Express 8-lane 总线连接到计算机主机。每对Lane 支持5.0Gbps (Gen2)的数据传输速度。QT1138采集卡采用PCI Express 16-lane 插卡的机械结构,使用其中8-lane 物理连接。

QT1138使用PCI Express Gen2传输协议时,连续数据读写速度为

3.0GB/s。对于一些较老的主板可能不支持PCI Express Gen2传输,

QT1138 将自动降为PCI Express Gen1协议传输,此时连续数据读写速

度为1.4GB/s。

模拟信号输入

QT1138 具有8个独立的模拟信号输入通道为用户提供4种输入方式选择:

标配:交流耦合

●采用Balun耦合,单端输入

●输入阻抗50Ω,输入范围2Vpp

●默认输入带宽100KHz ~300MHz

-OPT2:直流耦合

●采用运算放大器直流耦合,单端输入

●输入阻抗50Ω,输入范围2Vpp,软件可配置

●默认输入带宽DC~100MHz

-OPT3:带程控增益输入

●直流耦合,单端输入

●支持软件程控增益设置

●输入阻抗50Ω,输入范围±50mVpp到±5Vpp,软件可配置

●输入带宽DC~100MHz

●具有直流偏置调节功能

INPUT

板载采集存储器

QT1138板载128位宽DDR3存储器用于缓存采集数据。DDR3读写

数据率为1033MHz ,能为用户提供最大128Gb/s 的数据吞吐率,支持各种采集模式下的数据并发读写。 采集时钟发生器

QT1138采用超低抖动时钟信号产生模块配合高稳定、低相位噪声时钟参考源来保证采集时钟的性能。

时钟发生器采用独立的屏蔽模块,支持板载参考源、外部参考时钟源以及同步接口参考时钟输入。

通用输入输出接口

Xilinx

Virtex 6FPGA

Direction

XIO1XIO2XIO3XIO4

MMCX 1MMCX 2MMCX 3MMCX 4

前面板有4个通用IO 可以使用。可以通过编程自定义这些IO 用途;同时这些IO 可通过软件设置,作为输入、输出触发信号使用。

散热方式:

QT1135提供两种散热方式,用户可以根据自己的机箱尺寸和安装条件进行选择: 标配: 轴流风扇散热

采集功能以及选项:

环形缓冲采集模式

QT1138设计了环形缓冲功能,因此具备采集触发时间前数据的能力。一旦采集卡满足触发条件,触发前的采集数据和触发后的数据同时存入板载的大容量存储器中;随后通过PCI Express总线读入到主机中。在一次触发-采集过程中,用户可以自由设置触发前采集数据长度和触发后采集数据长度,这两个长度之和为一次采集数据总长度。

F IFO采集模式

该功能将板载内存虚拟为一个大容量FIFO,允许采集数据由该FIFO缓冲后连续不断的通过PCI Express 总线传输到主机内存或硬盘中。在FIFO模式下,系统会预先设置FIFO容量和实时监测FIFO 状态,并自动启动PCI Express DMA操作,进行数据搬运工作。FIFO 模式工作后,其采集数据长度容许无限长,限制条件为主机的内存容量或硬盘容量。

多次触发采集模式

多次触发采集模式将存储空间分成N个子段,可以接收连续触发操作。系统自动将每次触发前后采集的数据存入对应的存储器子段,这个过程不需要软件干预,采集卡也不需要重新启动。存储空间分段

的数量受设置的每次采集数据长度和板载内存容量大小限制;FIFO 模式下分段数量不受限制。

Trigger

Memory

触发模式选项

QT1138支持多种触发模式:

●软件触发

●通道触发,任意4个通道均能设置为触发源,触发方式有上升沿

大于、下降沿小于阈值触发;阈值窗口触发。

●外触发,前面板上的4个通用IO均能作为触发源使用,可上沿

或下沿触发或各个IO组合逻辑触发。

逻辑开发:

用户FPGA开发包:

QT1138支持用户自定义逻辑开发,提供完整的FPGA逻辑工程,并提供Verilog-HDL的用户逻辑接口源代码。FPGA开发软件使用XILINX ISE 14.5。

FPGA

同时开放FPGA JTAG 调试接口。用户可以使用XILINX USB-JTAG电缆和ChipScope 软件进行逻辑在线调试。

FPGA 开发包选项:

-标配:采用XC6VLX240T-2 FPGA

-OPT14:采用XC6VSX315T-2 FPGA

软件以及选项:

Windows 设备驱动

QT1138提供32位Windows XP、Windows 7以及64位windows 7设备驱动程序。可以使用Visual C++,Visual Studio 2010,LabWindows/CVI

QTCapture Lab

QTCapture Lab应用软件基于Windows 32位/64位平台,具有虚拟示波器功能,方便设置硬件,读取/保存数据以及波形显示/频谱分析功能。第三方软件支持

QT1138提供LabView,LabWidows/CVI以及MATLAB程序接口。以上程序均提供例程。

动态技术指标:

噪声和失真:

SNR(dBFs) ENOB(Bits)

71.5 11.6

时钟抖动:

分频)

3、应用领域

●宽带雷达系统

●激光雷达系统

●宽带通信系统

●高能物理测试

●光电倍增管采集系统

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

激光雷达测距原理与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12)

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

高速数据采集系统设计

高速数据采集系统 设计

基于FPGA和SoC单片机的 高速数据采集系统设计 一.选题背景及意义 随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。 二.设计要求 设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图 三.整体方案设计 高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。 图3-1 高速数据采集系统设计方案 四.硬件电路设计 1.模拟量输入通道的设计 模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

基于盖革模式APD的光子计数激光雷达探测距离研究

第40卷第12期 光电工程V ol.40, No.12 2013年12月Opto-Electronic Engineering Dec, 2013 文章编号:1003-501X(2013)12-0080-09 基于盖革模式APD的光子计数 激光雷达探测距离研究 罗韩君,詹杰,丰元,张禹涛 ( 湖南科技大学物理与电子科学学院,湖南湘潭 411201 ) 摘要:最大探测距离是表征光子雷达性能的重要参数,本文利用盖革模式雪崩光电二极管阵列对直接探测脉冲光子雷达的最大探测距离进行了研究。从激光雷达方程出发,根据盖革模式雪崩光电二极管阵列探测像元中回波激发初始电子数的泊松统计模型和系统最小可接受探测概率条件,建立了光子雷达的最大探测距离理论模型。利用光子雷达系统设计参数,研究了对最大探测距离产生影响的五个主要因素。研究结果表明发射激光脉冲能量越高,噪声越小,回波位置在距离门中越靠前,大气传输系数越大,目标反射率越高,获得的最大探测距离越大;使用脉宽为5 ns,脉冲能量为50 μJ的激光脉冲,最小可接受探测概率为0.9时,可获得大于1 km的最大探测距离; 同时,选择合适的系统最小可接受探测概率对系统探测性能的改善十分重要。 关键词:激光雷达方程;盖革模式;阵列;最大探测距离 中图分类号:TN958.98 文献标志码:A doi:10.3969/j.issn.1003-501X.2013.12.014 Detection Range of Photon Counting Laser Radar Based on Geiger-mode APD LUO Hanjun,ZHAN Jie,FENG Yuan,ZHANG Yutao ( School of Physics and Electronic Science, Hunan university of Science and Technology, Xiangtan 411201, Hunan Province, China ) Abstract: Maximum detection range is an important parameter for evaluating the performance of photon ladar. In this paper, the maximum detection range of direct-detection pulse photon ladar which uses Geiger-mode Avalanche Photodiode (GM-APD) array as the detector is investigated. Based on the laser radar equation and the model of the minimum acceptable detection probability, and assuming the primary electrons triggered by the echo photons in the GM-APD pixel obey Poisson distribution, the theoretical model estimating the maximum detection range is proposed. By using the system design parameters, the influence of five main factors on the maximum detection range is investigated. The results show that the stronger emitted pulse energy, lower noise level, front echo position in the range gate, large atmospheric transmission, and high target reflectivity can result in larger maximum detection range. When the minimum acceptable detection probability is selected to 0.9, by using emitted laser pulse with pulse width 5 ns and energy 50 μJ, the system maximum detection range more than 1 km can be achieved. At the same time, it is important to select the minimum acceptable detection probability for producing a high system detection performance. Key words: laser radar equation; Geiger mode; array; maximum detection range 收稿日期:2013-07-12;收到修改稿日期:2013-09-16 基金项目:国家自然科学基金(6117289/F010202; 61377024);湖南省教育厅重点项目(12A045)资助项目 作者简介:罗韩君(1975-),男(汉族),湖南邵阳人。讲师,博士,主要研究工作是单光子成像探测。E-mail: 393593928@https://www.360docs.net/doc/0b9879792.html,。 https://www.360docs.net/doc/0b9879792.html,

车载激光雷达测距测速原理

车载激光雷达测距测速原理 陈雷1,岳迎春2,郑义3,陈丽丽3 1黑龙江大学物理科学与技术学院,哈尔滨 (150080) 2湖南农业大学国家油料作物改良中心,长沙 (410128) 3黑龙江大学后勤服务集团,哈尔滨(150080) E-mail:lei_chen86@https://www.360docs.net/doc/0b9879792.html, 摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。 关键词:激光雷达,测距,测速 1.引言 “激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]: (1)全天候工作,不受白天和黑夜的光照条件的限制。 (2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。 (3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。 (4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。 (5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点: (1)激光受大气及气象影响大。 (2)激光束窄,难以搜索和捕获目标。 激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。 2. 目标距离的测量原理 汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。 2.1测距原理 激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

激光雷达测距测速原理说课讲解

激光雷达测距测速原 理

精品文档 收集于网络,如有侵权请联系管理员删除 激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发射系统到目标和目标到接收系统的大气透过率,t r ηη分别是发射系统和接收系统的透过率,t θ为发射激光的发散角,12R R 分别是发射系统到目标和目标到接收系统的距离,Γ为目标的雷达截面,r D 为接收孔径。 方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,通过求解激光雷达方程获得有关大气性质的信息。 2. 激光雷达测距基本原理 2.1 脉冲法 脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激光脉冲,激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为L ,激光脉冲往返的时间间隔是t ,光速为c ,那么测距公式为L=tc/2。 时间间隔t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器和脉冲计数器来确定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

高速数据采集系统

目录 1系统摘要 (2) 2系统设计理论 (2) 3系统设计方案 (4) 3.1AD7891高速数据采集系统 (4) 3.1.1 AD7891结构及功能 (4) 3.1.2工作时序和极限参数 (5) 3.1.3 AD7891的应用 (6) 3.1.4 AD7891与微处理器的接口 (8) 3.2PCI-1714高速数据采集系统……………………………….…,,,.9 3.2.1 PCI- 1714 功能结构和特点 (9) 3.2.2 PCI- 1714的系统构成..............................,.. (10) 3.3基于AT89C51的数据采集通信系统设计 (12) 3.3.1系统硬件设计 (12) 3.3.2系统软件设计 (14) 4各种方案的比较 (16) 5心得体会 (17) 6参考文献 (18)

1.系统简介 随着数字技术的飞速发展,高速数据采集系统也迅速地得到了广泛的应用。在生产过程中,应用这一系统可以对生产现场的工艺参数进行采集、监视和记录,为提高生产质量,降低成本提供了信息和手段。在科学研究中,应用数据采集系统可以获取大量的动态数据,是研究瞬间物理过程的有力工具,为科学活动提供了重要的手段。而当前我国对高速数据采集系统的研究开发都处于起步阶段,因此,开发出高速数据采集系统就显得尤为重要了。 所谓高速数据采集系统,是用计算机控制的多路数据自动检测或巡回检测(其对象包括数字和模拟信号),并且能够对数据实行某些处理(包括存储、处理、分析计算以及从检测的数据中提取可用的信息),以供显示、记录、打印或描绘的系统。 在数字技术日新月异的今天,数据采集技术的重要性是十分显著的。它是数字世界和外部物理世界连接的桥梁。而随着现代工业和科学技术的发展,对数据采集技术的要求日益提高,在雷达、声纳、图像处理、语音识别、通信、信号测试等科研实践领域中,都需要高精度,高数据率的数据采集系统。它的关键技术为高速高精度的ADC 技术,高数据率的存储和缓存技术以及系统高可靠性保证等。通过数据采集技术,科研人员在实验现场可以根据需要实时记录原始数据,用于实验室后期的分析和处理,对工程实践和理论分析探索具有重大意义。 2.系统设计理论 整个高速数据系统主要分为四个部分:数据采集部分、数据控制部分、数据处理部分、数据传输部分。 在数据采集部分,主要应用的就是采样定理、模数转换器ADC 及A/D 转换技术。采用定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。具体内容是,频带为F 的连续信号f(t)可用一系列离散的采样值)1(t f ,)1(t t f ?±,)1(t t f ?±,……来表示,只要这些采样点的时间间隔F t 21≤?,便可根据各采样值完全恢复原来的信号)(t f 。模数转换器ADC 用来把连续变化的模拟信号转换为一定格式的数字量。ADC 转换器实际上就是一个编码器,输

一种高速数据采集系统的研究

第31卷第5期 唐山师范学院学报 2009年9月 Vol. 31 No. 5 Journal of Tangshan Teachers College Sep. 2009 ────────── 收稿日期:2008-12-12 作者简介:李洋(1982-),男,河北衡水人,唐山师范学院基础教育部教师。 -66- 一种高速数据采集系统的研究 李 洋,郭小松 (唐山师范学院 基础教育部,河北 唐山 063000) 摘 要:由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,而其应用环境又往往非常复杂,所以在目前的实际应用中,很难实现一种既能进行长时间高速数据采集、又能进行大容量存储的数据采集系统。在此背景下,提出了一种高速数据采集及存储的解决方案,采用高速FPGA 加嵌入式微处理器作为中央处理器来进行高速数据传输和磁盘阵列数据存储,实现高速数据采集及大容量实时存储。 关键词:数据采集;模数转换;海量存储;RAID0 中图分类号: T N919.5 文献标识码:A 文章编号:1009-9115(2009)05-0066-03 Study of High-Speed Data Acquisition and Storage System LI Yang, GUO Xiao-song (Department of Foundation Education, Tangshan Teachers College, Tangshan Hebei 063000, China) Abstract: Because of the extreme requirements of signal integrity, noise jamming, high-speed layout, high-speed real-time storage and the complex application environments, it is very difficult to realize a high-speed data acquisition system which is suitable for long-time data acquisition and mass storage. Against this background, a solution of high-speed data acquisition and storage system is introduced in this thesis, which is using of high-speed FPGA and embedded microprocessors as the central processing device for high-speed data transfer and data storage of redundant array of inexpensive disks , realized on-time data acquisition and mass storage. Key words: data acquisition; A/D convert; mass storage; RAID 现代工业生产和科学研究对数据采集的要求日益提高,在雷达、声纳、软件无线电、瞬态信号测量等一些高速、高精度的测量中,需要进行高速数据采集。目前,数据采集系统在高速A/D 、D/A 器件发展的带动下,采集带宽在稳步提高,具有100MSPS 采集能力以上的高速数据采集系统产品己较成熟。然而国外厂商的高速采集系统往往都价格不菲,而且由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,国内完全掌握这个技术的厂商并不多,所以在实际应用中,很难找到一种满足需要的高速采集系统。这种情况长期限制了高速数据采集技术在我国工业生产和科学研究中的应用。 在这样的背景下,本文提出一种高速数据采集与实时存储系统的解决方案,解决以往在高速技术、数据存储与传输技术等方面的几个技术难点,采用FPGA 作为核心器件,集成中央逻辑控制及硬盘接口,直接将高速数据存入有多块硬 盘组成的实时RAID 存储系统中,实现了高速采集和实时存储,并可脱机运行。这种方案成本低廉,能提高采集速度,增加系统可靠性,并大大提高可持续采集时间,具有较大的灵活性。 1 总体系统方案硬件设计 高速数据采集系统的主要目的是把采集到的模拟信号转化为数字信号,所以模拟信号进入数据采集系统的第一步就是通过AD 采集电路进行模数转换;采集到的数据为了以后研究调用,就需要存储到存储器中,所以系统的最后一步是使用高速海量存储器对数据进行存储;系统的启动、停止和数据传输的方式还需要使用中央逻辑控制电路,所以在AD 采集电路与高速海量存储器之间增加中央逻辑控制电路来作为AD 采集电路与高速海量存储器之间的桥梁;系统通过人机接口与PC 机连接,可以对数据采集系统进行调试,还方便调用存储数据进行研究测试,并实现

激光雷达在军事中的应用讲解

激光雷达在军事中的应用 作者 摘要:本文简要介绍激光雷达的特点、激光雷达探测的基本物理原理及其在军事领域的应用现状. 关键词:激光雷达;探测;军事应用 1.引言 激光雷达是现代激光技术与传统雷达技术相结合的产物,它像传统的微波雷达一样,由雷达向目标发射波束,然后接收目标反射回来的信号,并将其与发射信号对比,获得目标的距离、速度以及姿态等参数.但是它又不同于传统的微波雷达,它发射的不是微波束,而是激光束,使激光雷达具有不同于普通微波雷达的特点. 根据激光器的不同,激光雷达可工作在红外光谱、可见光谱和紫外光谱的波段上.相对于工作在米波至毫米波波段的微波雷达而言,激光雷达的工作波长短,是微波雷达的万分之一到千分之一,根据光学仪器的分辨率与波长成反比的原理,利用激光雷达可以获得极高的角分辨率和距离分辨率,通常角分辨率不低于0.1mrad ,距离分辨率可达0.1m , 利用多普勒效应 可以获得10m / s 以内的速度分辨率.这些指标是一般微波雷达难以达到的,因此激光雷达可获得比微波雷达清晰得多的目标图像。 激光束的方向性好、能量集中,在 20km 外,其光束也只有茶杯口大小,因而敌方难以截获,而且激光束的抗电磁干扰能力强,难以受到敌方有源干扰的影响.由于各种地物回波影响,因而在低空存在微波雷达无法探测的盲区.而对于激光雷达,只有被激光照射的目标才能产生反射,不存在低空地物回波的影响,所以激光雷达的低空探测性能好. 激光雷达体积小、重量轻,有的整套激光雷达系统的重量仅几十千克.例如为了适应海军陆战队的需要,美国桑迪亚国家实验室和伯恩斯公司都提出了手持激光雷达的设计方案.相对于重达数吨、乃至数十吨的微波雷达而言,激光雷达的机动性能显然要好得多. 任何事物都是一分为二的,激光雷达也有自身的缺陷.激光光束窄、方向性好,虽然表现出能量集中的优点,但不宜用作战场监视雷达搜索大空域.而且激光的传输受环境影响大,尤其是在雨、雪、雾的天气,激光在传输过程中的衰减更大.当然,激光在大气层外传输时不易衰减,有其得天独厚的优势.经过几十年的努力,科学家们趋利避害,已研制出多种类型的军用激光雷达. 2. 用干战场侦察的激光雷达 众所周知,普通的成像技术(如电视摄像、航空摄影及红外成像等)获得的场景图像都是反映被摄区域辐射强度几何分布的图像,而激光雷达可以通过采集方位角一俯冲角一距离一速度一强度等三维数据,再将这些数据以图像的形式显示出来,从而可产生极高分辨率的辐射强度几何图像、距离图像、速度图像等,因而它提供了普通成像技术所不能提供的信息.例如美国桑迪亚国家实验库研制的一种激光雷达,激光器功率为120MW ,显示屏幕的像素为64 X 64 元,视场内物体的图像可显示在屏幕上,每秒钟更新4 次,并用不同颜色和灰度显示物体的相对距离.这种激光雷达能对运动的装甲车辆产生实时图像,图像分辨率足以识别车辆型号. 美国雷西昂公司研制的ILR100 型砷化稼激光雷达,可安装在高性能飞机和无人机上,当飞机在120m~460m 高空飞行

激光雷达回波信号仿真模拟

激光雷达回波信号仿真模拟研究 摘要 关键字 第一章绪论 第一节引言 激光雷达(Lidar:Li ght D etection A nd R anging),是一种用激光器作为辐射源的雷达,是激光技术与雷达技术完美结合的产物。激光雷达的最基本的工作原理与我们常见的普通雷达基本一致,即由发射系统发射一个信号,信号到达作用目标后会产生一个回波信号,我们将回波信号经过收集处理后,就可以获得所需要的信息。与普通雷达不同的是,激光雷达的发射信号是激光而普通雷达发射的信号是无线电波,两者在波长上相比,激光信号要短的多。由于激光的高频单色光的特性,激光雷达具有了许多普通雷达无法比拟的特点,比如分辨率高,测量、追踪精度高,抗电子干扰能力强,能够获得目标的多种图像,等等。因此,利用激光雷达对大气进行监测,收集、分析数据,建立一个大气环境预测理论模型,这将会成为研究气候变化和寻求解决对策的一项重要武器。 第二节本文的选题意义 由于投入巨大,在研制激光雷达实物之前,我们需要进行模拟与仿真研究,预测即将研制的激光雷达的各性能指标,评价总体方案的可行性。激光雷达回拨信号仿真模拟就是利用现代仿真技术,逼真的复现雷达回波信号的动态过程,它是现代计算机技术、数字模拟技术和激光雷达技术相结合的产物。仿真模拟的对象是激光雷达的探测没标以及它所处的环境,模拟的手段是利用计算机和相关设备以及相关程序,模拟的方式是复现包含着激光雷达目标和目标环境信息的雷达信号。通过激光雷达回波信号的仿真模拟,进而产生回波信号,我们可以在实际雷达系统前端不具备条件的情况下,对激光雷达系统的后级设备进行调试。 第三节本文的研究思路和结构安排 本文主要研究面向气象服务应用的大气激光雷达。笔者在熟悉激光雷达的基本工作原理的前提下,学习和熟悉各种参数对大气回波能量的影响,进而学习和掌握matlab编程语言,并且根据给定的激光雷达系统参数、大气参数和光学参数,以激光雷达方程为基础,通过仿真模拟得到理想状态下的大气回波信号。但是,在实际测量工作中,由于大气中的各种干扰,我们获得的回波信号并不和理想状态下的大气回波信号一致,因此,在本文的后期工作中,笔者根据已有的大量激光雷达实测信号与模拟信号对比,既能验证仿真模拟结果的准确性,又能应用于激光雷达的性能指标等方面的分析上,具有比较高的实际应用价值。 第二章激光雷达的原理 第一节激光雷达系统 一个标准的激光雷达系统应该包含以下部件:激光器、发射系统、接收系统、光学系统、信号处理系统以及显示系统。它的工作原理图我们可以用下图表示:

高速数据采集技术发展综述

高速数据采集技术发展综述 摘要:高速数据采集系统广泛应用于军事、航天、航空、铁路、机械等诸多行业。区别于中速及低速数据采集系统,高速数据采集系统内部包含高速电路,电路系统1/3以上数字逻辑电路的时钟频率>=50MHz;对于并行采样系统,采样频率达到50MHz,并行8bit以上;对于串行采样系统,采样频率达到200MHz,目前广泛使用的高速数据采集系统采样频率一般在200KS/s~100MS/s,分辨率16bit~24bit。本篇文章主要简单介绍高速数据采集技术的发展,高速数据采集系统的结构、功能、原理、实现形式以及一些主要的应用。 关键词:高数数据采集系统、系统结构、系统原理、系统功能、实现形式、应用举例。 引言:高速数据采集技术在通信、航天、雷达等多个领域中广泛应用。随着软件无线电、通信技术、图像采集等技术的发展,对数据采集系统的要求越来越高,不仅要求较高的采集精度和采样速率,还要求采集设备便携化、网络化与智能化,并且需要将采集信息稳定的传输到计算机,进行显示与数据处理。同时,以太网协议已经成为当今局域网采用的最通用的通信协议标准。在嵌入式领域中,将以太网协议与数据采集系统相结合,形成局域网,实现方便可靠的数据传输与控制,是当前的研究热点。 1. 高速数据采集的发展 数据采集系统起始于20世纪50年代,由于数据采集测试系统具有高速性和~定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。到了70年代中后期,在数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,另一类是工业现场数据采集系统。就使用的总线而言,实验室数据采集系统多采用并行总线,工业现场数据采集系统多采用串行数据总线。随着微型机的发展,诞生了采集器、仪表等同计算机融为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因此获得了惊人的发展他3。随着计算机的普及应用,数据采集系统得到了极大的发展,基于标准总线并带有高速DSP的高速数据采集板卡产品也越来越多,技术先进、市场主流的厂商主要有Spectrum Signal Processing,SPEC,Signatec,Acquisition Logic,Blue Wave等公司 2001年Acquisition logic公司推出了基于PCI总线,采样率为500MS/s,1GS/s的8bit数据采集板卡AL500和AL51G,它的存储深度分别为64MB,256MB和1000MB三种。PCI 总线为主模式,数据宽度32bit,时钟频率33MHz,在突发模式下传输速率可达到133MB /s。两种板卡还同时具有数字信号处理功能:通过板卡上的现场可编程门阵列FPGA来实

激光雷达在电力巡检的创新应用

除了通道排查树障以外,雷达在通道中还有哪些创新点,对运维有哪些帮助? 应用机载激光雷达技术进行输电线路巡检的优势如下: 1、能够快速获取线路走廊高精度的三维空间信息及高分辨率的真彩色影像信息,可实现线路交叉跨越高度、树高房高、线路与周边地物空间距离的高精度实时测量等; 8、结合电塔三维模型、线路走廊三维地形地物数据以及收集的线路属性参数,还可以辅助实现线路资产管理,与智能电网方案结合,效果更好。 9、可根据巡检不同的技术要求,集成可见光相机/多光谱相机/红外相机。 后台数据处理后,软件有哪些模块可以实际运用?

数据处理巡检分析一体化软件集航迹解算、点云分类处理、影像处理及线路巡检分析为一体,可操作性强,简单易学。该软件功能模块主要包括线路当前工况缺陷分析检测、净空排查、线路交叉跨越分析、塔杆定位、塔杆倾斜测量分析、杆塔位移监测、弧垂分析、线路不同工况模拟及检测,软件内置国网线路安全运行规程等,支持自定义配置规程参数并自动分析报告输出,可根据实际需求灵活使用。 巡检效率 1、由上两图可见,对于10km的线路长度,30分钟即可采集完所有数据;50分钟 内即可生成巡检报告,获取通道内的净空数据,外业人员可及时联系相关人 员,在短时间内,排除净空障碍隐患。这种效率是传统人工巡检无法做到的,

以下是具体比较: 无人机载激光雷达电力巡线社会经济效益一览表

2、巡线数据真实可靠性:由于传统的人工巡线很难确保巡线人员能够百分之百到 达位置,即使是使用GPS“打考勤”,也不能确保巡线人员对每个检测点都 进行认真可靠的检测。因此,对于数据收集的可靠性上,使用无人机搭载激 光雷达,是更具备真实客观性。 1、数据预处理功能:包括全息数据导入、航迹姿态数据处理、激光点云数据解算、激光点云/高清影像/红外图像等精确匹配等; 数据预处理功能主要应用到的坐标转换如下。 (1)扫描仪局部坐标到IMU坐标转换;

激光雷达测距测速原理

激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发 t θ为发r D 通过 定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发 的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

相位测距法也称光束调制遥测法,激光雷达相位法测距是利用发射的调制光和被目标反射的接受光之间光强的相位差包含的距离信息来实现被测距离的测量。回波的延迟产生了相位的延迟,测 出相位差就得到了目标距离。 假设发射处与目标的距离为D,激光速度为c,往返的间隔时间为t,则有: 图2相位法测距原理图 假设f为调制频率,N为光波往返过程的整数周期,??为总的相位差。则间隔时间t还可以 因为L 不能测得 优点:测量距离远,一般大于1000m。系统体积小,抗干扰能力强。 缺点:精度较低,一般大于1m。 激光雷达相位法测距: 优点:测量精度高。

缺点:测量距离较近,一般为一个刻度L内的距离。(300-1000m)。受激光调制相位测试精度和相位调制频率的限制,系统造价成本高。相位法测距存在矛盾:测量距离大会导致精度不高,要想提高精度测量距离又会受限(刻尺L较短)。 3.激光雷达测速基本原理 激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距 它的 f 式中, d v< 反之0 f 移 d

激光雷达点云数据

激光雷达点云数据 LiDAR(Light Detection and Ranging),是激光探测及测距系统的简称,另外也称Laser Radar或LADAR(Laser Detection and Ranging),由激光雷达进行扫描所获取的数据,即为激光雷达点云数据。 激光雷达是用激光器作为发射光源,采用光电探测技术手段的主动遥感设备。激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。激光雷达采用脉冲或连续波2种工作方式,探测方法按照探测的原理不同可以分为米散射、瑞利散射、拉曼散射、布里渊散射、荧光、多普勒等激光雷达。 激光雷达的特点: 与普通微波雷达相比,激光雷达由于使用的是激光束,工作频率较微波高了许多,因此带来了很多特点,主要有: (1)分辨率高 激光雷达可以获得极高的角度、距离和速度分辨率。通常角分辨率不低于0.1mard也就是说可以分辨3km距离上相距0.3m的两个目标(这是微波雷达无论如何也办不到的),并可同时跟踪多个目标;距离分辨率可达0.lm;速度分辨率能达到10m/s以内。距离和速度分辨率高,意味着可以利用距离——多谱勒成像技术来获得目标的清晰图像。分辨率高,是激光雷达的最显著的优点,其多数应用都是基于此。 (2)隐蔽性好、抗有源干扰能力强 激光直线传播、方向性好、光束非常窄,只有在其传播路径上才能接收到,因此敌方截获非常困难,且激光雷达的发射系统(发射望远镜)口径很小,可接收区域窄,有意发射的激光干扰信号进入接收机的概率极低;另外,与微波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强,适于工作在日益复杂和激烈的信息战环境中。

无人机激光雷达扫描系统

Li-Air无人机激光雷达扫描系统 Li-Air无人机激光雷达扫描系统可以实时、动态、大量采集空间点云信息。根据用户不同应用需求可以选择多旋翼无人机、无人直升机和固定翼无人机平台,可快速获取高密度、高精度的激光雷达点云数据。 硬件设备 Li-Air无人机激光雷达系统可搭载多种类型扫描仪,包括Riegl, Optech, MDL, Velodyne等,同时集成GPS、IMU和自主研发的控制平台。 图1扫描仪、GPS、IMU、控制平台 无人机激光雷达扫描系统设备参数见表格1: 表格 1 Li-Air无人机激光雷达扫描系统 图2 八旋翼无人机激光雷达系统图3 固定翼无人机激光雷达系统 设备检校

公司提供完善的设备检较系统,在设备使用过程中,定期对系统的各个组件进行重新标定,以保证所采集数据的精度。 图1扫描仪检校前(左)扫描仪检校后(中)检校前后叠加图(右) 图4(左)为检校前扫描线:不连续且有异常抖动;图4(中)为检校后扫描线:数据连续且平滑变化;图4(右)为检校前后叠加图,红线标记的部分检校效果对比明显。 图5从左至右依次为校正前(侧视图)、校正后(侧视图)、叠加效果图图5(左)为检校前扫描线:不在同一平面;图4(中)为检校后扫描线:在同一平面;图4(右)为检校前后叠加图。 成熟的飞控团队 公司拥有成熟的软硬件团队以及经验丰富的飞控手,保证数据质量以及设备的安全性,大大节约了外业成本和时间。

图6无人机激光雷达系统以及影像系统 完善的数据预处理软件 公司自主研发的无人机系统配备有成套的激光雷达数据预处理软件Li-Air,该软件可对无人机实时传回的激光雷达数据进行航迹解算、数据生成、可视化等。 图7 Li-Air数据预处理功能 成功案例 2014年7月,本公司利用Li-Air无人机激光雷达扫描系统进行中关村软件园园区扫描项目,采集园区高清点云以及影像数据。飞行高度200m,点云密度约50点/平方米,影像地面分辨率为5cm。通过POS数据解算,完成对点云和影像数据的整合,得到地形信息和DOM等。

相关文档
最新文档