第二节地层破裂压力知识分享

第二节地层破裂压力知识分享
第二节地层破裂压力知识分享

第二节地层破裂压力

第二节 地层破裂压力 在井下一定深度裸露的地层,承受流体压力的能力是有限的,当液体压力达到一定数值时会使地层破裂,这个液体压力称为地层破裂压力(Fracture pressure ),一般用f p 表示。使用最广泛的地层破裂压力预测是Hubbert-Willis 模式和Haimson-Fairhurst 模式。 破裂压力数据应用于钻井、修井、压裂、试油井下测试等井下工艺技术,钻井大多数是在裸眼中进行的,所以破裂压力数据在钻井方面尤为重要,它是钻井之前的井身结构设计,套管强度计算、钻井液密度设计等钻井工程设计内容的关键参数,特别是在一个新的区块开发之前,破裂压力这一数据为就重中之重了。它决定着在这一新的区域内的所有钻井方案是否正确,并能否顺利执行和能否顺利完成。

压裂作业时,地层破裂力学模型如图 1.1所示。此时,地层裂隙受地应力与压裂液共同作用。考虑深层水力压裂主成垂直裂缝,且裂缝穿透整个煤层。地应力与压裂液应力的最终有效合应力在裂隙壁面上是拉应力,当其合成应力强度因子K 达到临界值时,裂隙就开始失稳延伸。

地层的破裂压力对钻井液密度确定、井身结构和压裂设计施工等有着重要的指导作用。从上世纪五六十年代,国内外就开始对地层破裂压力进行了研究,并取得了一系列的成果。

H-W 模型

1957年Hubbert 和Willis 根据三轴压缩试验首次提出了地层破裂压力预测模式即H-W 模式指出破裂压力等于最小水平主应力加地层孔隙压力P p ,垂直有

效主应力等于上覆压力P v 减P p 最小水平主应力在其1/3到1/2范围内,预测公

式为:

式中:f P — 地层破裂压力;

p P — 地层空隙压力;

v P — 上覆岩层压力;

模型中上覆压力梯度为1的假设显然不符合实际,最小水平主应力为1/3到1/2垂直有效主应力范围的假设通常也带来偏低的结果。

1967年Matthews 和Kelly 在H-W 模式中引入了骨架应力系数i K :

(p v i p f P -P K P P += 4-7 地层正常压实时,i K 反映了地层实际骨架应力状况其值由区块内已有破裂压力资料确定,i K 系数曲线的绘制需要大量实际压裂资料,限制了此方法的应用。

1968年Pennebaker 指出上覆压力梯度是不断变化的,并将其与地质年代联系了起来。他根据声波时差资料建立了一组上覆压力梯度与深度的关系曲线,这是第一次在破裂压力预测技术中引入测井手段。 Pennebaker 将i K 定义为泊松比和时间的函数,并指出i K 随深度和地质年代的变化而变化。

相关主题
相关文档
最新文档