季铵盐对膜的作用机理

季铵盐对膜的作用机理
季铵盐对膜的作用机理

机理参考文献

表征单萜对膜的作用1binding to LPS23Ag的作用机理4壳聚糖作用机理5Hypoxis rooperi corm extract对膜的作用67 peptide 荧光法,Confocal microscopy,lipid vesicle titration test8

Flow cytometry analysis, using liposome and membrane probe 9

Lipid binding and membrane penetration10H谱及P谱研究peptide与菌膜的作用11-121314-15 1. Trombetta, D.; Castelli, F.; Sarpietro, M. G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G., Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 2005, 49, (6), 2474-2478.

2. Tsubery, H.; Yaakov, H.; Cohen, S.; Giterman, T.; Matityahou, A.; Fridkin, M.; Ofek, I., Neopeptide antibiotics that function as opsonins and membrane-permeabilizing agents for gram-negative bacteria. Antimicrobial Agents and Chemotherapy 2005, 49, (8), 3122-3128.

3. Rosenfeld, Y.; Sahl, H. G.; Shai, Y., Parameters involved in antimicrobial and endotoxin detoxification activities of antimicrobial peptide. Biochemistry 2008, 47, (24), 6468-6478.

4. Jung, W. K.; Koo, H. C.; Kim, K. W.; Shin, S.; Kim, S. H.; Park, Y. H., Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology 2008, 74, (7), 2171-2178.

5. Raafat, D.; von Bargen, K.; Haas, A.; Sahl, H. G., Insights into the mode of action of chitosan as an antibacterial compound. Applied and Environmental Microbiology 2008, 74, (12), 3764-3773.

6. Laporta, O.; Funes, L.; Garzon, M. T.; Villalain, J.; Micol, V., Role of membranes on the antibacterial and anti-inflammatory activities of the bloactive compounds from Hypoxis rooperi corm extract. Archives of Biochemistry and Biophysics 2007, 467, (1), 119-131.

7. El Amri, C.; Lacombe, C.; Zimmerman, K.; Ladram, A.; Amiche, M.; Nicolas, P.; Bruston, F., The plasticins: Membrane adsorption, lipid disorders, and biological activity. Biochemistry 2006, 45, (48), 14285-14297.

8. Lee, D. G.; Kim, D. H.; Park, Y.; Kim, H. K.; Kim, H. N.; Shin, Y. K.; Choi, C. H.; Hahm, K. S., Fungicidal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Candida albicans. Biochemical and Biophysical Research Communications 2001, 282, (2), 570-574.

9. Sung, W. S.; Park, Y.; Choi, C. H.; Hahm, K. S.; Lee, D. G., Mode of antibacterial action of a signal peptide, Pep(27) from Streptococcus pneumoniae. Biochemical and Biophysical Research Communications 2007, 363, (3), 806-810.

10. Katz, M.; Tsubery, H.; Kolusheva, S.; Shames, A.; Fridkin, M.; Jelinek, R., Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle system. Biochemical Journal 2003, 375, 405-413.

11. Ouellet, M.; Doucet, J. D.; V oyer, N.; Auger, M., Membrane topology of a 14-mer model amphipathic peptide: A solid-state NMR spectroscopy study. Biochemistry 2007, 46, (22), 6597-6606.

12. Gehman, J. D.; Luc, F.; Hall, K.; Lee, T. H.; Boland, M. P.; Pukala, T. L.; Bowie, J. H.; Aguilar, M.

I.; Separovic, F., Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Biochemistry 2008, 47, (33), 8557-8565.

13. Bonev, B. B.; Chan, W. C.; Bycroft, B. W.; Roberts, G. C. K.; Watts, A., Interaction of the lantibiotic nisin with mixed lipid bilayers: A P-31 and H-2 NMR study. Biochemistry 2000, 39, (37), 11425-11433.

14. Pukala, T. L.; Boland, M. P.; Gehman, J. D.; Kuhn-Nentwig, L.; Separovic, F.; Bowie, J. H., Solution structure and interaction of cupiennin 1a, a spider venom peptide, with phospholipid bilayers.

Biochemistry 2007, 46, (11), 3576-3585.

15. Papo, N.; Shai, Y., New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 2003, 42, (31), 9346-9354.

脂肪酰胺型季铵盐的合成研究

脂肪酰胺型季铵盐的合成研究 目前,脂肪酰胺丙基型胺盐阳离子和季铵盐阳离子表面活性剂在国内外日化产品中已经得到广泛应用。其产品种类繁多,但是相关的研究报道却较少[1]。近年来,我国在胺盐和季铵盐阳离子表面活性剂方面的研究工作虽然有长足发展,但是部分产品仍依赖进口。因此,研究开发满足环境保护要求和具有性能特点的阳离子表面活性剂产品显得十分必要。 脂肪酰胺型季铵盐表面活性剂合成的主要步骤为:以月桂酸为原料与N,N-二甲基-1,3-丙二胺反应,合成提纯出脂肪酰胺丙基-N,N-二甲基叔胺,再与3-氯-1,2-丙二醇进行季铵化反应,得到脂肪酰胺型季铵盐阳离子表面活性剂(图1)。 1. 实验部分 1.1 主要试剂和仪器 月桂酸,CP,国药集团化学试剂有限公司;乙醇(95%),AR,国药集团化学试剂有限公司;甲苯,AR,国药集团化学试剂有限公司;N,N-二甲基-1,3-丙二胺,工业级,飞翔化工(张家港)有限公司;3-氯-1,2-丙二醇,CP,国药集团化学试剂有限公司。 FTLA2000-104红外光谱仪,加拿大ABB Bomem公司。1.2 实验方法 1.2.1 脂肪酰胺丙基-N,N-二甲基叔胺的合成 在250mL四口烧瓶加入一定量的脂肪酸,通入氮气排净瓶内空气后,油浴加热溶解,在氮气保护下缓慢滴加远 李 丹1,徐 浩1,陈 雪2,许虎君1 (1. 江南大学 化学与材料工程学院,江苏 无锡 214122; 2. 宁波市乐嘉化工有限公司,浙江 宁波 315040) 【摘 要】以月桂酸、N,N-二甲基-1,3-丙二胺、3-氯-1,2-丙二醇为原料合成了脂肪酰胺丙基二甲基叔胺及其季铵盐, 并对其制备工艺进行条件优化。研究表明:在叔胺合成过程中,投料摩尔比为n(脂肪酸)∶n(N,N-二甲基-1,3-丙二胺)=1∶1.8,在无溶剂条件下,140℃密闭反应9h,脂肪酸的转化率可达到94.2%;季铵盐合成过程中,投料摩尔比为n(脂肪酰胺丙基-N,N-二甲基叔胺)∶n(3-氯-1,2-丙二醇)=1∶1.1,85℃下,持续反应5h,季铵盐产率可达90%以上。 【关键词】脂肪酰胺型季铵盐;脂肪酰胺丙基二甲基叔胺;N,N-二甲基-1,3-丙二胺;合成 图1 脂肪酰胺型季铵盐的合成路线 RCOOH + NH 2CH 2CH 2CH 2N(CH 3)2 RCONH(CH 2)3N + H 2O CH 3 CH 3 RCNH(CH 2)3N + ClCH 2CHCH 2OH RCNH(CH 2)3+N—CH 2—CHCH 2OH Cl -O CH 3 CH 3 OH O CH 3 CH 3 OH R=C 11H 23

季铵盐表面活性剂研究

季铵盐表面活性剂研究 系别:化学与生物农学系 专业:化学 姓名: 谢元志 学号:200904014021

季铵盐表面活性剂研究 一、题目的来源 季铵盐类阳离子表面活性剂的品种开发和产品应用都得到了较快发展。随着阳离子表面活性剂在工业各领域内日益广泛的应用,对其性能也提出了更多、更高、更为具体的要求,促使对表面活性剂的合成进行更为深入的研究。 双季铵盐类表面活性剂是一类新型的表面活性剂,与单季铵盐阳离子表面活性剂具有相近的性能及相同的应用范围。由于双季铵盐表面活性剂中含有两个锡氮原子,在金属、塑料、织物、矿石上具有更强的成键能力和吸附作用,与非离子及两性表面活性剂的复配性能也得到进一步的改善,而且水溶性也明显加强,所以,双季按盐类阳离子表面活性剂在沥青乳化、矿石浮选、纤维织物整理、金属加工等行业已得到广泛的应用。 二、研究的意义 季铵盐类表面活性剂除具有表面活性剂的表面吸附、降低表面张力及在溶液中聚集等基本特性外,还具有抑制和杀灭微生物等生物效应,因此该类表面活性剂发展的初期主要用作杀菌剂。季铵型表面活性剂的杀菌机制主要通过正离子头基吸附在负电荷的细菌表面,改变细菌细胞壁的通透性来完成的;此外,其吸附到细菌体表面后,有利于疏水基与亲水基分别深入菌体细胞的类脂层与蛋白层,导致酶失去活性和蛋白质变性[1]。由于上述这两种作用的联合效应,使得季铵型表面活性剂具有较强的杀菌能力。 Gemini(双子)季铵盐表面活性剂包含两个或两个以上的疏水基团和亲水基团,与单季铵型表面活性剂相比,Gemini季铵型表面活性剂具有许多优良的理化性能[4]:更有效地降低表面张力、优良的润湿性、强的洗涤去污能力、较高的生物安全性、很好的耐温稳定性等。尤其是含有多烷基、杂环类的季铵盐表面活性剂更有许多特殊的性能[5-6]:多烷基季铵盐表面活性剂具有较单烷烃链表面活性剂高得多的表面活性,与烷烃链具有相同碳原子数的普通表面活性剂相比,表征其降低表面张力能力的值要低2-3个数量级,而且具有较好的杀菌性能;杂环类表面活性剂因其自身的特殊结构,有些具有很好的杀菌性和生物降解性。三、国内外研究现状

解析各种检测器原理、用途和作用

气相色谱仪-检测系统 1.热导检测器热导检测器 ( Thermal coductivity detector,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果 热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。 2.气相色谱仪氢火焰离子化检测器 氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口 及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量

Gemini型季铵盐表面活性剂的合成及应用

Gemini型季铵盐表面活性剂的合成及应用 班级:应化1004班姓名:梁伟学号:2010016119 摘要:为了把Gemini型季铵盐表面活性剂的功能及应用介绍得更加详细彻底,本文总结了部分Gemini 型季铵盐表面活性剂的合成方法,综述了近年来Gemini 型季铵盐表面活性剂的结构研究进展及该类表面活性剂的应用情况。 关键词:Gemini 季铵盐表面活性剂 1.前言: Gemini型季铵盐表面活性剂的合成出现在20世纪90年代,与传统面活性剂相比有更高的表面活性【1】,更低的临界胶束浓度,具有能降低溶液的表面张力、增溶、乳化与破乳、分散与凝聚、起泡与消泡等优良性质,因此在石油工业、新材料和生物技术等许多领域都有广泛应用。Gemini型表面活性剂的出现彻底改变了人们对表面活性剂的思考模式,因为它是通过化学键联接方式来提高表面活性,和以往所用的物理方法不同,同时在概念上也是一个突破,Gemini表面活性剂是结构新颖的新一代表面活性剂,其优良的性能引发了各国对该类型表面活性剂的研究热潮。 Gemini型季铵盐表面活性剂的独特结构使其具有传统表面活性剂所无法相比的性质,如具有极高的表面活性;良好的水溶性;连接基团为亲水基的Gemini 型表面活性剂有很低的Krafft点【2】,能够溶于冷水中;具有更好的钙皂分散性,可用于制备高效润湿剂;一些短链连接基团的Gemini型表面活性剂具有独特的流变性能,在稀的浓度范围内表现出黏弹性;与普通的表面活性剂有良好的协同效应,使体系性能更卓越;以及水溶助长性和生物安全性等。Gemini 型表面活性剂的应用非常广泛,如在印染行业中,用作涤纶织物碱减量促进剂和阳离子染料染色缓染剂;在农业上,可用来清洗土壤;用作药物载体、化学反应催化剂、石油添加剂、抗静电剂、织物柔软剂和防腐剂等【3】。国内外Gemini 型表面活性剂的合成研究一直比较活跃,已有阴离子型、阳离子型、非离子型和两性型的合成报道。

各种仪器分析的基本原理

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

17种常用表面活性剂

17 种常用表面活性剂 月桂基磺化琥珀酸单酯二钠(DLS) 、英文名:Disodium Monolauryl Sulfosuccinate 、化学名:月桂基磺化琥珀酸单酯二钠 三、化学结构式: ROCO-C2H-CH(SO3Na)-COONa 四、产品特性 1.常温下为白色细腻膏体,加热后(>70C)为透明液体; 2.泡沫细密丰富;无滑腻感, 非常容易冲洗;3. 去污力强,脱脂力低,属常见的温和性表面活性剂;4. 能与其它表面活性剂配伍,并降低其刺激性;5. 耐硬水,生物降解性好,性能价格比高。 五、用途与用量: 1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃 须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。 2.推荐用量:10—60%。 脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES Sulfosuccinate 、英文名:Disodium Laureth(3) 、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠 三、化学结构式:RO(CH2CH2O)3COC2HCH(SO3Na)COONa 四、产品特性: 1 .具有优良的洗涤、乳化、分散、润湿、增溶性能; 2.刺激性低,且能显著降低其他表面活性剂的刺激性; 3.泡沫丰富细密稳定;性能价格比高; 4.有优良的钙皂分散和抗硬水性能; 5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品; 6.脱脂力低,去污力适中,极易冲洗且无滑腻感。 五、用途与用量: 1 、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤日化产品等,还可作为乳化剂、分散剂、润湿剂、发泡剂等。广泛用于涂料、皮革、造纸、油墨、纺织等行业。

季铵盐双子表面活性剂的合成和表面活性

第26卷第1期2009年1月 精细化工 FI NE C H E M I CAL S Vo.l 26,No.1J an.2009 表面活性剂 季铵盐双子表面活性剂的合成和表面活性 * 王 军,栾立辉,杨许召,李刚森 (郑州轻工业学院河南省表界面科学重点实验室,河南郑州 450002) 摘要:以吗啉和溴代烷为原料,合成了两种季铵盐双子表面活性剂(m -6-m ,m =10,12),并用IR 和1HNM R 表征 了其结构。测得28 时,12-6-12和10-6-10的表面张力( CMC )分别为26 45mN /m 和25 55mN /m;临界胶束浓度(C M C )分别为1 0mmo l/L 和3 1mm o l/L;pC 20值分别为3 48和3 03;比表面过剩( max )分别为2 72 10-6m o l/m 2和2 80 10-6mo l/m 2;分子最小截面积(A m i n )分别为0 611n m 2和0 593nm 2。结果表明,该季铵盐双子表面活性剂与相同离子头基及烷基链的单季铵盐表面活性剂相比,C M C 低一个数量级, C M C 相差不大。关键词:季铵盐;双子表面活性剂;表面张力;表面活性剂 中图分类号:TQ 423 12 文献标识码:A 文章编号:1003-5214(2009)01-0014-04 Synthesis and Surface A cti vity of Cati onic G e m i ni Surfactants WANG Jun ,LUAN L i hu,i YANG Xu zhao ,LI Gang sen (H enan Provi ncial K e y Laboratory of Surface &Interface S cience ,Zhengzhou Universit y of L i gh t Indus t ry,Zhengzhou 450002,H enan,China) Abstract :Two types o f cati o nic ge m i n i surfactants (m -6-m ,m is 10,12)w ere synthesized w ith m orpholine and alky l bro m i d e .The che m ical str ucture of the purified products w ere confir m ed using I R and 1 HNMR.Surface tensi o ns( CMC )of 12-6-12and 10-6-10w ere m easured at 28 and are respectively 26 45mN /m and 25 55mN /m;the critica lm icelle concentrations(C M C)are 1 0mm ol/ L and 3 1mm ol/L ;pC 20are 3 48and 3 03;excess adsor pti o n a m ounts( max )are 2 72 10-6 m ol/m 2 and 2 80 10 -6 m ol/m 2;and the saturation adsorption areas per mo lecule (A m in )are 0 611n m 2 and 0 593nm 2 .The resu lt sho w s t h at t h e surface tensi o n of t h e ge m i n i surfactants are si m ilar as their co rrespond i n g !m ono m er ?,bu t their C MC are only one tenth of t h e ir !m ono m er ?.Key w ords :cati o nic ;ge m i n i surfactan ts ;surface tension ;surfactants Foundation ite m s :Supported by H enan province key scientific and technolog ical pro ject (082102270006)and the Zheng zhou city sc ience and techno l o gy pro ject(074SCCG23109-6) 双子表面活性剂是通过化学键将两个传统的单头基单烷烃链表面活性剂在离子头基处用联接基团 联接起来的新一代表面活性剂[1] ,从根本上克服了传统的单离子型表面活性剂由于离子头基间的电荷斥力或水化引起的分离倾向,促进了其在界面或分子聚集体中的紧密排列,表现出优异的性能,是胶体 与界面化学领域的研究热点[2,3] 。 目前文献报道的大多是以季氮离子为离子头基 的季铵盐双子表面活性剂[4~6] ,而以含氮杂环为离 子头基的双子表面活性剂的合成和性能鲜见报道。 作者以吗啉和溴代烷为原料合成了以吗啉为离子头基的季铵盐双子表面活性剂,考察了其表面活性。 1 实验部分 1 1 试剂与仪器 试剂:吗啉、氢氧化钠、溴乙烷(均为AR,天津市科密欧化学试剂有限公司);1,6 二溴己烷、溴代癸烷、溴代十二烷#均为AR,阿拉丁试剂(上海)有 *收稿日期:2008-08-18;定用日期:2008-10-30 基金项目:河南省重点科技攻关项目(082102270006);郑州市科技攻关项目(074SCCG23109-6) 作者简介:王 军(1961-),男,教授,主要从事表面活性剂的合成与应用研究,E -m ai:l w angj un8828@s i na .co m 。

季铵盐

1.1 季铵盐化合物 1.1.1 结构与性质 季铵盐(又称四级铵盐)是中的4个都被取代后形成的的[3]。季铵盐有4个碳原子通过共价键直接与氮原子相连,阴离子在烃基化试剂作用下通过离子键与氮原子相连,其分子通式为: 结构中4个烃基R可以相同,也可以不相同。取代的或非取代的,饱和的或不饱和的,可以有分支或没有分支,可以为环状结构或直链结构,可以包含醚、酯、酰胺,也可以是芳香族或芳香族取代物。通过离子键与氮原子相连的多为阴 -、RCOO-等),以氯和溴最为常见[4]。离子(F-、Cl-、Br-、I-)或酸根(HSO 4 1.1.2 合成与分析方法 1.1.3 应用研究概况 季铵盐化合物特有的分子结构赋予其乳化、分散、增溶、洗涤、润湿、润滑、发泡、消泡、杀菌、柔软、凝聚、减摩、匀染、防腐和抗静电等一系列物理化学作用及相应的实际应用[8],这些独特性能使其在造纸、纺织、涂料、染色、医药、农药、道路建设、洗化与个人护理用品和高新技术等领域均显示出了良好的应用前景。 1.2 季铵盐杀生剂研究进展 在季铵盐化合物的诸多独特性能及相应的实际应用中,优异的杀生性能是其中发现最早、应用最广的性能。目前,具有广谱高效、低毒安全、长效稳定等优点的季铵盐杀生剂已在工业、农业、建筑、医疗、食品、日常生活等众多领域得到广泛应用。例如,水处理[43]、造纸[44]、皮革[45]、纺织[46]、印染[47]、采油[48]、涂料[49]等行业的杀菌灭藻、防腐防霉、清洗消毒;农产品和农作物的防霉防病[50];养殖和畜牧的防病杀菌[51];木材和建材的防虫防腐[52];外科手术和医疗器械的杀菌消毒[53];禽蛋肉类和食品加工的清洗个人家庭和公共卫生的洗涤消毒[55]等均要用到季铵盐杀生剂。 1.2.1 发展历程 人们对季铵盐化合物的认识是从其所具有的杀菌作用上开始的,该类化合物在发展初期主要就是用作杀菌剂[13]。Jacobs W A等于1915年首次合成了季铵盐化合物,并指出这类化合物具有一定的杀菌能力,翻开了季铵盐杀生剂的历史篇章。然而,该研究成果一直未被人们所重视。此后直到1935年,Domagk G[56]发现了烷

一种季铵盐氟表面活性剂的制备及其表面活性

2010年第17卷第2期 化工生产与技术Chemical Production and Technology 一种季铵盐氟表面活性剂的制备及其表面活性 程海军 史鸿鑫* 刘秋平 项菊萍 武宏科 陈立军 (浙江工业大学,绿色化学合成技术国家重点实验室培育基地,杭州310032) 摘要以环氧六氟丙烷二聚物和N,N -二乙基丙二胺为原料,经酰胺化和季铵化反应,制备了N,N-二乙基-N-甲基-N-(N '-2-全氟丙氧基丙酰胺基)丙基碘化铵(FCI-1)。用IR 、 1 H NMR 、19F NMR 等方法对其结构进行了表征,并测试了表面张力等性能。结果表明,所 得产物临界胶束浓度(CMC )为38.7mmol/L ,在CMC 时表面张力为20.4mN/m ,具有良好的水溶性和高表面活性。 关键词氟表面活性剂;环氧六氟丙烷二聚物;N,N -二乙基丙二胺;季铵盐;表面张力中图分类号TQ423.12+1 文献标识码A DOI 10.3969/j.issn.1006-6829.2010.02.001 *通讯联系人。E-mail :shihxin@https://www.360docs.net/doc/0c10239265.html, 收稿日期:2010-02-08 氟化工 氟表面活性剂具有“三高、两憎”的特殊性能,日益受到人们的关注,是目前所有表面活性剂中表面活性最高的一类,主要应用于技术要求较高的特种场合,或一般普通表面活性剂难以胜任、应用效果较差的领域。阳离子氟表面活性剂是氟表面活性剂的重要品种之一,主要分为胺盐型和季铵盐型2大类,并以季铵盐型用途最广[1-2]。季铵盐型由于不受pH 影响,在酸、碱介质中均可使用。它除了具有表面活性外,还具有与阴离子及非离子氟表面活性剂不同的特点,其中之一是它的水溶液有很强的杀菌能力,常用作消毒剂和灭菌剂;它的另一特点是容易吸附在固体表面(或固液界面),工业上用作浮选剂、乳化剂、柔软剂、抗静电剂和颜料分散剂等[3]。 从结构上看,阳离子氟表面活性剂中的亲水基团为季铵阳离子。憎水基部分除含氟烃基结构外,往往还含有烃基、酰胺基等基团,且含氟烃基大部分是有6~10个碳原子的直链烃基结构。直链全氟烃基的合成主要有电解法和调聚法。电解法衍生得到含全氟辛烷磺酰基的氟表面活性剂(PFOS )对人类健康有害,受国际公约限制,即将被淘汰。调聚法制备直链全氟烃的有效组分较低,衍生得到的氟表面活性剂成本高。而四氟乙烯齐聚物和六氟丙烯齐聚物基氟碳表面活性剂的表面活性低于全氟烷基链基氟碳表面活性剂,同样存在难于生物降解的问题。 环氧六氟丙烷齐聚物是一种环氧六氟丙烷在催化剂存在的条件下开环聚合生成的低级全氟聚醚,2 个以上的全氟丙烯单元通过醚键首末相连而成,一端带有酰氟基团。以环氧六氟丙烷齐聚物合成的表面活性剂活性很高,生物降解性优于全氟正烷基链基氟碳表面活性剂。该类氟碳表面活性剂的研究与报道较为少见[4-5]。 本研究以环氧六氟丙烷二聚体为原料,经过酰胺化、季铵化反应,制备性能优异的含氟表面活性剂 N,N -二乙基-N-甲基-N-(N '-2-全氟丙氧基丙酰胺基)丙基碘化铵(FCI-1),用IR 、1H NMR 、19F NMR 等 方法对其结构进行了表征,并测试了表面张力等性能。 1 实验部分 1.1 试剂与仪器 环氧六氟丙烷二聚体,质量分数≥99%;N,N -二 乙基-1,3-丙二胺,医药级;碘甲烷,乙醚,二氯甲烷,四氢呋喃,乙酸乙酯,吡啶,丙酮,乙腈,丁酮,无水氯化钙,氢氧化钠,均AR 。 AVATAR 370型红外光谱仪,DCA-315表面张力仪,Mercury Plus 400核磁共振仪(400MHz ),GC-14B ,RE-3000旋转蒸发仪,B-545熔点仪。1.2合成方法 1.2.1中间体的制备 在装有搅拌器、温度计、滴液漏斗和回流冷凝管(上端装一无水CaCl 2干燥管)的四口烧瓶中,加入 3.12g (24mmol )的N,N -二乙基-1,3-丙二胺和30mL 的CH 2Cl 2,冷却至0℃,边搅拌边滴加6.64g (20 ·1 ·

常见的化学成分分析方法及其原理98394

常见的化学成分分析方法 一、化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。 容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。 络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。 氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。 沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以

17种常见的表面活性剂

月桂基磺化琥珀酸单酯二钠(DLS) 一、英文名:Disodium Monolauryl Sulfosuccinate 二、化学名:月桂基磺化琥珀酸单酯二钠 三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa 四、产品特性 1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体; 2. 泡沫细密丰富;无滑腻感,非常容易冲洗; 3. 去污力强,脱脂力低,属常见的温和性表面活性剂; 4. 能与其它表面活性剂配伍,并降低其刺激性; 5. 耐硬水,生物降解性好,性能价格比高。 五、技术指标: 1.外观(25℃):纯白色细腻膏状体 2.含量(%):48.0—50.0 3.Na2SO3(%):≤0.50 4.PH值(1%水溶液): 5.5—7.0 六、用途与用量: 1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面*、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。 2.推荐用量:10—60%。 脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES 一、英文名:Disodium Laureth(3) Sulfosuccinate 二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠 三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa 四、产品特性: 1.具有优良的洗涤、*化、分散、润湿、增溶性能; 2.刺激性低,且能显著降低其他表面活性剂的刺激性; 3.泡沫丰富细密稳定;性能价格比高; 4.有优良的钙皂分散和抗硬水性能; 5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品; 6.脱脂力低,去污力适中,极易冲洗且无滑腻感。 五、技术指标: 1.外观(25℃):无色至浅**透明粘稠液体 2.活性物(%):30.0±2.0 3.PH值(1%): 5.5—6.5 3.色泽(APHA):≤50 4.Na2SO3 (%):≤0.3 5.泡沫(mm):≥150 六、用途与用量: 1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤日化产品等,还可作为*化剂、分散剂、润湿剂、发泡剂等。广泛用于涂料、皮革、造纸、油墨、纺织等行业。

2.2.31季铵盐消毒剂(20151023)

2.2.32 季铵盐消毒剂 作为一类高效、温和的阳离子杀菌剂已得到了近百年的关注和研究,阳离子季铵盐化合物广泛应用在细菌抑制剂和消毒剂中。早在1915年,Jacobs就报道合成了季铵盐类消毒剂,并作了杀菌的研究,指出该类消毒剂具有一定的杀菌能力。1935年,德国人Domagk研究了这类消毒剂的杀菌性能及化学结构与制菌的关系,同年Wetzel将其用于临床消毒实践,逐渐推广。该类消毒剂低毒安全,副作用小,低浓度有效,无色、无臭、刺激性低,故初期曾经被誉为理想消毒剂的一个突破。但是,经过一段时间的研究发现,单一品种的季铵盐消毒剂抗菌谱狭小,消毒应用范围有限,曾影响了季铵盐作为消毒剂的使用与推广。近年,随着产品的升级换代,以及复配技术的运用,不同种类的季铵盐独特的抗菌作用机理,在配方中因协同作用得到放大、应用范围更广,加上季铵盐类消毒剂自身特有的安全性能,使得季胺盐类消毒剂逐步被人们认识和认可。目前除用于医院的皮肤粘膜消毒、外科洗手消毒和医疗器械消毒,也用于各种公共场所和各类生产用具和设备器皿的消毒,以及工业品和农业农作物的防霉,畜舍的卫生消毒、水产养殖、藻类杀灭、塑料抗菌剂制备、复方消毒剂制备等广泛用途。自上个世纪50年代,季铵盐类消毒剂发展至今,品种已达数百种。按其结构,我们将其分为四类,单链季铵盐、双链季铵盐、复合季铵盐、聚季铵盐。 2.2.32.1单链季铵盐消毒剂 单链季铵盐消毒剂:代表品种主要有十二烷基二甲基苄基氯化铵(苯扎氯铵)、十二烷基二甲基苯氧乙基溴化铵(度米芬)和十四烷基二甲基吡啶溴化铵(消毒技术净)等,其中苯扎氯铵是单链季铵盐消毒液中最常用的一类消毒成分,其消毒液兼有清洁和杀菌的作用,属于低水平消毒剂。 沙力迪苯扎氯胺消毒剂以苯扎氯胺为主要消毒成分,在医疗手术时广泛用于皮肤和手术器械的消毒。 (1)理化性质和剂型 苯扎氯铵为白色蜡状固体或黄色胶状体,水溶液为澄清无色透明至浅黄色液体,略带气味,在低温下长期储存会凝结,加热搅拌会使之溶解,完全溶解于水、低碳醇、酮和丙醇。在水溶液显中性或弱碱性,具有杀菌、除臭特性。苯扎氯铵

酯基季铵盐的生产现状及预测

酯基季铵盐的生产现状及预测 天然纤维和合成纤维已在家庭生活中得到广泛应用,但是这些纤维织物(尤其是棉织物)使用一段时间后常会出现僵硬、手感粗糙等不良现象,而一些直接接触皮肤的织物如毛巾、内衣、婴儿服装、尿布等,僵硬现象会给使用者带来不便。为了使织物能再次恢复柔软,常用方法是对织物进行柔软处理。织物柔软剂按其分子结构大致分为非离子型反应性柔软剂、季铵盐柔软剂和有机酸柔软剂三大类。目前主要是有机硅表面活性剂类和阳离子表面活性剂季铵盐类,而季铵盐类主要包括:烷基三甲基铵盐、双烷基二甲基铵盐、双酰胺基烷氧基铵盐和咪唑啉铵盐等。其中,双十八烷基二甲基氯化铵(D1821)具有优良的柔软性能,是目前国内应用最广泛的织物柔软剂。因DI821生物降解性差、易使织物泛黄、复配性差,近20年来,世界各国都争相开发新型的、具有良好生物降解性的柔软剂产品,如酯基季铵盐等,成为国内外研究的热点。 1990年,德国与荷兰推出酯基酰胺季铵盐替代品。 3.1 我国酯基季铵盐生产的发展 在我国,较早出现在市场上的织物柔软剂是广州油脂化工厂于l982年推出的天丽牌防尘柔软剂,其后上海合成洗涤剂三厂、五厂和北京日化厂,天津合成洗涤剂厂相继推出了各自的衣物柔软剂。1987年我国衣物柔软剂的总产量仅为300吨。经过20多年的发展,衣物柔软剂的全国年销售量由最初的不足300吨增长到现在的近l5万吨。特别是2004年来,随着人们生活水平和消费能力的提高,中国衣物柔软剂市场的年增长率在20%以上,呈现出蓬勃发展的势头和趋势,市场潜力巨大,前景看好。 酯基季铵盐在国内的应用推广及工业化生产的试验研究,已经历了十多年的历程。… 德国易美达集团(香港)国际有限公司专业制造纺织品柔软剂,目前集团公司属下拥有三家全资附属公司:广州赢晖贸易有限公司、中山麦兜保险柜制造有

季铵盐表面活性剂研究(开题报告)

毕业设计(论文)开题报告题目季铵盐表面活性剂研究专业名称应用化学 班级学号xxxxxxxx 学生姓名xxx 指导教师xxx 填表日期xxxx 年xx 月xx 日

一、选题的依据及意义: 近年来,季铵盐类阳离子表面活性剂的品种开发和产品应用都得到了较快发展。随着阳离子表面活性剂在工业各领域内日益广泛的应用,对其性能也提出了更多、更高、更为具体的要求,促使对表面活性剂的合成进行更为深入的研究。 双季铵盐类表面活性剂是一类新型的表面活性剂,与单季铵盐阳离子表面活性剂具有相近的性能及相同的应用范围。由于双季铵盐表面活性剂中含有两个锡氮原子,在金属、塑料、织物、矿石上具有更强的成键能力和吸附作用,与非离子及两性表面活性剂的复配性能也得到进一步的改善,而且水溶性也明显加强,所以,双季按盐类阳离子表面活性剂在沥青乳化、矿石浮选、纤维织物整理、金属加工等行业已得到广泛的应用。 有人曾介绍了以脂肪伯胺与环氧氯丙烷及三甲胺反应制备单烷基双季铵盐以及脂肪叔胺与环氧氯丙烷反应制备双烷基双季铵盐的方法。在此基础上,又研究了以脂肪胺与丙烯睛及氯甲烷反应制备单烷基双季按盐的工艺,以期得到制取双季按盐更为经济实用的方法。 季铵盐类表面活性剂除具有表面活性剂的表面吸附、降低表面张力及在溶液中聚集等基本特性外,还具有抑制和杀灭微生物等生物效应,因此该类表面活性剂发展的初期主要用作杀菌剂。季铵型表面活性剂的杀菌机制主要通过正离子头基吸附在负电荷的细菌表面,改变细菌细胞壁的通透性来完成的;此外,其吸附到细菌体表面后,有利于疏水基与亲水基分别深入菌体细胞的类脂层与蛋白层,导致酶失去活性和蛋白质变性[1]。由于上述这两种作用的联合效应,使得季铵型表面活性剂具有较强的杀菌能力。 目前,我国常用的季铵盐杀菌剂主要有十二烷基苄基氯化铵(洁而灭或1227)、新洁尔灭以及它们的复合产品,这些都是单头基烷烃链季铵盐。它们在循环冷却水处理过程中虽然起到了较好的作用,但是随着时间的推移和技术的进步,其不足之处也显现出来:细菌容易对其产生抗药性,使用剂量大(100mg/L以上),费用高,并且在使用时泡沫多,不易清除等[2-3]。 Gemini(双子)季铵盐表面活性剂包含两个或两个以上的疏水基团和亲水基团,与单季铵型表面活性剂相比,Gemini季铵型表面活性剂具有许多优良的理化性能[4]:更有效地降低表面张力、优良的润湿性、强的洗涤去污能力、较高的生物安全性、很好的耐温稳定性等。尤其是含有多烷基、杂环类的季铵盐表面活性剂更有许多特殊的性能[5-6]:多烷基季铵盐表面活性剂具有较单烷烃链表面活性剂高得多的表面活性,与烷烃链具有相同碳原子数的普通表面活性剂相比,表征其降低表面张力能力的值要低2-3个数量级,而且具有较好的杀菌性能;杂环类表面活性剂因其自身的特殊结构,有些具有很好的杀菌性和生物降解性。

仪器分析简答题

11.原子吸收谱线变宽的主要因素有哪些? 一方面是由激发态原子核外层电子决定,如自然宽度;一方面是由于外界因素,多普勒变宽,碰撞变宽,场致变宽,压力变宽、自吸变宽、电场变宽、磁场变宽等。 1.自然宽度:谱线固有宽度,与原子发生能级间跃迁的激发态原子的有限寿命有关。可忽 略 2.多普勒变宽:由于无规则的热运动而变化,是谱线变宽主要因素。 3.压力变宽:由于吸光原子与蒸汽中原子相互碰撞而引起能级的微小变化,使发射或吸收的光量子频率改变而变宽。与吸收气体的压力有关。包括洛伦兹变宽和霍尔兹马克变宽。场致变宽:在外界电场或磁场作用下,原子核外层电子能级分裂使谱线变宽。 自吸变宽:光源发射共振谱线被周围同种原子冷蒸汽吸收,使共振谱线在V0 处发射强度 减弱所产生的谱线变宽。 原子吸收谱线变宽主要原因是受多普勒变宽和洛伦兹变宽的影响 12.说明荧光发射光谱的形状通常与激发波长无关的原因。 由于荧光发射是激发态的分子由第一激发单重态的最低振动能级跃迁回基态的各振动能级所产生的,所以不管激发光的能量多大,能把电子激发到哪种激发态,都将经过迅速的振动弛豫及内部转移跃迁至第一激发单重态的最低能级,然后发射荧光。因此除了少数特殊情况,如S1 与S2 的能级间隔比一般分子大及可能受溶液性质影响的物质外,荧光光谱只有一个发射带,且发射光谱的形状与激发波长无关。 13.有机化合物产生紫外-可见吸收光谱的电子跃迁有哪些类型? 在有机分子中存在σ、π、n三种价电子,它们对应有σ-σ*、π-π*及n 轨道,可以产 生以下跃迁: 1.σ-σ* 跃迁:σ-σ*的能量差大所需能量高,吸收峰在远紫外(<150nm)饱和烃只有σ- σ*轨道,只能产生σ-σ*跃迁,例如:甲烷吸收峰在125nm;乙烷吸收峰在135nm ( < 150nm) 2.π-π*跃迁:π-π*能量差较小所需能量较低,吸收峰紫外区(200nm左右)不饱和烃类分子中有π电子,也有π* 轨道,能产生π-π*跃迁:CH2=CH2,吸收峰165nm。(吸收系数大,吸收强度大,属于强吸收) 1.n-σ*跃迁:n-σ*能量较低,收峰紫外区(200nm左右)(与π-π*接近)含有杂原子团如:-OH,-NH2 ,-X,-S 等的有机物分子中除能产生π-π*跃迁外,同时能产生n-σ*跃迁4. n-π*跃迁:n-π*能量低吸收峰在近紫外可见区(200 ~ 700nm)含杂原子的不饱和基团,如- C=O,-CN 等 各种跃迁所需能量大小次序为:σ-σ*> n-σ*>π-π*>n-π* 除外分子内部还有电荷迁移跃迁,指用电磁辐射照射化合物时,电子从给予体向接受体相 联系的轨道上跃迁,实质是氧化还原过程,相应的光谱最大特点是摩尔吸光系数较大。14、简单说明紫外-可见吸收光谱法、荧光光谱法、原子吸收光谱法的定量原理和依据是什么?请画出紫外分光光度法仪器的组成图(即方框图),并说明各组成部分的作用? 答:作用: 光源:较宽的区域内提供紫外连续电磁辐射。 单色器:能把电磁辐射分离出不同波长的成分。 试样池:放待测物溶液 参比池:放参比溶液

孪二连季铵盐表面活性剂_才程

第18卷第3期油田化学Vol.18No.3 2001年9月25日Oilfield Chemistry25Sept,2001 文章编号:1000-4092(2001)03-0278-04 孪二连季铵盐表面活性剂X 才程,葛际江 (石油大学(华东)石油工程学院,山东东营257061) 摘要:综述了目前研究得最系统的一类孪二连型(二聚体型)表面活性剂)))双季铵盐类表面活性剂A,X-亚烷基双(二甲基烷基溴化铵),认为可成为有广泛应用前景的一种油田化学剂。简略介绍了此类化合物的化学结构和合成方法,比较详尽地介绍了此类表面活性剂的物化性质,包括:临界胶束浓度;胶束聚集数;胶束微观结构与溶液流变性;气液和固液界面相行为;水溶液中液晶形成;与单体型和三聚体型表面活性剂的比较;其他性质(杀菌能力,与常规表面活性剂的配伍性)。 关键词:亚烷基-A,X-双(二甲基烷基溴化铵);双季铵盐;孪二连型(二聚体型)表面活性剂;结构与性能关系;综述; 油田化学剂 中图分类号:O647.2:T E39文献标识码:A 传统的表面活性剂分子由一条疏水的碳链和一个亲水头基组成。由于分子结构不对称而产生的自组织行为和降低水溶液表(界)面张力的能力,使表面活性剂在科学研究、工农业生产和日常生活中有广泛的用途和重要的意义。提高表面活性剂的表面活性,通常有以下方法。 (1)降低表面活性剂分(离)子亲水头基间的静电斥力和水化层排斥作用。如对离子型表面活性剂,可加入无机盐中和亲水头基间的静电斥力[1]。 (2)二元表面活性剂的复配。如正、负离子表面活性剂的复配[2,3],复配体系的表面活性有很大的提高。 孪二连型表面活性剂是一类新型的表面活性剂,1974年由 ????′±等人首先合成[4]。在1991年,M enger等人合成了以刚性基团连接离子头基的双烷烃链表面活性剂,并命名为孪二连型(gemini)表面活性剂[5]。孪二连型表面活性剂又称双极性基(bipolar)表面活性剂或二聚体(dimeric)表面活性剂[6]。它的分子由两个相同或相似的表面活性剂单体,在亲水基上用联接基(spacer group)通过化学键接在一起。孪二连型表面活性剂的疏水链可以是不同链长的碳氢链,亲水基可以是阴离子型(如磺酸基、羧酸基、磷酸基等),也可以是阳离子型(如季铵盐型),或非离子型(如多元醇型)。联接基可分为刚性和柔性,刚性联接基包括较短的碳氢链、对苯二亚甲基(CH25CH2)、亚乙烯基二对亚苯基(5CH CH5)等,柔性联接基包括较长的碳氢链、聚氧乙烯链等[7]。 与传统表面活性剂相比,孪二连型表面活性剂由于联接基团紧密连接两亲分子,两亲分子紧密接触,而表现出很高的表面活性,Rosen认为是/最有可能成为二十一世纪的新型表面活性剂[8]0。迄今为止,在孪二连型表面活性剂中,孪连双季铵盐表面活性剂的研究已经比较系统。下面对此类表面活性剂各方面的性质作一个综述。 1结构与合成 孪连双季铵盐表面活性剂的分子结构式为: Br-(CH3)2N R +(CH 2 Y CH2)N R +(CH 3 )2Br- X收稿日期:2001-06-26;修改日期:2001-07-23。 作者简介:才程(1977-),男,1999年毕业于石油大学(华东)石油工程系,现为该校油气田开发工程专业硕士研究生(1999-),专业方向为油田化学,通讯地址:257061山东省东营市石油大学(华东)石油工程学院采油化学研究室。

酯基Gemini型季铵盐表面活性剂与SDS的相互作用

物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.鄄Chim.Sin .,2006,22(4):414~418 酯基Gemini 型季铵盐表面活性剂与SDS 的相互作用 许虎君1,2* 王中才1 刘晓亚1吕春绪2 (1江南大学化工学院,江苏无锡 214036; 2 南京理工大学化工学院,南京 210094) 摘要 研究了酯基Gemini 型季铵盐表面活性剂[C m -1H 2m -1COOCH 2CH 2(CH 3)2N +(CH 2)n +N(CH 3)2CH 2CH 2OOCC m -1H 2m -1]· 2Br -(简称II ?m ?n ,m =10,12;n =3,4,6)与十二烷基硫酸钠(SDS)的复配体系的相互作用以及无机盐(NaBr)对复配体系表面活性的影响.结果发现,其复配体系具有显著的胶团化协同增效作用和降低表面张力的增效作用,并且II ?10?n 与SDS 的复配体系的增效作用具有等链长效应.II ?m ?n /SDS 复配体系的胶团化协同增效作用随n 增大而增强.混合胶团中II ?m ?n 与SDS 的摩尔比均近似为1∶1,显示各复配体系的混合胶团均带电性,因此NaBr 的加入能增强复配体系的表面活性和促进混合胶团的形成.关键词:酯基Gemini 型季铵盐表面活性剂,十二烷基硫酸钠, 复配体系, 混合胶团 中图分类号:O648 The Interaction of Esterquat Gemini Surfactant with SDS XU,Hu ?Jun 1,2* WANG,Zhong ?Cai 1 LIU,Xiao ?Ya 1 L ü,Chun ?Xu 2 (1School of Chemical Engineering,Southern Yangtze University,Wuxi 214036,P.R.China ;2 School of Chemical Engineering, Nanjing University of Science and Technology,Nanjing 210094,P.R.China) Abstract The interactions of a series of novel cleavable esterquat Gemini surfactants,[C m -1H 2m -1COOCH 2CH 2(CH 3)2? N +(CH 2)n +N(CH 3)2CH 2CH 2OOCC m -1H 2m -1]·2Br -(symbolized II ?m ?n ,m =10,12;n =3,4,6),with sodium dodecyl sulphate(SDS)in aqueous solution have been investigated.The experimental results suggested that both II ?10?n and II ?12?n had evident synergism with SDS in mixed micelle formation and surface tension reduction in binary system.II ?10?n manifested stronger synergistic interaction with SDS than II ?12?n ,which was attributed to the equal ?chain length effect.The synergism in mixed micelle formation of II ?m ?n /SDS was found to become more intense increasingly with the increase of n .The equilibrium constant proof illustrated that the ratio of II ?m ?n to SDS existed in mixed micelles was approximately 1∶1,which indicated that the mixed micelle was charged.Therefore the addition of NaBr could improve the surface activity of II ?m ?n /SDS mixtures and promote the formation of mixed micelles.Keywords :Esterquat Gemini surfactant, Sodium dodecyl sulphate, Mixed system, Mixed micelle 阴/阳离子表面活性剂复配体系具有很强的相互作用,不仅在二维界面上呈现强吸附能力,而且在水溶液中的相行为复杂,其相关研究一直受到高度重视[1?3].Gemini 型季铵盐表面活性剂是当前倍受关注的两亲分子,其新颖的分子结构使之表现出很多奇异的特性,然而对于Gemini 型表面活性剂而言,目前研究还主要局限于单组分特性上,很少涉 及含这些成分的二元表面活性剂复配体系[4?6]. 酯基Gemini 型季铵盐表面活性剂II ?m ?n (m =10,12;n =3,4,6)([C m -1H 2m -1COOCH 2CH 2(CH 3)2N +(CH 2)n ? + N(CH 3)2CH 2CH 2OOCC m-1H 2m -1]·2Br -)是一类环境友 好的可分解型表面活性剂[7],预计在不久的将来有广阔的应用前景.十二烷基硫酸钠(SDS)是产量和用量都很大的一种传统阴离子型表面活性剂,二者的 [Article] https://www.360docs.net/doc/0c10239265.html, Received :September 5,2005;Revised :November 20,2005.* Correspondent,E ?mail :xu6209@https://www.360docs.net/doc/0c10239265.html, ;Tel :0510?5866096;Fax :0510?5884512. 国家自然科学基金(20374025)资助项目 鬁Editorial office of Acta Physico ?Chimica Sinica April 414

相关文档
最新文档