基于单片机的音频频谱显示器设计

基于单片机的音频频谱显示器设计
基于单片机的音频频谱显示器设计

目次

1 绪论-----------------------------------------------------------1

2 系统功能-------------------------------------------------------1

3 系统设计-------------------------------------------------------2 3.1 主控单元----------------------------------------------------2 3.2 STC12C5A60S2 系列单片机单片机的A/D转换器-------------------10 3.3 STC12C5A60S2 系列单片机单片机的I/O口结构-------------------11

3.4 频谱显示单元-----------------------------------------------14

4 音频频谱显示相关问题-------------------------------------------16 4.1 频谱及频谱显示---------------------------------------------16

4.2 FFT运算规则及编程思想--------------------------------------17

5 总结-----------------------------------------------------------22 参考文献-------------------------------------------------------24

致谢-----------------------------------------------------------23

附录A 源程序-------------------------------------------------25 附录B 系统电路图---------------------------------------------32

1 绪论

随着电子技术的进步发展在功率放大器的设计上功能也不断更新。电子信息技术几乎主宰了整个电器行业的发展。

我们知道,一切声音都是由振动产生的。声音之所以千变万化各不相同,是因为它们的振动各不相同。产生音调高低的不同,是由于振动的频率不同。频率越高,音高也就越高。根据傅立叶分析,任何声音可以分解为数个甚至无限个正弦波,而它们往往又包含有无数多的谐波分量。而它们又往往是时刻在变化着。所以一个声音的构成其实是很复杂的。将声音的频率分量绘制成曲线,就形成了频谱。本设计通过STC12C5A60S2单片机及外围器件组成的系统实现音频信号的频谱显示,将音频信号送入STC12C5A60S2单片机的A/D转换接口进行数据的采集和预处理,然后送入单片机中通过编程实现频谱计算,在LCD1604上实时显示音频信号的频谱。

2 系统功能

转换,单片机作为主控单元,进行数据采集,STC12C5A60S2A/D本设计以显示频谱。且在完成系统其他控制任务的前提),再由LCD1604频谱计算(FFT音频算法计算音频信号频谱。充分利用单片机剩余计算资源,采用优化FFT下,接口实现模拟音频信号的采样保持和量化处理,的STC12C5A60S2A/D数据通过频谱显示电路实现模拟音频信号)转换;A/D(包括音频采集和转换该单片机内置级量化,由14段,每段按照14频谱的分段显示,它将音频信号频谱划分成.

LCD1604显示器件显示。

3 系统设计

3.1 主控单元

本设计以STC12C5A60S2单片机作为主控单元,进行频谱计算和数据采集,A/D 转换,频谱计算(FFT)。

3.1 STC12C5A60S2 系列单片机简介

3.1.1.1 简介

STC12C5A6OS2是宏晶公司推出的完全集成的混合信号片上系统MCU。1个时钟/机器周期,低成本、高可靠性、高速A/D转换。带8通道模拟多路开关,转换速度250K/S(25万次/秒);具有可编程数据更新方式;60KB系统编程的Flash 内存。1280字节的片内RAM,可寻址64KB地址空间的外部数据存储器接口。硬件实现的ISP/IPA在线系统可编程/在线应用可编程。可通过串口(P3.0/P3.1)直接下载用户程序:6个通用的16位定时器。兼容普通8051的定时器T0/T1 ,4路PCA也是4个定时器:2通道捕获/比较单元(PWM2路/PCA可编程计数器阵列

4路/CCU)一可用来当2路D/A使用、用来再实现2个定时器或2个外部中断STC12C5A60S2是真正能独立工作的片上系统STC12C5A60S2的功能均可由用户进行设置使能/禁止。

3.1.1.2 STC12C5A60S2主要性能:

▲高速:1个时钟/机器周期,速度比普通MCS一51单片机快8~l2倍;

▲宽电压:5.5~3 .3 V,2 .2~3 .6 V;

▲低功耗设计:掉电模式(可由外部中断唤醒)。可支持下降沿/上升沿和远程唤醒;

▲增加外部掉电检测电路,可在掉电时及时将数据保存EPROM;

▲工作频率:0~35 MHz,相当于普通MCS一51单片机的0~420 MHz ;

▲ 8通道,10位高速ADC,速度可达25万次/秒,2路PWM还可当2路D/A使用;▲每个I/OEl驱动能力均可达到2OmA。但整个芯片最大不得超过100mA。

单片机实物图STC12C5A60S2 为3.1图

图3.1 STC12C5A60S2 单片机实物图

3.1.2 STC12C5A60S2 系列单片机内部结构

STC12C5A60S2系列单片机的内部结构框图如下图所示。STC12C5A60S2单片机中包含中央处理器(CPU)、程序存储器(Flash)、数据存储器(SRAM)、定时/计数器、UART串口、串口2、I/O接口、高速A/D转换、SPI接口、PCA、看门狗及片内

R/C振荡器和外部晶体振荡电路等模块。STC12C5A60S2系列单片机几乎包含了数据采集和控制中所需的所有单元模块,可称得上一个片上系统。

系列内部结构框图STC12C5A60S2为3.2图

图3.2 STC12C5A60S2系列内部结构框图

3.1.3 STC12C5A60S2 系列单片机管脚及管脚说明

图3.3为STC12C5A60S2系列单片机管图

图3.3 STC12C5A60S2系列单片机管图

管脚说明:

▲P0.0-P0.7:P0口既可作为输入/输出口,也可作为地址/数据复用总线使用。当P0口作为输入/输出口时,P0是一个8位准双向口,内部有弱上拉电阻,无需外接上拉电阻。当P0作为地址/数据复用总线使用时,是低8位地址线

[A0-A7],数据线 [D0-D7]。

▲CLKOUT2/ADC0/ P1.0:p1.0 标准I/O口 PORT1[0]

ADC0 ADC 输入通道-0

CLKOUT2 独立波特率发生器的时钟输出,可通过设置WAKE-CLKO[2]位/BRT-CLKO将该管脚配置为CLKOUT2。

▲ADC1/P1.0:p1.1 标准I/O口 PORT1[1]

ADC1 ADC 输入通道-1

▲RxD2 /ECI / ADC2/P1.2:p1.2 标准I/O口 PORT1[2]

ADC2 ADC 输入通道-2

ECI PCA计数器的外部脉冲输入脚

RxD2 第二串口数据接收端

▲TxD2 /CCP0/ADC3/P1.3:P1.3 标准I/O口 PORT1[3]

ADC3 ADC 输入通道-3

CCP0 外部信号捕获(频率测量或当外部中断使用)、高速脉冲输出及脉宽调制输出。

TxD2 第二串口数据发送端

▲SS/CCP1/ADC4/ P1.4:P1.4 标准I/O口 PORT1[4]

ADC4 ADC 输入通道-4

CCP1 外部信号捕获(频率测量或当外部中断使用)、高速脉冲输出及脉宽调制输出。

SS SPI同步串行接口的从机选择信号

▲MOSI/ADC5 /P1.5:P1.5 标准I/O口 PORT1[5]

-5

输入通道 ADC5 ADC

MOSI SPI同步串行接口的主出从入(主器件的输出和从器件的输入)

▲MISO/ADC6/P1.6:P1.6 标准I/O口 PORT1[6]

ADC6 ADC 输入通道-6

MISO SPI同步串行接口的主入从出(主器件的输入和从器件的输出)

▲SCLK/ADC7/P1.7:P1.7 标准I/O口 PORT1[7]

ADC7 ADC 输入通道-7

SCLK SPI同步串行接口的时钟信号

▲P2.0-P2.7:P2口内部有上拉电阻,即可以作为输入/输出,也可以作为高8位地址总线使用[A8-A15],当P2口作为输入/输出口时,P2是一个8位准双向口。

▲RxD/ P3.0:P3.0 标准I/O口 PORT3[0]

RxD 串口1数据接收端

▲TxD/P3.1:P3.1 标准I/O口 PORT3[1]

TxD 串口1数据发送端

INT0 /P3.2:P3.2 标准▲I/O口 PORT3[2]

INT0外部中断0 ,下降沿中断或低电平中断

INT1/ P3.3:P3.3 标准I/O口 PORT3[3]

▲INT1外部中断1 ,下降沿中断或低电平中断

INT/T0/P3.4:P3.4 标准▲I/OCLKOUT0/口 PORT3[4]

T0 定时器/计数器0的外部输入

INT定时器0下降沿中断

CLKOUT0 定时器/计数器0的时钟输出,可通过设置WAKE-CLKO[0]位/TOCLKO将该管脚设置为CLKOUT0

INT PORT3[5]

口I/O标准P3.5 :/T1/P3.5CLKOUT1/▲.

T1 定时器/计数器1的外部输入

INT定时器1下降沿中断

CLKOUT1 定时器/计数器1的时钟输出,课通过设置WAKE-CLKO[1]位/TOCLKO将该管脚设置为CLKOUT1

WR/P3.6:P3.6 标准I/O口▲ PORT3[6]

WR外部数据存储器写脉冲

▲/ P3.7:P3.7 标准I/O口 PORT3[7]

RD外部数据存储器读脉冲RD SS/P4.0:P4.0 标准I/O▲口 PORT4[0] SS SPI同步串行接口的从机选择信号

▲MOSI/ECI/P4.1:P4.1 标准I/O口 PORT4[1]

ECI PCA计数器的外部脉冲输入脚

MOSI SPI同步串行接口的主出从入(主器件的输出和从器件的输入)

▲MISO/CCP0/P4.2:P4.2 标准I/O口 PORT4[2]

CCP0 外部信号捕获(频率测量或是当外部中断使用),告诉脉冲输出或脉宽调制输出。

MISO SPI同步串行接口的主入从出(主器件的输入和从器件的输出)

▲SCLK/CCP1/P4.3:P4.3 标准I/O口 PORT4[3]

CCP1 外部信号捕获(频率测量或是当外部中断使用),告诉脉冲输出或脉宽调制输出。

SCLK SPI同步串行接口的时钟信号

▲NA/P4.4:P4.4 标准I/O口 PORT4[4]

设置为1 P4.4/NA脚为I/O口(P4.4)

脚是弱上拉,无任何功能。0 P4.4/NA设置为

▲ALE/P4.5:P4.5 标准I/O口 PORT4[5]

ALE 地址锁存允许

▲EX-LVD/P4.6/RST2:P4.6 标准I/O口 PORT4[6]

EX-LVD 外部低压式中断/比较器

RST2 第二复位功能脚

▲P4.7/RST:P4.7 标准I/O口 PORT4[7]

RST 复位脚

▲P5.0:标准I/O口 PORT5[0]

▲P5.1:标准I/O口 PORT5[1]

▲P5.2:标准I/O口 PORT5[2]

▲P5.3:标准I/O口 PORT5[3]

▲XTAL1:内部时钟电路反相放大器输入端,接外部晶振的一个引脚,当直接使用外部时钟源时,此引脚是外部时钟的输入端。

▲XTAL2:内部时钟电路反相放大器输出端,接外部晶振的另一端,当直接使用外部时钟源时,此引脚可悬空。此时XTAL2实际将XTAL1输入的时钟进行输出。▲VCC:电源

▲GND:接地

3.1.4 STC12C5A60S2 单片机最小应用系统

图3.4为STC12C5A60S2单片机最小系统构成的电路图

单片机最小系统构成的电路图3.4 STC12C5A60S2 3.1.4.1 系统组成电阻到地。时钟1K▲复位电路:时钟频率低于12MHz时,可以不用C1,R1接在能脚。(STC12C5A60S2系列复时频率高于12MHz,建议使用第二位功口)

STC12C5201AD系列RST2/EX_LVD/P1.2RST2/EX_LVD/P4.6口建议直接使用外部有源晶振。33MHz以上时,▲晶振电路:如果外部时钟频率在单片3V:11MHz~17MHz,单片机为如果使用内部R/C振荡器时钟(室温情况下5V,脚浮空。如果外部时钟频率在27MHz以上时8MHz机为~12MHz),XTAL1和XTAL2否则如参数搭配不使用标称频率就是基本频率的晶体,不要使用三泛音的晶体,或直接使用外1/3了,就有可能振在基频,当,此时实际频率就只有标称频率的脚必须浮空。XTAL2部有源晶振,时钟从XTAL1脚输入, 3.1.4.2 结构特点的大小直接影响单片机的复位时间,一般采用C1▲复位电路的极性电容 10~30uF,51单片机最小系统容值越大需要的复位时间越短。,在正常工作的情况下可以采用

11.0592MHz6MHz或者Y1 ▲晶振也可以采用单片机最小系统晶振的振荡频率直接影响单片机的处理速更高频率的晶振,51 度,频率越大处理速度越快。,并且电容离晶振越近越好,晶振离单15~33pF一般采用C3、C2▲起振电容

10k。4.P0口为开漏输出,作为输出口时需加上拉电阻,阻值一般为片机越近越好个机器周期等计数器是对内部机器周期计数(1 ▲设置为定时器模式时,加1TcyN乘以机器周期)。计数值于12个振荡周期,即计数频率为晶振频率的1/12 。就是定时时间t▲设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。在每个机器周期的S5P2期间采样T0、T1引脚电平。当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。

3.2 STC12C5A60S2 系列单片机单片机的A/D转换器

3.2.1 STCl2C5A60S2高速A/D转换

本设计无需外加A/D转换,使用的单片机内置A/D接口,音频信号可直接送入单片机进行数据采集和预处理。STC12C5A60S2单片机的A/D转换口在P l口(P1.0~P 1.7)有10位8路高速A/D转换器,A/D是电压输入型转换速度25万次

/s(250KHz)。复位后P1口为弱上拉型I/O口。通过软件可设置将P1(P1.0~P 1.7)El中的任何一位为A/D转换位,不用作A/D转换的位可继续用作普通YO口使用。

3.2.2 与A /D转换有关控制位的设置

▲对P1ASF寄存器的设置:当P1口中的相应位作为A /D使用时,需先将P1ASF 中的相应位置“1”相应的口设置为模拟功能。如:P1ASF.0~P1ASF.7中哪一位

为“1”,则P1口中对应的位作为模拟功能D使用。

▲对ADC_CONTR特殊功能寄存器设置:建议直接用MOV赋值语句。选择模拟输入通道CHS2/CHSl/CHS0:如CHS2/CHS1/CHSO=l11~000可分别选择P1.7~P1.0作为ADC的A/D转换输入位。ADC_START位:ADC模数转换器转换启动控制位,ADC_START=1时,开始转换。转换结束后为ADC_START=0。中断请求标志位

ADC_FLAG:ADC模数转换器转换结束标志位。当AID转换完成后,ADC_FLAG=1,一定要由软件清零,A/D转换完成后由该位申请中断。ADC电源控制位ADC_POWER:ADC_POWER=O,关闭ADC电源,ADC_PO WER=1,打开A/D转换器电源。建议进人空A /D电源已打开,A/D定要确认转换前一A/D电源关闭,启动ADC闲模式前,将.

转换完成后关闭AD电源可降低功耗。在A/D转换结束之前,不改变任何I/ O

口的状态,有利于高精度A/D转换。

▲对IE的设置:如果允许A /D转换中断,将EA=1打开单片机中断允许总控制位;将EAD C =1,这时ADC中断的允许中断控制位。

STC12C5A60S2系列单片机的A /D转换模块使用的时钟是外部晶体时钟或内部

R/C振荡器所产生的时钟。不使用时钟分频寄存器CLK_DIV。这样可以让ADC

用较高的频率工作,提高A/D的转换速度;还可以让CPU用较低的频率工作,降低系统的功耗。

▲程序中需要注意的问题:由于是2套时钟,所以,设置ADC_CONTR控制寄存器后,加4个空操作延时才可以正确读到ADC_CONTR寄存器的值。原因是设置ADC _CO N T R控制寄存器的语句执行后,要经过4个CPU时钟的延时,其值才能

够保证被设置进ADC_CONTR控制寄存器。

▲对AUXR1寄存器设置:AUXR1寄存器中的ADRJ位是A/D转换结果寄存器(ADC_RES,ADC_RESL)的数据格式调整控制位。ADRJ=0,10位A/D转换结果的高八位存放在ADC_RES中,低2位存放在ADC_RESL的低2位中。ADI~I=1,10位

A/D转换结果的高2位存放在ADC_RES中低2位中,低8位存放在ADC_RESL中。图3.5为STC12C5A60S2系列单片机ADC(A/D转换器)的结构图

图3.5 STC12C5A60S2系列单片机ADC(A/D转换器)的结构图

口结构I/O系列单片机单片机的3.3 STC12C5A60S2

STC12C5A60S2系列单片机所有I/O口均(新增P4口和P5口)可由软件配置成4

种工作类型之一,如表1-6所示。4种类型分别为:准双向口/弱上拉(标准8051输出模式)、强推挽输出/强上拉、仅为输入(高阻)或开漏输出功能。每个口由

2个控制寄存器中的相应位控制每个引脚工作类型。STC12C5A60S2系列单片机上电复位后为准双向口/弱上拉(传统8051的I/O口)模式。2V以上时为高电平,0.8V以下时为低电平。每个I/O口驱动能力均可达到20mA,但整个芯片最大不得超过120mA。

I/O口工作类型设定

表1 P5口设定 (P5口地址:C8H)

单片机音乐频谱..

题目:单片机LED音乐频谱的设计院(系): 专业: 学生姓名: 学号: 指导教师: 2011年07月07日

摘要 该系统采用增强型8051单片机STC12C5A60S2为主控制器,通过单片机内置的ADC对音频信号进行采样、量化,然后通过快速傅里叶变换运算,在频域计算出音频信号各个频率分量的功率,最后通过双基色LED单元板进行显示。该方案具有电路结构简洁,开发、生产成本低的优点。 关键词:单片机;傅里叶;LED;

目录 1. 引言 (1) 2. 方案设计 (2) 2.1设计要求 (2) 2.2总体方案设计 (3) 2.3总体方案组成 (6) 3. 系统电路设计 (6) 3.1单片机主控电路设计主控制器 (6) 3.2LED显示模块电路设计 (7) 4. 软件设计 (8) 4.1软件设计流程图 (8) 5.系统的测试 (8) 6.结论 (9) 7.参考文献 (11) 8. 附录 (14)

1. 引言 本文介绍的音乐频谱显示器可对mp3、手机、计算机输出的音乐信号进行实时的频谱显示。系统采用增强型8051单片机STC12C5A60S2为主控制芯片,通过单片机内置的ADC对音频信号进行采样,把连续信号离散化,然后通过快速傅里叶变换(FFT)运算,在频域计算出音频信号各个频率分量的功率,最后通过双基色LED单元板进行显示。在显示的频率点不多的情况下,本系统比采用DSP或ARM作为主控制芯片的设计方案具有电路结构简洁,开发、生产成本低的优点。

2. 方案设计 2.1设计要求 1. 单片机自带AD 转换,这样省去外围AD 电路。 2. 控制LED 随着音乐跳动,需要理解傅里叶原理。 2.2总体方案设计 经分析,将系统分为两个部分,一个是由单片机组成的主控。另一部分是LED 显示部分,单片机对接收到的音频进行处理经过傅里叶换算后在LED 显示,5V 稳压电源给各个部分供电。 该系统实现的方法有很多种,下面将列出大家最经常用到的实现方案。系统框图如图1所示 图1 音乐频谱总体系统框图 该系统由音频信号预处理电路、单片机STC12C5A60S2控制电路、LED 频谱显示电路等部分组成。图l 为系统整体设计原理框图。 图1 系统整体设计原理框图 系统各组部分的功能:(1)音频信号预处理电路主要对输入的音频进行电压放大和电平提升。(2)单片机STC12C5A60S2控制电路采用内置的ADC 对音频信号进行采样量化,然后对量化后的音频数据采用FFT 算法计算其频谱值,再将各频谱值进行32级量化。(3)LED 频谱显示电路在单片机的控制下,负责将FFT 计算得到的音频信号的各个频点的大小进行直观显示。 1.音频信号预处理电路 图2 音频信号预处理电路 音频信号预处理电路见图2所示,对输入的音频进行电压放大和电平提升。手机、计算机输出的音频信号Vin 经过RP1进行电压调节后,经集成运放LMV358反相放大10倍(Av=-R3/R2=-10),提高系统的灵敏度。选用单电源供电的运放LMV358,一方面可以简化系统电源电路的设计,直接采用系统的+5V 供电即可;另一方面其输出端静态电压为VCC/2,即2.5V 。放大后的音频信号和这2.5V 叠加后变为直流电压信号,满足后面单片机内置的ADC 对输入电压量程的要求。另外,LMV358为轨到轨输出运放,它可在+5V 单电源供电条件下仍具有较大的动态输出范围。 2.单片机STC12C5A60S2控制电路 显示电路 音频信号 单片机 电源

基于单片机音频信号分析仪设计

2007年A题音频信号分析仪 本系统基于Altera Cyclone II 系列FPGA嵌入高性能的嵌入式IP核(Nios)处理器软核,代替传统DSP芯片或高性能单片机,实现了基于FFT的音频信号分析。 音频信号分析仪 山东大学王鹏陈长林秦亦安 摘要:本系统基于Altera Cyclone II 系列FPGA嵌入高性能的嵌入式IP核(Nios)处理器软核,代替传统DSP芯片或高性能单片机,实现了基于FFT的音频信号分析。并在频域对信号的总功率,各频率分量功率,信号周期性以及失真度进行了计算。并在FPGA中嵌入了8阶IIR切比雪夫(Chebyshev)II型数字低通滤波器,代替传统有源模拟滤波器实现了性能优异的音频滤波。配合12位A/D转换芯片AD1674,和前端自动增益放大电路,使在50mV到5V的测量范围下,单一频率功率及总功率测量误差均控制在1%以内。 关键词:FPGA;IP核;FFT;IIR;可控增益放大 Abstract: This system is based on IP core(Nios)soft-core processors embedded in the FPGA of Altera Cyclone II family. Instead of using DSP or microcontroller, we use Nios II to perform a low-cost FFT-based analysis of the audio signal.And we caculated the power of the whole signal,the power of each frequence point that componented the signal.By the way,we anlysised its periodicity and distortion.We also embedded an 8-order Chebyshev II IIR digital low-pass filter to replace the traditional analog Active Filter to perform an excellent audio filter. With 12bit A / D converter chip AD1674, and the front-end automatic gain amplifier, this system’s single-frequency power and total power measurement error is below 1% in 50mV to 5V measurement range. Keyword: FPGA;IP core; FFT;IIR; automatic gain amplifier 一、方案选择与论证 1、整体方案选择 音频分析仪可分为模拟式与数字式两大类。 方案一:以模拟滤波器为基础的模拟式频谱分析仪。有并行滤波法、扫描滤波法、小外差法等。因为受到模拟滤波器滤性能的限制,此种方法对我们来说实现起来非常困难。 方案二:以FFT为基础的的数字式频谱分析仪。通过信号的频谱图可以很方便的得到输入信号的各种信息,如功率谱、频率分量以及周期性等。外围电路少,实现方便,精度高。 所以我们选用方案二作为本音频分析仪的实现方式。

基于LABVIEW的虚拟频谱分析仪设计

目录 1 设计任务 (1) 1.1 技术要求 (1) 1.2 设计方案 (1) 2 基本原理 (1) 3 建立模型 (2) 3.1 系统前面板设计 (3) 3.2 系统程序框图设计 (3) 3.3 系统程序运行结果 (4) 4 结论与心得体会 (9) 4.1 实验结论 (9) 4.2 心得体会 (10) 5 参考文献 (10)

基于LABVIEW的虚拟频谱分析仪设计1设计任务 1.1 技术要求 1)设计出规定的虚拟频谱分析仪,可对输入信号进行频域分析,显示输入信号的幅度谱和相位谱等 2)设置出各个控件的参数; 3)利用LabVIEW实现该虚拟频谱分析仪的设计; 4)观察仿真结果并进行分析; 5)对该虚拟频谱分析仪进行性能评价。 1.2 设计方案 虚拟频谱分析仪的设计包括以下三个步骤: 1) 按照实际任务的要求,确定频谱分析仪的性能指标。 2) 按照实验原理想好设计思路,并且完成电路图及程序,然后在前面板和程序流程图中实现。 3) 完成电路设计,运行程序并且检查,直至无误后观察仿真结果并且分心。 2基本原理 本设计采用的是数字处理式频谱分析原理,方法为:经过采样,使连续时间信号变为离散时间信号,然后利用LabVIEW的强大的数字信号处理的功能,对采样得到的数据进行滤波、加窗、FFT 运算处理,就可得到信号的幅度谱、相位谱以及功率谱。FFT的输出都是双边的,它同时显示了正负频率的信息。通过只使用一半FFT输出采样点转换成单边FFT。FFT的采样点之间的频率间隔是fs/N,这里fs是采样频率。FFT和能量频谱可以用于测量静止或者动态信号的频率信息。FFT提供了信号在整个采样期间的平均频率信息。因此,FFT主要用于固定信号的分析(即信号在采样期间的频率变化不大)或者只需要求取每个频率分量的平均能量。 在采样过程中,为了满足采样定理,对不同的频率信号,选用合适的采样速率,从而防止频率混叠。实际中,我们只能对有限长的信号进行分析与处理,而进行傅立叶变换的数据理论上应为无限长的离散数据序列,所以必须对无限长离散序列截断,只取采样时间

DSP课程设计---液晶显示器控制显示

一、设计题目:液晶显示器控制显示 (1) 二、设计目的与步骤: (1) 2.1、 (1) 2.2、 (1) 三、设计原理: (2) 3.1、扩展IO接口: (2) 3.2、液晶显示模块的访问、控制是由VC5416 DSP对扩展接口的操作完成.. 2 3.3、液晶显示模块编程控制: (2) 3.4、控制I/O口的寻址: (2) 3.5、显示控制方法: (2) 3.6.液晶显示器与DSP的连接: (4) 3.7、数据信号的传送: (4) 四、 CCS开发环境 (5) 4.1、 (5) 4.2、 (6) 五、C语言程序 (8) 六、实验结果和分析 (15) 6.1、 (15) 6.2、 (16) 6.3、 (16) 6.4、 (16) 七、设计收获及体会 (17)

一、设计题目:液晶显示器控制显示 二、设计目的与步骤: 2.1、设计目的 通过实验学习使用VC5416 DSP的扩展I/O端口控制外围设备的方法,了解液晶显示器的显示控制原理及编程方法。 2.2、设计步骤 1.实验准备: ⑴连接实验设备:请参看本书第三部分、第一章、二。 2.设置Code Composer Studio 2.21在硬件仿真(Emulator)方式下运行: 3.启动Code Composer Studio 2.21: 选择菜单Debug→Reset CPU。 4.打开工程文件:浏览LCD.c文件的内容,理解各语句作用 工程目录:C:\ICETEK\VC5416AES61\VC5416AES61\Lab0403-LCD\LCD.pjt。5.编译、下载程序。 6.运行程序观察结果: 7将内层循环中的 “CTRLCDLCR=( nBW==0 )?(ledkey[nCount][i]):(~ledkey[nCount][i]);”语句改为“CTRLCDRCR=( nBW==0 )?(ledkey[nCount][i]):(~ledkey[nCount][i]);”,重复步骤5-6,实现在屏幕右侧显示。 8.更改程序中对页、列的设置,实现不同位置的显示。

基于单片机的音频频谱显示器设计

目次 1 绪论-----------------------------------------------------------1 2 系统功能-------------------------------------------------------1 3 系统设计-------------------------------------------------------2 3.1 主控单元----------------------------------------------------2 3.2 STC12C5A60S2 系列单片机单片机的A/D转换器-------------------10 3.3 STC12C5A60S2 系列单片机单片机的I/O口结构-------------------11 3.4 频谱显示单元-----------------------------------------------14 4 音频频谱显示相关问题-------------------------------------------16 4.1 频谱及频谱显示---------------------------------------------16 4.2 FFT运算规则及编程思想--------------------------------------17 5 总结-----------------------------------------------------------22 参考文献-------------------------------------------------------24 致谢-----------------------------------------------------------23 附录A 源程序-------------------------------------------------25 附录B 系统电路图---------------------------------------------32

信号处理实验七音频频谱分析仪设计与实现

哈尔滨工程大学 实验报告 实验名称:离散时间滤波器设计 班级:电子信息工程4班 学号: 姓名: 实验时间:2016年10月31日18:30 成绩:________________________________ 指导教师:栾晓明 实验室名称:数字信号处理实验室哈尔滨工程大学实验室与资产管理处制

实验七音频频谱分析仪设计与实现 一、 实验原理 MATLAB 是一个数据分析和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数命令。本实验要求基于声卡和MTLAB 实现音频信号频谱分析仪的设计原理与实现,功能包括: (1)音频信号输入,从声卡输入、从WAV 文件输入、从标准信号发生器输入; (2)信号波形分析,包括幅值、频率、周期、相位的估计、以及统计量峰值、均值、均方值和方差的计算。 (3)信号频谱分析,频率、周期的统计,同行显示幅值谱、相位谱、实频谱、虚频谱和功率谱的曲线。 1、频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T ,由于能够求得多个T 值(ti 有多个),故采用它们的平均值作为周期的估计值。 2、幅值检测 在一个周期内,求出信号最大值ymax 与最小值ymin 的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A 值,但第1个A 值对应的ymax 和ymin 不是在一个周期内搜索得到的,故以除第1个以外的A 值的平均作为幅值的估计值。 3、相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x 的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图1所示。 4、数字信号统计量估计 (1) 峰值P 的估计 在样本数据x 中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。 P=0.5[max(yi)-min(yi)] (2)均值估计 i N i y N y E ∑== 1 )( 式中,N 为样本容量,下同。 (3) 均方值估计 () 20 2 1 ∑== N i i y N y E (4) 方差估计 ∑=-=N i i Y E y N y D 0 2))((1)(

【目录】基于LABVIEW的虚拟频谱分析仪设计

【关键字】目录 目录 基于LABVIEW的虚拟频谱分析仪设计 1设计任务 1.1 技术要求 1)设计出规定的虚拟频谱分析仪,可对输入信号进行频域分析,显示输入信号的幅度谱和相位谱等 2)设置出各个控件的参数; 3)利用LabVIEW实现该虚拟频谱分析仪的设计; 4)观察仿真结果并进行分析; 5)对该虚拟频谱分析仪进行性能评价。 1.2 设计方案 虚拟频谱分析仪的设计包括以下三个步骤: 1) 按照实际任务的要求,确定频谱分析仪的性能指标。 2) 按照实验原理想好设计思路,并且完成电路图及程序,然后在前面板和程序流程图中实现。 3) 完成电路设计,运行程序并且检查,直至无误后观察仿真结果并且分心。

2基本原理 本设计采用的是数字处理式频谱分析原理,方法为:经过采样,使连续时间信号变为离散时间信号,然后利用LabVIEW的强大的数字信号处理的功能,对采样得到的数据进行滤波、加窗、FFT 运算处理,就可得到信号的幅度谱、相位谱以及功率谱。FFT的输出都是双边的,它同时显示了正负频率的信息。通过只使用一半FFT输出采样点转换成单边FFT。FFT的采样点之间的频率间隔是fs/N,这里fs是采样频率。FFT和能量频谱可以用于测量静止或者动态信号的频率信息。FFT提供了信号在整个采样期间的平均频率信息。因此,FFT主要用于固定信号的分析(即信号在采样期间的频率变化不大)或者只需要求取每个频率分量的平均能量。 在采样过程中,为了满足采样定理,对不同的频率信号,选用合适的采样速率,从而防止频率混叠。实际中,我们只能对有限长的信号进行分析与处理,而进行傅立叶变换的数据理论上应为无限长的离散数据序列,所以必须对无限长离散序列截断,只取采样时间内有限数据。这样就导致频谱泄漏的存在。所以利用用加窗的方法来减少频谱泄漏。由于取样信号中混叠有噪声信号,为了消除干扰,在进行FFT 变换之前,要先进行滤波处理。本设计采用了巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Ellipse)、贝塞尔(Bessel)等滤波器。 以下说明时域分析与频域分析的功能 1)信号的时域分析主要是测量尝试信号经滤波处理后的特征值,这些特征值以一个数值的方式来表示信号的某些时域特征,是对尝试信号最简单直观的时域描述。将尝试信号采集到计算机后,在尝试VI中进行信号特征值处理,并在尝试VI前面板上直观地表示出信号的特征值,可以给尝试VI的使用者提供一个了解尝试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。 2)信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。测量时采集到的是时域波形,但是由于时域分析工具较少,往往把问题转换到频域来处理。频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。通过信号的频域分析,可以确定信号中含有的频率组成成分和频率分布范围;还可以确定信号中的各频率成分的幅值和能量;同时还能分析各信号之间的相互关系。 3建立模型 本设计中用LabVIEW中的信号发生控件来代替信号采集部分产生信号。整个系统的设计均由软件来仿真实现。 本设计的虚拟频谱分析仪由两个软件模块组成:信号发生器模块和频谱分析模块。处理过程如下:首先将信号发生模块产生的尝试信号送数字滤波器处理,滤除干扰噪声,然后分别进行时域分析、频域

LCD液晶显示器设计毕业论文毕业论文

东莞理工学院本科毕业设计 毕业设计题目:LCD电子显示屏的控制和界面设计学生: 学号: 院系:电子工程学院 专业班级: 指导老师及职称: 起止时间:2010年4月——2010年5月

LCD液晶显示器设计毕业论文毕业论文 目录 一、摘要- - - - - - - - - - - - - - - - - - - - - - - - - - ------------------3 二、作品意义- - - - - - - - - - - - - - - - - - - - - - - - -----------------3 三、硬件设计- - - - -- - - - - - - - - - - - - - - - - - - - ----------------4 四、软件设计 - - - - - - - - - - - - - - - - - - - - - - - - ----------------5 五、设计调试 - - - - - - - - - - - - - - - - - - - - - - - ----------------8 六、指令说明- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - ---9 七、心得体会 - - - - - - - - - - - - - - - - - - - - - - - - ---------------12 八、致谢- - - - - - - - - - - - - - - - - - - - - - - - - - ------------------13 九、参考文献- - - - - - - - - - - - - - - - - - - - - - - - ----------------13 十、源程序与原理图 - - - - - - - - - - - - - - - - - - -- -

音乐频谱

音乐频谱 摘要:我们知道,一切声音都是有震动产生的。声音之所以千变万化各不相同,是因为它们振动各不相同。频率的单位是赫兹(简写Hz),是德国物理学家,他发现了电磁波,人们用他的名字来作为频率的单位。我们耳朵能听到的频率范围,是20Hz—20KHz,根据傅立叶分析,任何声音都可以分解为数个甚至无限个正弦波,而它们往往又包含无数的谐波分量,又往往是时刻变化。音乐频谱是利用微型麦克风来采集声音信号,并通过8050、8550三极管的分频,又有傅里叶变换来得出通过二极管来显示效果。 随着科学技术的不断进步,现在我们所见到的音乐频谱也是各式各样,效果也是越来越创新,以前每当看到家里的音箱功放的记牌小灯,随着播放的音乐如波浪般跳跃,或者在电脑上打开千千静听这个音乐播放软件时,伴随着音箱里传来的美妙音乐,看到那动感的频谱跟随音乐节奏优美的舞动着时,原来只能“听”的音乐,现在却还能“看”,给人类视觉上的炫酷感受,不禁思绪万千,要是把自己某天能亲手用普通的,那将是多么有成就感的事情,至少对我们电子爱好者来说,这是许多人曾经梦想的。 关键词:三极管电位器电解电容 Abstract

We know that all sounds are generated by vibration. The reason why the sound is varied, is because of their different vibration. Frequency unit is Hz (abbreviated Hz), the German physicist, he found that the electromagnetic waves, people use his name as a frequency unit. Our ears can hear the frequency range is 20 Hz - 20 kHz. The according to Fourier analysis, any sound can is divided into several or even an infinite number of sine wave often contains many harmonic components, and is often varies from hour to hour. Music spectrum is the use of micro microphone to capture the sound signal, and through 8050, 8550 transistor frequency, and Fu Liye transform to come out through the diode to display results. With the continuous progress of science and technology, now the music spectrum we see is every kind of effect is also more and more, innovation, before every time I see the speaker amplifier home note card lights, music such as wave like jumping, or on the computer to open thousands of static listen to the music player software, with the speaker heard the wonderful music, see the dynamic spectrum to follow the rhythm of the music beautiful dance, the original can only "hear" music, now they can "see", to the human visual sense of cool feeling, can not help thinking of thousands, if their day can personally use

Adobe-Audition-系列教程(二):频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真!? 1. 频谱显示模式? Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

简易频谱分析仪课程设计

东北石油大学课程设计 2014年7月18 日

东北石油大学课程设计任务书 课程通信电子线路课程设计 题目简易频谱分析仪 专业姓名学号 主要内容、基本要求、主要参考资料等 主要内容: 设计一个测量频率范围覆盖为10MHz-30MHz,可根据用户需要设定显示频谱的中心频率和带宽,还可以识别调幅,调频和等幅波信号的简易频谱分析仪。基本要求: (1)频率测量范围为10MHz--30MHz; (2)频率分辨力为10kHz,输入信号电压有效值为20mV±5mV,输入阻抗为50Ω; (3)可设置中心频率和扫频宽度; (4)借助示波器显示被测信号的频谱图,并在示波器上标出间隔为1MHz 的频标。 主要参考资料: [1]谢家奎.电子线路(非线性部分)[M].北京:高等教育出版社. [2] 张建华.数字电子技术[M].北京:机械工业出版社. [3] 陈汝全.电子技术常用器件应用手册[M].北京:机械工业出版社. 完成期限2014.7.14 — 2014.7.18 指导教师 专业负责人 2014年7 月14 日

摘要 系统利用SPCE061A单片机作为主控制器,采用外差原理设计并实现频谱分析仪:利用DDS芯片生成10KHz步进的本机振荡器,AD835做集成混频器,通过开关电容滤波器取出各个频点(相隔10KHz)的值,再配合放大,检波电路收集采样值,经凌阳单片机SPCE061A的处理,最后送示波器显示频谱。测量频率范围覆盖10MHz-30MHz,可根据用户需要设定显示频谱的中心频率和带宽,还可以识别调幅,调频和等幅波信号。 关键词:SPCE061A;DDS;频谱分析仪

LCD1602液晶显示器设计

LCD1602液晶显示课程设计 第一章绪论 1.1课题背景 当今时候是一个信息化的时代,信息的重要性不言而喻的,获取手段显得尤其重要。人们所接受的信息有70%来自于人的视觉,无论用何种方式获取的信息最终需要有某种显示方式来表示。在当代显示技术中,主流的有LED显示屏和LCD液晶显示,而在这些显示技术中,尤其以液晶显示器LCD(Liquid crystal display)为代表的平板显示器发展最快,应用最广。LCD是典型的发光器件,它一材料科学为基础,综合利用了精密机械,光电及计算机技术,并正在微机械,微光学,纤维光学等前沿领域研究基础上,向高集成化,智能化方向发展。 液晶显示技术发展迅猛,市场预测表明,液晶显示平均年销售呈增长10%~13%,不久的将来有可能取代CRT,成为电子信息产品的主要显示器件,另外,液晶显示器对空间电磁辐射的干扰不敏感,且在紧凑的仪器空间不需要专门的屏蔽保护,因而课大大简化仪器的结构和制造成本,在各种便携式仪器,仪表将会越来越广泛的应用。特别是在电池供电的单片机产品中,液晶显示更是必选的显示器件。 1.2课题设计目标 本设计是基于AT89C51芯片单片机为主控芯片,结合1602液晶显示模板等外围电路,通过软件程序,来实现液晶显示英文字母。本次设计的目的在于利用单片机和IIC技术来显示英文字母。 1.3课程设计的主要工作 (1)对系统的各个模块的各个功能进行深入分析和研究,在对课题所采用的方案进行可行详细的研究后设计具体功能电路。 (2)熟悉所选芯片的功能并完成具体电路设计。

(3)对系统的最终指标进行测试,针对系统的不足,进行分析并提出一些改正方法。 1.4 设计要求 (1)运行IIC总线技术。 (2)循环显示字母。 第二章硬件设计 2.1 LCD1602简介 2.1.1 LCD1602引脚功能 LCD1602引脚如图2.1所示 图2.1 LCD1602引脚图 引脚图的功能如表2—1所示

ae音乐频谱模板

竭诚为您提供优质文档/双击可除 ae音乐频谱模板 篇一:音乐频谱原理 音乐频谱原理 该频谱显示器是采用频谱扫描法,只显示频谱的幅度,不显示相位,分别用红、绿、黄三种led来显示信号的高、中、低频幅度采用动态来显示各个频率点的动态瞬时值。(由于本件采用的是5v电压,因此二极管用的是4148型。)电路是通过小咪头为输入端,右边的发光led灯作为最终的负载,电路主要有音频电压放大器、带通滤波电路等组成。 电位器、电阻等组成三个带通滤波器。带通滤波的作用就是把信号的频率限制在一定的频率范围内,达到该频率的通过否则被阻止,一般都是有R/l/c等无源器件组成,若有晶体管、集成运放组成的称为有源带通滤波,输入阻抗高、输出阻抗低、体积小、重量轻、输出阻抗好等特点。信号由小咪头接受音频信号转化为电信号并和电阻等组成有源带 通滤波,且电容与电阻又组的被阻止。然后传输到后级电路,可通滑动电阻器来改变其阻值调节其阻值,进而改变电阻之

间的比值进而调节q点进而得到不同的频率和不同q值带通滤波器。 频率信号的电平经过带通滤波后经过三极管分别将电压传送到发光二极管,电压的强弱来控制着发光二极管发亮的个数及导通的时间,由于音频的频率比较短暂且起伏所以在转化电平后依旧类似也就形 成那种炫目动态的led闪烁的效果。 篇二:有关音乐频谱的程序 上程序 ====================== #include//要调入数学(和谐)运算的头文件 #include //定义复数结构 structcompx { floatreal; floatimag; }; //定义复数乘法 structcompxee(structcompxa,structcompxb) { structcompxc;

Adobe-Audition-系列教程(二):频谱分析仪

AdobeAudition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 AdobeAudition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spe ctral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。

音频频谱分析仪设计

信号处理实验 实验八:音频频谱分析仪设计与实现

一、实验名称:音频频谱分析仪设计与实现 二、实验原理: MATLAB是一个数据信息和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和命令。本实验可以用MATLAB进行音频信号频谱分析仪的设计与实现。 1、信号频率、幅值和相位估计 (1)频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T,由于能够求得多个T值(ti有多个),故采用它们的平均值作为周期的估计值。 (2)幅值检测 在一个周期内,求出信号最大值ymax与最小值ymin的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A值,但第1个A值对应的ymax和ymin不是在一个周期内搜索得到的,故以除第1个以外的A值的平均作为幅值的估计值。 (3)相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图所示。

其中tin表示第n个过零点,yi为第i个采样点的值,Fs为采样频率。 2、数字信号统计量估计 (1) 峰值P的估计 在样本数据x中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。P=0.5[max(yi)-min(yi)] (2)均值估计 式中,N为样本容量,下同。 (3) 均方值估计

基于51单片机的液晶显示器控制电路设计_本科论文

XXXXXXX 毕业设计 题目GPRS无限通讯数据系统的设计与应用姓名xxx 学号xxx 专业班级xxx 分院xxx

指导教师xxx xxxx年xxx月xxx日

目录 摘要............................................... 错误!未定义书签。ABSTRACT........................................................... I I 第一章概述 (1) §1.1系统背景 (1) §1.2 系统概述 (2) 第二章方案论证 (3) §2.1字模数据的存储 (3) §2.2 通信电路 (3) 第三章液晶显示模块简介 (4) §3.1 显示控制器 (5) §3.2 列驱动方式 (10) §3.3 行驱动方式 (11) 第四章硬件设计 (13) §4.1硬件电路设计要求 (13) §4.2 总体电路设计构架 (13) §4.3 单片机与液晶显示模块接口 (13) §4.4 单片机与计算机的通信接口 (14) §4.5 电源电路 (15) 第五章系统软件设计 (15) §5.1 内置T6963C控制器软件特性 (15) §5.2初始化子程序设计 (19) §5.3 串行通信子程序设计 (20) §5.4 显示控制子程序设计 (21) 第六章系统调试 (22) §6.1 分步调试 (22) §6.2 系统统一调试 (23) 结束语 (24) 附录 (25)

参考文献 (30) 致谢............................................. 错误!未定义书签。

用51单片机实现电脑音频信号的频谱显示(在LCD上显示)

如何用51单片机实现音频信号的频谱显示(在LCD上显示) 思路:外来音频信号经过51单片机,在单片机中进行频谱分析,并将结果显示在LCD(12864或1602)上 要求:频谱显示如同千千静听播放音乐时的频谱显示 希望各位高手能给出详细的解决方案,感激。。。。。。 51做FFT有些困难,可以使用增强型(RAM)的51机子进行 参考程序: #include #define uchar unsigned char #define uint unsigned int #define channel 0x01 //设置AD通道为 P1.1 //--------------------------------------------------------------------- sbit SDA_R=P1^2; sbit SDA_R_TOP=P1^3; sbit SDA_G=P1^4; sbit SDA_G_TOP=P1^5; sbit STCP=P1^6; sbit SHCP=P1^7; //--------------------------------------------------------------------- //---------------------------------------------------------------------------------------------------------------------- //放大128倍后的sin整数表(128) code char SIN_TAB[128] = { 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 59, 65, 70, 75, 80, 85, 89, 94, 98, 102, 105, 108, 112, 114, 117, 119, 121, 123, 124, 125, 126, 126, 126, 126, 126, 125, 124, 123, 121, 119, 117, 114, 112, 108, 105, 102, 98, 94, 89, 85, 80, 75, 70, 65, 59, 54, 48, 42, 36, 30, 24, 18, 12, 6, 0, -6, -12, -18, -24, -30, -36, -42, -48, -54, -59, -65, -70, -75, -80, -85, -89, -94, -98, -102, -105, -108, -112, -114, -117, -119, -121,

简易频谱分析仪

简易频谱分析仪[ 2005年电子大赛二等奖] 摘要:本设计以凌阳16位单片机SPCE061A为核心控制器件,配合Xilinx Virtex-II FPGA及Xilinx公司提供的硬件DSP高级设计工具System Generator,制作完成本数字式外差频谱分析仪。前端利用高性能A/D对被测信号进行采集,利用FPGA高速、并行的处理特点,在FPGA内部完成数字混频,数字滤波等DSP 算法。 SPCE061A单片机是整个设计的核心控制器件,根据从键盘接受的数据控制整个系统的工作流程,包括控制FPGA工作以及控制双路D/A在模拟示波器屏幕上描绘频谱图。人机接口使用128×64液晶和4×4键盘。本系统运行稳定,功能齐全,人机界面友好。 关键字:SPCE061A 简易频谱分析仪 一、方案论证 频谱分析仪是在频域上观察电信号特征,并在显示仪器上显示当前信号频谱图的仪器。从实现方式上可分为模拟式与数字式两类方案,下面对两种方案进行比较: 方案一:模拟式频谱分析仪 模拟方式的频谱仪以模拟滤波器为基础,通常有并行滤波法、顺序滤波法,可调滤波法、扫描外差法等实现方法,现在广泛应用的模拟频谱分析仪设计方案多为扫描外差法,此方案原理框图如图1.1:

图 1.1 模拟外差式频谱仪原理框图 图中的扫频振荡器是仪器内部的振荡源,当扫频振荡器的频率在一定范围内扫动时,输入信号中的各个频率分量在混频器中产生差频信号 (),依次落入窄带滤波器的通带内(这个通带是固定的),获得中频增益,经检波后加到Y放大器,使亮点在屏幕上的垂直偏移正比于该频率分量的幅值。由于扫描电压在调制振荡器的同时,又驱动X放大器,从而可以在屏幕上显示出被测信号的线状频谱图。这是目前常用模拟外差式频谱仪的基本原理。模拟外差式频谱仪具有高带宽和高频率分辨率等优点,但是模拟器件调试复杂,短期实现有难度,尤其是在对频谱信息的存储和分析上,逊色于新兴的数字化频谱仪方案。 方案二:数字式频谱分析仪 数字式频谱仪通常使用高速A/D采集当前信号,然后送入处理器处理,最后将得到的各频率分量幅度值数据送入显示器显示,其组成框图如图1.2: 图 1.2 数字式频谱仪组成框图

相关文档
最新文档