标准单光纤准直器工艺流程图

标准单光纤准直器工艺流程图

板式换热器机组规范

目次前言II 1 范围1 2 规范性引用文件1 3 定义2 4 型号编制2 5 基本参数3 6 一般规定3 7 板式换热器4 8 水泵4 9 变频器5 10 阀门及管路附件6 11 防腐与保温6 12 控制和测量设备6 13 材料及连接8 14 整机技术要求9 15 试验方法9 16 检验规则10 17 标志、包装、运输和贮存11 附录 A (规范性附录)板式换热机组工艺控制系统流程图13 附录 B (规范性附录)板式换热机组安装使用条件15 前言 本标准为首次制订的行业标准。 本标准主要对板式换热机组的整机提出需要控制的技术参数和质量指标,关于板式换热器的标准,应按照GB/T 16409《板式换热器》执行,本标准不再做特别规定。 按照本标准生产制造的板式换热机组符合《城市热力网设计规范》对热力站的规定。 本标准由建设部标准定额研究所提出。 本标准由建设部城镇建设标准技术归口单位城市建设研究院归口。 本标准起草单位:中国市政工程华北设计研究院 城市建设研究院 九圆热交换设备制造有限公司 兰州兰石鲁尔热力工程有限公司 APV中国有限公司 天津市换热装备总厂 清华同方人环工程公司 北京硕人时代科技有限公司 沈阳太宇机电设备有限公司 丹佛斯公司 本标准主要起草人:廖荣平、王淮、杨健、信岩、刘涤杰、王志峰、 王立新、王兵、俞华伟、史登峰、吴军、李滨涛。 1范围 本标准规定了板式换热机组(以下简称机组)的型号编制、基本参数、技术要求、试验方法.

和检验规则、标志、包装、运输和贮存要求。 本标准适用于供热、空调及生活热水等换热系统中使用的板式换热机组。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。GB/T 700 碳素结构钢 GB/T 707 热轧槽钢尺寸、外形、重量及允许偏差 GB/T 2887 电子计算机场地通用规范 GB 3096 城市区域环境噪声标准 GB/T 4942.2 低压电器外壳防护等级 GB/T 5117 碳钢焊条 GB/T 5657 离心泵技术条件 GB 7251.1 低压成套开关设备和控制设备第一部分:型式试验和部分型式试验成套设备 GB/T 8163 输送流体用无缝钢管 GB/T 9112 钢制管法兰类型与参数 GB/T 9787 热轧等边角钢尺寸、外形、重量及允许偏差 GB/T 12233 通用阀门铁制截止阀与升降式止回阀 GB/T 12237 通用阀门法兰和对焊连接钢制球阀 GB/T 12238 通用阀门法兰和对夹连接蝶阀 GB/T 12243 弹簧直接荷载式安全阀 GB 12459 钢制对焊无缝管件 GB/T 12668.2 调速电气传动系统第二部分一般要求低压交流变频电气传动系统额定值的规 定 GB 12706.1 额定电压35kV及以下铜芯、铝芯塑料绝缘电力电缆第1部分:一般规定 GB 12706.2 额定电压35kV及以下铜芯、铝芯塑料绝缘电力电缆第2部分:聚氯乙烯绝缘电力电缆 GB 12706.3 额定电压35kV及以下铜芯、铝芯塑料绝缘电力电缆第3部分:交联聚乙烯电力电缆 GB/T 12712 蒸汽供热系统凝结水回收及蒸汽疏水阀技术管理要求 GB/T 13384 机电产品包装通用技术条件 GB/T 16409 板式换热器 GB 50015 建筑给水排水设计规范 GB 50054 低压配电设计规范 GB 50174 电子计算机机房设计规范 GB 50236 现场设备、工业管道焊接工程施工及验收规范 JB/T 87 管路法兰用石棉橡胶垫片 JB/T 8680.2 三相异步电动机技术条件第2部分Y2-E系列(IP54)三相异步电动机(机座号80~280) JB/T 53058 管道式离心泵产品质量分等 CJJ 34 城市热力网设计规范 CJ 128 热量表 涂装前钢材表面处理规范SY/T 0407 3定义

光纤准直器的结构与参数

?光纤准直器是光无源器件中的一个重要的组件,在光通信系统中有着非常普遍的应用。 它是由单模尾纤和准直透镜组成,具有低插入损耗,高回波损耗,工作距离长,宽带宽,高 稳定性,高可靠性,小光束发散角,体积小和重量轻等特点。可将光纤端面出射的发散光束变换为平行光束,或者将平行光束会聚并高效率耦合入光纤,是制作多种光学器件的基础器件,因此被广泛应用于光束准直,光束耦合,光隔离器,光衰减器,光开关,环行器, MM,密集波分复用器ES之中。 目录 ?光纤准直器的结构与参数 ?光纤准直器的原理 ?光纤准直器的优点 ?光纤准直器的装配 光纤准直器的结构与参数 ?光纤准直器的结构参数如图5 所示,因光纤头端面的8 度斜角,造成输出光束与准直器轴线存在夹角θ,称为点精度。图6 所示为两准直器的理想耦合情况,二者的输出光场完全重合,其间距为准直器的工作距离Zw。准直器输出高斯光束的束腰距离其端面Zw/2,束腰直径为2ωt,而高斯光束的发散角与其束腰直径成反比关系。到此我们介绍了光纤准直器的三个主要参数:工作距离、点精度和光斑尺寸。 光纤准直器的原理 ?光纤准直器的基本原理是,将光纤端面置于准直透镜的焦点处,使光束得到准直,然后在焦点附近轻微调节光纤端面位置,得到所需工作距离,因此准直器的工作距离与光纤头和透镜的间距L相关。光纤准直器的设计方法是,根据实际需求确定准直器的工作距离,依据高斯光束传输理论,确定光纤头和透镜间距L并计算光斑尺寸,然后依据光线理论计算准直器的点精度。 光纤准直器的优点 ?低插损、高回损、尺寸小 工作距离长、宽带宽

高稳定性、高可靠性 光纤准直器的装配 (1)采用斜端面插针耦合,可大大提高光纤准直器的回波损耗,当斜面倾角为8°01%增 透膜时,光纤准直器的时,光纤准直器的自聚焦透镜后端面镀反射率为0.回波损耗可达 60dB。采用斜端面插针耦合,主要是为了满足器件高回波损耗的求,角度越大,准直器的回波损耗越大。但插针的端面角度越大,准直器的插入损耗就会越大(要求是:插入损耗越小越好,回波损耗越大越好),这和准直器要求的低插入损耗矛盾,对于准直器插入损耗而言,透镜和毛细管是垂直端面最为理想。因此本文采用8°是针对环行器在这种互相制约关系下的一个折中。视应用场合不同其端面斜角可做成6°、8°、9°、11°或任何角度。 (2)透镜与光纤毛细管端面的间隙也主要是和器件高回波损耗有关,为了达到器件高回 波损耗的要求,其间隙一般大于200μm,当间隙大于200μm,器件的回波损耗值近似达到理论上最大值。但透镜和毛细管端面的间隙越大,同时会造成准直器的插入损耗增大,这又是一对矛盾,根据准直器图纸的精度要求,其间隙是0.385mm,这同时能满足高回波损耗的距离要求,也能使其插入损耗达到要求。准直器的插入损耗和回波损耗相比较而言,回波损耗更容易保证,因此在准直器装配时,以其插入损耗为检测依据,就是这个道理。

管壳式换热器工艺设计说明书

管壳式换热器工艺设计说明书 1.设计方案简介 1.1工艺流程概述 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,甲苯走壳程。如图1,苯经泵抽上来,经管道从接管A进入换热器壳程;冷却水则由泵抽上来经管道从接管C进入换热器管程。两物质在换热器中进行交换,苯从80℃被冷却至55℃之后,由接管B流出;循环冷却水则从30℃升至50℃,由接管D流出。 图1 工艺流程草图 1.2选择列管式换热器的类型 列管式换热器,又称管壳式换热器,是目前化工生产中应用最广泛

的传热设备。其主要优点是:单位体积所具有的传热面积大以及窜热效果较好;此外,结构简单,制造的材料围广,操作弹性也较大等。因此在高温、高压和大型装置上多采用列壳式换热器。如下图所示。 1.2.1列管式换热器的分类 根据列管式换热器结构特点的不同,主要分为以下几种: ⑴固定管板式换热器 固定管板式换热器,结构比较简单,造价较低。两管板由管子互相支承,因而在各种列管式换热器中,其管板最薄。其缺点是管外清洗困难,管壳间有温差应力存在,当两种介质温差较大时,必须设置膨胀节。 固定管板式换热器适用于壳程介质清洁,不易结垢,管程需清洗及温差不大或温差虽大但壳程压力不高的场合。 固定板式换热器 ⑵浮头式换热器 浮头式换热器,一端管板式固定的,另一端管板可在壳体移动,因

而管、壳间不产生温差应力。管束可以抽出,便于清洗。但这类换热器结构较复杂,金属耗量较大;浮头处发生漏时不便检查;管束与壳体间隙较大,影响传热。 浮头式换热器适用于管、壳温差较大及介质易结垢的场合。 ⑶填料函式换热器 填料函式换热器,管束一端可以自由膨胀,造价也比浮头式换热器低,检修、清洗容易,填函处泄漏能及时发现。但壳程介质有外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。 ⑷U形管式换热器 U形管式换热器,只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管不便清洗,管板上布管少,结垢不紧凑,管外介质易短路,影响传热效果,层管子损坏后不易更换。 U形管式换热器适用于管、壳壁温差较大的场合,尤其是管介质清洁,不易结垢的高温、高压、腐蚀性较强的场合。

多流程多段式板式换热器

板式换热器板片广泛应用于冶金、石油、化工、食品、制药、船舶、纺织、造纸等行业,是加热、冷却、热回收、快速灭菌等用途的优良设备。板式换热器已成为工业生产,余热利用,建筑舒适化的重要的必不可少的设备;也说明换热器的技术和应用达到了更高的水准。目前已生产的装置有板式换热机组,热泵机组,制冷机组,蒸发装置,空冷装置和催化重整装置等。今后,随着经济的不断发展,还会出现更多的装置。 换热器原理是每张板式换热器板片包含两个部件:金属板:按不同传热工况压制成不同的形状以保证最佳效果;橡胶垫圈:安装在沿板片周边的垫圈槽内,形成密封和介质导流。金属板片安装在一个侧面有固定板和活动压紧板的框架内,并用夹紧螺栓夹紧。板片上装有密封垫片,将流体通道密封,并且引导流体交替地流至各自的通道内,形成热交换。流体的流量、物理性质、压力降和温度差决定了板片的数量和尺寸。波纹板不仅提高了湍流程度,并且形成许多支承点,足以承受介质间的压力差。金属板和活动压紧板悬挂在上导杆,并由下导杆定位,而杆端则固定在支撑柱上,由于具备高性能、省空间、省能源、维护简单等许多优点,板式换热器已获得各产业的高度肯定。 换热器使用1--2年的周期后需要进行必要的拆检、清洗、打压测试等。对于变形或穿孔等存在问题的板片需要及时更换,在这过程中散热板片的装配必须严格按流程图排列。流程图是按冷却工艺设计的,采用并联或串联的方式将各板片连接起来,常见的有单流程和双流程(或多流程组合)换热器,单流程换热器的介质接人和流出管口通常都固定压板一侧,热介质和冷介质又分别在固定压板垂直轴线的单侧布置,同一种介质同时在左侧或同时在右侧。换热器通道内,横向换热片与横向隔片错层、交错布置,横向换热片与横向隔片之间、横向换热片与隔热层或隔热块内壁之间、横向隔片与换热壁之间都有间隙,所形成的工质横向流动通道和纵向流动通道相间连通,构成整条工质流动通道。换热器通道的材质要求耐高温、耐高压、导热性好;隔热层或隔热块的材质要求耐高温、耐高压、绝热性好;承压壳的材质要求耐高温、耐高压、导热性差;绝热层的材质要求耐高温、绝热性好。 为了使客户的板式热交换器维持在最佳状态,ARD艾瑞德板式换热器(江阴)有限公司艾瑞德凭借多年多年积累的技术经验,提供“拆解、清洗”“改善作业”“当地服务”等丰富为了使客户的板式热交换器维持在最佳状态,ARD艾瑞德板式换热器(江阴)有限公司艾瑞德凭借多年多年积累的技术经验,提供“拆解、清洗”“改善作业”“当地服务”等丰富的服务菜单,开展维修保养服务。 维修保养服务以“取回厂检查整修”和“现场清洗维护”为主,“取回厂检查整修”将客户的板式热交换器主机取回保养,在恢复最佳状态后送返。“现场清洗维护”是公司专业工程师携带专业设备到用户现场进行作业,时间短,效率高,不会耽误客户生产经营。此外,还提供咨询等各种服务菜单,帮助客户维持板式热交换器的最佳状态。 客户可以根据使用条件和状况选择服务种类,因此可以通过多种方式维护机器的最佳运转状态。

光纤准直器原理

光纤准直器原理 曾孝奇 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 图1 光纤准直器原理示意图 其中,i q (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: ()()() z w i z R z q 211πλ-=, (1) ()z f z z R 2 +=,()2 01??? ? ??+=f z w z w ,λπ2 0w f =; (2) 图1中,i q (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰处的q 参数,而01w 和02w 分别表示透镜变换前后的束腰;l 表示光纤端面与透镜间隔,l w 为准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, D Cq B Aq q ++= 112, (3) 而且,l q q +=01,2/32w l q q -=,12 010if w i q ==λπ,22 023if w i q ==λ π。

这样,我们可以得到经过透镜后的束腰大小: () () 2 12 01 02Cf D Cl BC AD w w ++-=, (4) 工作距离: ()()()()2 12212 Cf D Cl ACf D Cl B Al l w +++++-=, (5) 方程(5)是关于l 的二次方程,为使得l 有实根,方程(5)的判别式应该不小于零,从而我们可以得到: 1 2 1 2f C ACf BC AD l w --≤ , (6) 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 ()() 121max /2f C ACf BC AD l w --=。此时,我们得到:C D f l - =1。 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离l 有关,也就是说,对于给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变l 来实现不同的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: () () () () ?? ? ? ???? ?? -=??????L A L A A n L A A n L A D C B A o o cos sin sin 1 cos , (7) 其中,0n 透镜的透镜的轴线折射率,L 为透镜的中心厚度,A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于0n ,L 和A ,因而,适当选择这些参数,同样能改变准直器的出射光斑大小和工作距离。 对于 C lens(厚透镜),它的传输矩阵为:

板式换热器传热板片常见故障解决方案及方法

板式换热器传热板片常见故障解决方案及方法 传热板片是是板式换热器的核心部件,板片的成型工艺及材质特性对密封和换热效率会产生直接影响。板式换热器通常以水作为冷却介质,板片多数采用不锈钢薄板制造,在板片上压制有波纹流槽,相邻两板片之间的空间即为介质流道,冷、热流体在板片两侧流动时,通过板片进行热量交换。一般情况下板式换热器的传热系数K值在3000~6000W/㎡℃范围内,同时,两种介质几乎是全逆流流动,热传导效率较高 板式换热器使用1~2年的周期后需要进行必要的拆检、清洗、打压测试等,对于变形或穿孔等存在问题的板片需要及时更换,在这过程中散热板片的装配必须严格按流程图排列。板式换热器板片引起的主要故障有: 1.错排板片引起的两介质短路或泄漏: 单流程板片从密封垫一侧观察,由右边流进的流体总是从右边流出:由左边流进的流体总是从左边流出。对人字形波纹板片,如果流体从左边流进,而且人字纹指向朝上A型板片,将A板沿垂直于板面的轴线旋转180°就成为B型板片,流体从右边进出,假定粘有密封垫片A板片的每个孔的分别以:a1、a2、a3、a4、盲孔为a0;B板片为b1、b2、b3、b4盲孔为b0。 排版从固定压板一端开始,板片弹性密封面朝活动压板一侧,单流程换热器的四个孔都在固定压板上,即第一块板片的四个孔都是通孔,双流程或多流程换热器活动压板和固定压板上各有两个孔,第一块板片和最后一块板片的对应的有两个通孔和两个盲孔,板片依次交错排列,排错板片会发生两介质发生短路或泄露,无法正常使用。 2.板片受力不均密封错位引起泄漏: 板式换热器拆检后需要重新按要求夹紧板片,如果为了进一步提高换热能力需要加装板片时,应充分考虑到固定压板和活动压板的变形强度,采用相同等级的实验压力,板片的数量增加同时螺栓的预紧力也需要加大,当两侧压板的弹性变形超出许可的范围,密封件的平面压缩存在径向滑动,形成错位,此时,密封失效,两介质外泄漏或内部相互窜液,无法正常使用。 对于长期未投入使用的换热器通常要适当放松螺杆的拉力,板片及密封垫长期受压后失去必要的弹性,密封容易失效,降低使用寿命。换热器的各压紧螺栓均布受力,安装就位前需要将板换按对角线进行夹紧,并实时测量两压紧板的内侧距离,保证两压紧板基本处于平行状态,四角的平行度偏差小于2%,。 板式换热器的维护需要由专业的公司来进行,江阴好尔迪公司为您提供最专业的板式换热器维护服务,包括板式换热器清洗、板式换热器维修、板式换热器板片翻新、板式换热器密封垫更换、板式换热器扩容等。同时,好尔迪公司可提供国内外知名板式换热器厂商的原厂配件及国产替代配件,品牌包括瑞典阿法拉伐Alfa Laval﹑英国安培威APV﹑美国斯必克SPX、德国基伊埃GEA﹑日本日阪HISAKA﹑美国传特TRANTER﹑瑞典舒瑞普SWEP﹑丹麦桑德斯SONDEX﹑德国艾普尔API﹑德国斯密特W.Schmidt﹑法国维卡勃Vicarb等。 一般,先夹紧到给定的最大尺寸,如在使用中发现泄露,可继续夹紧到给定的最小尺寸。设备处于工作状态时承受内压力,应停机泄压后再可预紧各螺栓。带压拧紧螺栓极易出现密封件的挤出或破损,造成事故。

光纤准直器原理

3) 而且, q 1 q 0 l , q 2 q 3 l w /2, q 0 i 2 w01 if 1, q 3 i 2 w 02 2 if 2。 一 . 模型 光纤准直器通过透镜能实现将从发散角较大 (束腰小) 的光束转换为发散角 较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们 将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 其中, q i ( i=0,1,2,3 )为高斯光束的 q 参数,q 参数定义为: 图 1 中, q i (i=0,1,2,3 )分别表示光纤端面,透镜入射面,透镜出射面,和出 射光束的束腰处的 q 参数,而w 01和 w 02分别表示透镜变换前后的束腰; l 表示光 纤端面与透镜间隔, l w 为准直器的设计工作距离。 二 . 理论分析 根据 ABCD 理论,高斯光束 q 参数经透镜变换后, Aq 1 B q2 Cq 1 D , 光纤准直器原理 曾孝奇 11 qz Rz i w 2z , 1) 2 , w z w 0 1 2 w 2)

这样,我们可以得到经过透镜后的束腰大小: AD BC w 02 w 01 2 Cl D 2 Cf 1 工作距离: 2 l 2 Al B Cl D ACf 12 , ( 5) l w 2 2 2 , ( 5) w Cl D 2 Cf 1 2 方程( 5)是关于 l 的二次方程,为使得 l 有实根,方程( 5)的判别式应该不小 于零,从而我们可以得到: AD BC 2ACf 1 , w 2 , C 2 f 1 方程( 6)表示准直器的工作距离有上限,就是一个最大工作距离 2D l wmax AD BC 2ACf 1 / C 2 f 1 。此时,我们得到: l f 1 D 。 C 分析:不论对于何 种透镜, 准直器的出射光斑和工作距离都取决于透镜的传 输矩阵 ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的 距离 l 有关, 也就是说,对于给定的入射光束和给定的透镜, 我们可以通过在透 镜焦距附近改变 l 来实现不同的工作距离。 在实际制作准直器当中, 我们正是通 过这种方法来实现不同的工作距离的。 进一步地, 如果我们需要定量计算准直器的出射束腰和工作距离, 需要具体 知道不同透镜的 ABCD 系数。对于 G Lens (自聚焦透镜,通常为 0.23P ),它的 ABCD 矩阵为: 1 cos AL 1 sin AL n o A , ( 7) n o Asin AL cos AL 其中,n 0 透镜的透镜的轴线折射率, L 为透镜的中心厚度, A 为透镜的聚焦常数。 由于G Lens 的ABCD 系数取决于 n 0,L 和 A ,因而,适当选择这些参数,同样能 改变准直器的出射光斑大小和工作距离。 对于 C lens ( 厚透镜 ) ,它的传输矩阵为: 4) 6) C A D B

氯碱生产工艺流程(1)

氯碱生产工艺流程 氯碱系统是由电解,盐水,氯氢,液氯,冷冻,盐酸,漂液,蒸发,循环水组成的系统。其主要流程是盐水生产的精盐水经电解生成主要成分是氢氧化钠,NaCl的电解液和Cl2,H2三种物质。电解液由蒸发经浓缩,并分离其中的NaCl,加水溶解后供盐水工序生产精盐水用。氢氧化钠经冷却沉降后,送成品桶作为成品销售。Cl2在氯氢工序通过洗涤冷却,干燥,压缩输送到液氯,盐酸,PVC,三氯氢硅。氯碱片区主要是送液氯和盐酸。Cl2在液氯经冷冻送来的-35℃冷冻盐水液化为液氯,液氯尾气送盐酸和漂液生产盐酸和漂液用。H2是经氯氢工序洗涤冷却,压缩输送到PVC,三氯氢硅,盐酸。氯碱片区送盐酸,在合成炉与Cl2燃烧生成氯化H2体,经水吸收后生成成品盐酸供销售出售。液氯尾气在漂液生产池中与石灰水生成漂液供销售出售。 氯碱车间工艺流程简述 一.氯碱车间基本概况 电解工艺流程简图: 直流电 H2 冷凝水 2.氯处理工序工艺流程简述: 电解生产70-85℃的湿Cl2,经Cl2洗涤塔用工业水洗涤后,进入Ⅰ段钛冷却器用工业水冷却,再进入Ⅱ段钛冷却器用+5℃盐水进一步冷却到12-15℃,然后进入泡沫干燥塔、泡罩塔用硫酸干燥,干燥后的Cl2经过酸雾捕集器后用Cl2压缩机压缩输送到各用氯岗位。 Cl2处理工艺流程简图: 电解来湿Cl2

处理工艺流程简述: 电解生产80℃的湿H2经Ⅰ段、Ⅱ段H2洗涤塔用工业水洗涤后,送H2压缩机加压后经过Ⅰ段H2冷却器用工业水对其进行冷却,再进入Ⅱ段H2冷却器用+5℃盐水进行冷却到12℃,经过水捕雾器进入H2分配台至各用氢单位。 H2处理工艺流程简图: 膜过滤盐水工艺流程简述:

光纤准直器的分析和比较

文章来源: http://www.mingneng.com/schemes/scheme-27.htm 在自由空间型的光无源器件(如光隔离器、光环形器、光开关等)中,输入和输出光纤端面必须间隔一定距离,以便在光路中插入一些光学元件,从而实现器件功能。从光纤输出的高斯光束(实际为近高斯光束,可以高斯光束近似处理),束腰半径较小而发散角较大,两根光纤之间的直接耦合损耗对其间距极其敏感,光纤准直器扮演这样一种功能,将从光纤输出的光准直为腰斑较大而发散角较小的光束,以增加对轴向间距的容差,如图 4 所示,从图 2(c)(d)亦可看出准直器对轴向容差的改善。 光纤准直器的结构和参数 光纤准直器的结构参数如图 5 所示,因光纤头端面的 8 度斜角,造成输出光束与准直器轴线存在夹角θ,称为点精度。图 6 所示为两准直器的理想耦合情况,二者的输出光场完全重合,其间距为准直器的工作距离Zw。准直器输出高斯光束的束腰距离其端面Zw/2,束腰直径为 2ωt,而高斯光束的发散角与其束腰直径成反比关系。到此我们介绍了光纤准直器的三个主要参数:工作距离、点精度和光斑尺寸。 光纤准直器的设计方法 光纤准直器的基本原理是,将光纤端面置于准直透镜的焦点处,使光束得到准直,然后在焦点附近轻微调节光纤端面位置,得到所需工作距离,因此准直器的工作距离与光纤头和透镜的间距 L相关。光纤准直器的设计方法是,根据实际需求确定准直器的工作距离,依据高斯光束传输理论,确定光纤头和透镜间距 L并计算光斑尺寸,然后依据光线理论计算准直器的点精度。具体设计步骤如下: a) 确定所需工作距离Zw; b) 列出从光纤端面至输出光束束腰位置的近轴光线传输矩阵; 下面以 Grin-Lens准直器为例:

板式换热器的拆装

新设备一般不需要拆开,只有在机械清洗、更换垫片、检查泄露原因、设备改装时,才需要打开换热器。 1、拆卸板片 打开换热器前,首先检查冷、热介质是否排放干净,松开前移走活动压紧板上接管(如有接管),应先均匀卸去每根夹紧螺栓的25%载荷后,再拆去夹紧螺栓,暂由标码螺栓承担夹紧载荷,为防止板片错位,在标码螺栓拧松时,压紧板面的倾斜不超过10mm。拆卸螺栓移开活动压紧板,板片很容易取下。 2、装板片 按设计流程图排列板片,夹紧之前应确认无误(如有换向片其位置及盲孔方位),然后按规定的顺序进行夹紧。拧紧夹紧螺栓时要符合规定,应按标号顺序均匀对角拧紧螺栓,以保持板片的平行状态,也就是说用四个标码螺栓将板片组件夹紧到适当长度,再插入其余螺栓,然后拧紧到规定的尺寸。当换热器使用的时间短,在一年以内,夹紧尺寸可以选用上限;使用时间较长,可以夹紧到较小尺寸,但不能小于最小尺寸,以免把板片及密封 垫片挤压坏。 3、液压试验 板式换热器组装后要进行液压试验。液压试验要按单侧分别进行。试验压力为工作压力的倍,保持30分钟不掉压为合格。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来

ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。 4、更换板片 有缺陷的板片应更换。更换的新板片应与旧板片完全相同且排列也相同。若现场没有备件,又不能停机时,应进行现场简单的处理,其方法是将损坏的板片成对抽出,如果数量不太多,减少的流道数也不多,组装后可以继续使用。对生产影响不会太大。 5、更换密封垫片 从框架取下的板片,确切记录板片的排列位置及密封垫片的密封形式。从密封槽中提出旧的垫片,彻底清洗密封槽。槽内残胶油脂及其它的异物都可以用刷子沾溶剂丙酮、丁酮或其它酮类溶剂擦洗。若处理介质为果汁、啤酒、牛奶等,先用含有清洗剂的热水清洁,然后再用溶剂擦洗。根据所规定型号粘合剂,按粘合规定粘接工艺进行垫片粘接。不得使用任意牌号粘合剂粘接,以免发生板片腐蚀、介质污染等。 6、更换角孔胶套 胶套损坏后应直接取下,新胶套的装入可用手在径向压扁,然后塞入压紧板的孔中。注意:压紧板内侧凹槽直径与胶套配合直径一致,不要将胶套装反。

光纤准直器原理

(5) 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰 大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束 认为是基模高斯光束;光纤准直器基本模型如下: 图1光纤准直器原理示意图 其中,q i (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: i i ; (i ) q z R z 1 2 ? w z 丄2 2 2 f “ z 上 w 0 R z z , w z Wo .〔 一 , f 7 (2) z \ f 图1中,q i (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰 处的q 参数,而w oi 和W 02分别表示透镜变换前后的束腰;I 表示光纤端面与透镜间隔,l w 为 准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, 工作距离: 2 Al B Cl D ACf i 光纤准直器原理 曾孝奇 q 2 Aq i Cq i (3) 2 而且, q i q o 1 , q 2 q 3 I w /2 , q o i if i , q 3 2 ? W 02 i - if 2。 这样,我们可以得到经过透镜后的束腰大小: W 02 (4) W oi

2 严, Cf i Cl D 2 (5)

方程(5)是关于I 的二次方程,为使得I 有实根,方程(5)的判别式应该不小于零,从而 我们可以得到: AD BC 2ACf i C 2f i 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 I wmax AD BC 2ACf i /C 2f i o 此时,我们得至U : I f 1 -。 C 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵 ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离 I 有关,也就 是说,对于 给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变 I 来实现不同 的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透 镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: A C B cos JAL — si n VAL D n -A , (7) n o J A s in UAL cos JAL 其中,n 。透镜的透镜的轴线折射 率, L 为透镜的中心厚度,、A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于n o ,L 和.A ,因而,适当选择这些参数,同样能改变准直器的出射光 斑大小和工作距离。 对于C Iens (厚透镜),它的传输矩阵为: A C 三. 实例分析 本小组采用C lens 已制作的一些准直器, 曲率半径R=1.2mm ,透镜长度L=2.5mm ,C lens 采用SF11材料,在1550nm 处折射率 n=1.744742另外,从单模光纤SMF28出射的光斑半径为 w °1 5 口m 。这样,根据以上理论 分析,我们容易得到出射光在不同位置的光斑大小,并且,我们将理论计算值与 Beamsca n 得到的测量值比较,如下表: (6) 门 o (8) C lens 参数如下:

光纤准直器的应用和发展趋势

光纤准直器的应用和发展趋势 发表时间:2019-09-03T16:54:29.790Z 来源:《科学与技术》2019年第07期作者:程义[导读] 本文的研究主要结合了光纤准直器的概念以及具体的设计结构,分析光纤准直器的应用及发展前景。 光库科技股份有限公司广东省珠海市 519080 摘要:光纤通信已经成为了当今社会不可缺少的神经系统,在光纤通信高速发展的今天,光纤准直器被广泛的运用在光通信系统之中。本文的研究主要结合了光纤准直器的概念以及具体的设计结构,分析光纤准直器的应用及发展前景。 关键词:光前准直器;应用;发展趋势;价值引言:光纤准直器是光纤通信系统中重要的器件之一,主要的作用是消耗光源信号的能量,实现信号的连接。光纤准直器具有使用价值的光纤无源器件,在光纤通讯过程中的应用广泛,应用的范围较大。光纤通信目前正在朝向大容量、高速率的方向发展,而光纤准直器正是光纤通信发展的元件之一,因此光纤准直器的重要性日益突出,而光纤准直器也成为了光纤器械中的重要组成器件之一可以有效促进 光纤传感、光纤通讯领域的快速发展。 1.光纤准直器及发展 光纤准直器作为光纤通信系统中的重要组成部分,其在光通信系统中具有广泛的应用。光纤准直器的存在可以促进光纤的耦合,通过压缩发散角实现光的准直平行出射,促使光耦合。光纤准直器将自由空间的激光耦合到单模和多模。光纤准直器的体积小,重量轻,光纤准直器还可以有效的将光源元件端面发射,被广泛的应用在光波分复用器、光隔离器和光环形器等多种器件的应用之中。光纤准直器主要是结合自聚焦透镜(或者Clens)的工作原理而形成的。光纤准直器通过透镜就会转化为平行光线,在激光应用中,高斯光束需要通过各种光学元件,光纤准直器就是发散的高斯光束透过透镜(自聚焦透镜、Clens、非球面透镜等),形成准直的高斯光束。光纤准直器作为基本的光学器件,也是光纤通信系统中重要的元件之一,作用和用途就是对于光纤传输的光准直来提高光束间的耦合性。本文的研究主要是结合光纤准直器的相关理论和具体组成部分,分析光纤准直器的使用价值和应用原理。从发展前景的角度来看,2018年全球应用于光通信的光纤准直器透镜组件的消费值达到3.43亿美元,年增幅19.34%。目前单个透镜光纤准直器组件在整体市场中的占主导地位,准直器透镜广泛应用于光子产品中,但他们这份市场研究专注于应用在光通信器件中的微型准直器透镜组件。光准直器透镜成为了光器件行业增长的一个关键指标。 2.光纤准直器的结构 2.1准直器的结构 光纤准直器的基本结构包括pigtail、透镜和外封。根据pigtail的尾纤数量分为单线光纤准直器、双线光纤准直器、四线光纤准直器、阵列光纤准直器等。根据光纤的类别,光纤准直器可分为普通的光纤准直器、保偏光纤准直器和特种光纤准直器。 保偏双线光纤准直器是应用于光环行器中的基本元件,为了确保准直器中双光纤准直器中两路光均以较高的消光比传输,首先要保证光纤的插芯方向是相互垂直的慢轴方向处于一定的角度范围,具体的结构在制作过程中,需要将两根光纤的位置相互对接进行调节,通过来调节来确保光纤准直器中两根光纤的位置,促使两个两根光纤之间的消光比可以达到一定范围,保证具体的元件插入时损耗,均衡元件插入时损耗的均衡值,为更复杂的器件做出保障。 2.2斜端面透镜设计和理论分析 在实际应用中,由于光纤准直器的连接处存在相应的信息光的透射率,相对来就会产生反射,通常情况下,这种反射光也会满足于相应的传输条件,它们将返回光线,不断地放大,严重影响的种子光源或光纤放大器的稳定工作。近几年来光纤准直器的应用实用系统中端面采用斜角(一般角度设计在8度),这样可以在一定程度上确保光纤传输的条件,同时由于大部分的光线在反射的过程中并不能满足光纤传输的要求。因此,通过光纤准直器的应用,很大程度提高回波的损耗(回波损耗一般都在60dB以上),较好地满足器件的使用价值。 3.光纤准直器的应用 光纤准直器的光纤器械被广泛的应用在光通信和光纤传感之中,而光纤准直器也是作为光纤器件之一,应用在光通信系统上。对于光纤准直器是制作光隔离器、光开光、光环形器、光探测器、光衰器件的主要原件。(光纤准直器在插入损耗和回拨损耗的过程中是通过自透镜的损耗来改善透镜的性能通常情况下可以通过二次离子交换法的应用来加强自聚焦透镜性能的完善,促使光纤准直器器械的使用价值不断提升。此句完成不是光纤准直器的应用,这个是介绍自聚焦透镜) 3.1 小型化光纤准直器 正常的光纤准直器外径在2.8mm左右,mini的光纤准直器外径可以做到1.3-1.4mm。有一类产品是基于光纤熔接玻璃棒的结构,尺寸可以做到更小,甚至等同于光纤的大小,外径可以到125μm或者250μm。从而极大地缩小光学元件的尺寸,使其为未来的5G甚至更快的网速提供基础。 3.2 高功率光纤准直器 一般通信的功率大约在mW级,但是准直器同样可以做到十W、百W甚至几百W。这些高功率的光纤准直器,主要用于工业的切割和激光武器中。 3.3 特殊光斑光纤准直器 特殊光斑准直器分为大光斑准直器和小光斑准直器。大光斑准直器由于其发三角非常小,准直距离非常长,可以用于三维距离探测、远距离通讯等。小光斑准直由于其光斑极小,一般在十几μm甚至几μm,其能量密度非常高,可以用于光纤传感、超快激光、激光切割等。 结束语 综上所述,光纤准直器的工作原理是在结合高斯光束原理基础上进行的,可以有效的促使光纤准直器被运用在光纤通信系统、激光系统和传感系统之中。光纤准直器的应用可以有助于促进光纤系统的完善,有助于光线的长距离接收。我们通过从实用的角度上探讨了光纤准直器的应用,同时结合具体的光纤准直器工作原理,分析了光纤准直器的实用性,目前由于光纤准直器应用得不断发展,所以光纤准直器在光学系统中具有广泛的使用价值。

板式换热器板片的生产及制作工艺

板式换热器是制冷主机上的重要配件,它是由一组波纹金属板组合而成,板上有四个角孔,供传热的两种液体通过,引导流体交替地流经各自的通道,进行热交换,它们排列紧密、精度高,体积小,换热效率高,节省空间,使用环境要求较高,适合在小型制冷机组上使用,广泛应用与冶金、石油、化工、食品、制药、船舶、纺织、造纸等行业,是加热、冷却、热回收、快速灭菌的优良设备。 特性 1、板片分流区设计:即使最宽的板片,也能使流体充分均匀地分布在板片的各个角落,使分流区压力损失最小.板片所有的换热面积都参与高效换热,板片的所有物理面积都转化为有效的换热面积,无换热死区,不存在流动死角,不容易发生积垢,不易出现积垢引起的氯离子腐蚀,可以充分利用允许的压力降,提高对流换热部分的流速,提高整体的换热效率。 2、板片单边流设计:整台板式换热器仅用一种板片,更易配管,更易安装和设备维护,减少板片和胶垫的备品种类和数量。 3、板片有H和L两种波纹角度:通过换热器板片优化组合,最大限度提高传热系数,降低设备造价 4、板片一次冲压成型:在同一板片上,板片波纹深度相同,从而保证板间每一接触点完好衔接,板片上无过度冲压区.不会产隐性裂纹,板片上金属纹路高度同一,板片最薄可达0.3mm.这样使得板片承压能力增强,避免热应力疲劳,避免振荡和高频颤抖引起的机械疲劳腐蚀,板片机械性能更佳,避免了隐性裂纹造成的泄漏,接触点分布均匀,介质流过板片时,湍流加强,最大限度提高传热效率,减轻设备重量,在保证承压要求下,获得更高的传热系数。 ARD艾瑞德板式换热器(江阴)有限公司艾瑞德是全球领先的板式换热器板片生产商和销售商,拥有国内品种最全,型号最多的板式换热器板片!能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的全部常用型号的板式换热器板片。

光纤准直器原理

光纤准直器原理 曾孝奇 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 图1 光纤准直器原理示意图 其中,i q (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: ()()() z w i z R z q 211πλ-=, (1) ()z f z z R 2 +=,()201???? ??+=f z w z w ,λπ2 0w f =; (2) 图1中,i q (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰处的q 参数,而01w 和02w 分别表示透镜变换前后的束腰;l 表示光纤端面与透镜间隔,l w 为准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, D Cq B Aq q ++=112, (3) 而且,l q q +=01,2/32w l q q -=,12010if w i q ==λπ,22023if w i q ==λ π。

这样,我们可以得到经过透镜后的束腰大小: ()()2120102Cf D Cl BC AD w w ++-=, (4) 工作距离: ()()()()2 12212Cf D Cl ACf D Cl B Al l w +++++-=, (5) 方程(5)是关于l 的二次方程,为使得l 有实根,方程(5)的判别式应该不小于零,从而我们可以得到: 1 212f C ACf BC AD l w --≤, (6) 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 ()()121max /2f C ACf BC AD l w --=。此时,我们得到:C D f l -=1。 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离l 有关,也就是说,对于给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变l 来实现不同的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: ()()()() ??????????-=??????L A L A A n L A A n L A D C B A o o cos sin sin 1cos , (7) 其中,0n 透镜的透镜的轴线折射率,L 为透镜的中心厚度,A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于0n ,L 和A ,因而,适当选择这些参数,同样能改变准直器的出射光斑大小和工作距离。 对于 C lens(厚透镜),它的传输矩阵为:

板式换热器设计

南京工业大学 《材料工程原理B》课程设计 设计题目:板式换热器1-油处理能力17000公斤 /小时 专业:高分子材料与工程 班级:高材1001班 学号: 1102100124 姓名: 联系方式: 日期: 2013-1-5---2013-1-14 指导教师:张振忠 设计成绩:日期: 2013-1-14

目录 设计任务书 (3) (一)设计题目 (3) (二)设计任务及操作条件 (3) 第一章设计方案简介 (4) 1.1 板式换热器概述 (4) 1.2 确定设计原则 (7) 第二章板式换热器的工艺设计计算 (10) 2.1 设计计算步骤 (10) 2.2 工艺设计数据一览表 (11) 2.3 板式换热器设计计算 (12) 2.4 压降核算 (16) 2.5 换热器主要结构尺寸及计算结果一览表 (17) 第三章辅助设备的计算与选择 (19) 3.1 水泵的选择 (19) 3.2 油泵的选择 (19) 第四章附图 (21) 4.1 工艺流程图 (21) 4.2 主体设备工艺图 (22) 第五章设计小结 (24) 5.1 设计小结 (24) 5.2 参考文献 (25) 5.3 答辩及评语 (26)

设计任务书 (一)设计题目 板式换热器-油处理能力17000公斤/小时 (二)设计任务及操作条件 1、处理能力见下表 2、设备型式板式换热器 3、操作条件 (1)油:入口温度100℃,出口温度40℃ (2)冷却介质:冷却塔循环水,入口温度30℃,出口温度50℃。(3)油侧与水侧允许压强降:不大于5×105 Pa (4)油定性温度下的物性参数: 名称 ρ(kg/m3)Cp (KJ/ ㎏·℃) μ(Pa.s)λ(W/m·℃)油825 2.22 8.66×10-40.14 油的中性温度= 240 100+=70℃

相关文档
最新文档