微电网能量管理系统相关资料汇总

微电网能量管理系统相关资料汇总
微电网能量管理系统相关资料汇总

微电网能量管理系统相关资料

微电网采用了大量的现代电力电子技术将光伏发电、风电、燃气轮机、燃料电池、储能设备等微电源装置并在一起,直接接在用户侧,构成规模较小的分散的独立系统。对于大电网来说,微电网可被视为电网中的一个可控单元,由于电力电子器件的高反应特点,它可以迅速满足外部输配电网络的需求。另外,对用户来说,由于微电网的分布特点,可以维持本地电压稳定、增加本地可靠性、降低馈线损耗、通过利用余热提高能量利用的效率及提供不间断电源等,能够满足他们特定的需求。

在接入电网问题上,微电网的入网标准不针对各个具体而分散的微电源,只针对PcC(微电网与大电网的公共连接点)。微电网不仅解决了分布式电源单机接入成本高的问题,还充分发挥了分布式电源的各项优势,并且为用户带来了其它多个方面的效益。

微电网能量管理系统的主要管理对象:

1.分布式电源

微电网中的分布式电源包括燃料电池、微型燃气轮机、柴油发电机、热电联产系统、风电、光伏等。其中,热电联产系统通过燃料电池、微型燃气轮机或其他燃机在发电的同时提供热能,能量利用率超过 80%,在微电网中具有较好的应用前景。不同类型的电源通过整流器和逆变器等电力电子设备将不同频率的电能平滑地转换为相同频率的交流或直流电能。通过控制逆变器可以控制分布式电源的输出,让分布式电源按指定的电压和频率(U/f 控制)或有功和无功(PQ控制)输出。这些基于逆变器的控制方式支撑着微电网系统的总体控制策略。分布式电源按可控性分为不可调度机组和可调度机组。风电、光伏的发电主要取决于自然环境,具有随机性和波动性,属于不可调度机组,其具有一定的可预测性,但目前仍具有较大的预测误差。而燃料机组如微型燃气轮机、燃料电池、柴油机属于可调度机组,微电网能量管理系统需要预测风电、光伏的出力,并根据预测出力、燃料机组油耗、热电需求等制定可调度机组的调度计划。

2.储能系统

储能系统在微电网中得到了广泛的应用,适合微电网的储能技术主要有蓄电池、飞轮、超级电容。蓄电池具有电能容量大、能量密度大、循环寿命短等特点,在并网时起削峰填谷和能量调度的作用,在孤网时常作为中心存储单元,维护微电网的频率与电压稳定。飞轮具有较大的能量密度、较高的功率输出和无限的充放电次数,常用来平抑微电网中的瞬时功率波动。超级电容具有功率密度大、循环寿命长、能量密度低等特点,但相对于其他 2种储能技术具有较高的成本。由于具有较低的惯性、储能系统在微电网中可以平抑可再生能源和负荷的功率波动,维护系统的实时功率平衡,同时能在微电网并网与孤网状态切换时提供瞬时的功率支撑,维持系统稳定。储能系统一般通过逆变器接入微电网,采用U/f 控制和 PQ控制,接受微电网能量管理系统的指令来决定工作方式和发电功率。储能系统的管理目标取决于微电网的工作方式。在并网模式下,其主要是确保分布式电源的稳定出力,容量充足时可以起削峰填谷和能量调度的辅助作用;在孤网模式下,储能系统主要是维护系统稳定,减少终端用户的电能波动。

为了使微电网在紧急情况下仍能运行,微电网的负荷一般分级管理,主要分为关键负荷和可控负荷。关键负荷为需要重点保护电力供应的负荷;而可控负荷在紧急情况下可以适当切除,在正常情况下也可以通过需求侧管理或者需求侧响应达到优化负荷使用、节能省电的目的。比如一栋楼在不影响用户满意度的情况下可以通过调节供热通风与空气调节HV AC系统或者照明系统来达到节能的目的。微电网负荷侧的管理是微电网能量管理中的重要部分。随着电动汽车的普及,充电电动汽车PEV 和混合充电电动汽车PHEV在微电网中得到了广泛的应用。PHEV 和PEV既可以随时随地从电网中充电,又可以通过汽车到电网V2G技术向电网输电,具有可控负荷和电源的双重身份,这类负荷的大规模接入将给微电网能量管理系统增加难度。

微电网能量管理系统的基本功能

微电网能量管理系统具有预测可再生能源机组出力、优化燃料机组发电、安排储能充放电、管理可控负荷、维持系统稳定等功能。

微电网能量管理系统主要有 4 个功能模块:人机交流模块、数据分析

模块、预测模块、决策优化模块。一些外部信息如设备信息、天气预报等通过数据接口传递给微电网能量管理系统,同时微电网能量管理系统也通过接口与分布式电源互相交换信息。

人机交流模块主要负责人与能量管理系统的交流,其采用可视化人机接口,并提供一个统一的图形平台。通过人机界面可以查看微电网的拓扑结构和所有电气元件的接入情况,并能实时操作开关与刀闸的状态,控制微电网的工作方式。监测系统采集的电压、电流、有功、无功、温度等实时数据将在图形系统中显示。通过对人机界面的监视,工作人员可以实时了解微电网系统、后台系统和通信系统的运行工况。系统的运行信息将通过文字、图形、声、颜色等多种方式在人机界面中显示。

数据分析模块将系统采集的实时数据、各种操作日志以及预测数据存储到系统的数据库当中。其历史服务功能按照不同的存储周期和预先设定的存储策略将实时数据写入数据库中,并负责日、月、年统计量的统计工作。报表分析功能将历史数据和预测数据灵活地组织到表格中,形成实时、日、月、年等历史统计表和预测误差统计报表,可统计最大值、最小值、平均值等,同时具有打印和表格编辑功能。

预测模块是微电网能量管理系统的一个重要模块。为了优化分布式电源的发电调度,需要对未来某段时间内的负荷、可再生能源、市场电价进行预测。根据调度计划的时间尺度不同,通常有短期(1d 至1 周)预测和超短期(分钟级或几小时内)预测。短期预测可以采用离线的方式,而超短期预测通常需要在线预测并实时滚动。预测所需要的基础数据主要为系统采集的历史数据,预测结果每隔一定的时间段传送回微电网能量管理系统。

决策优化是微电网能量管理系统的核心模块。该优化系统根据负荷和可再生能源的预测值、用户的用电需求、调度规则、市场电价等信息决策分布式电源的发电调度、从电网的购电计划、储能的出力分配、负荷的安排。该决策需要满足一系列约束条件以及控制目标,如满足系统中的热电负荷需求,确保微电网与主网系统间的运行协议,尽可能使能源消耗与系统损耗最小,使分布式电源的运行效率最高。优化决策模块还能提供微电网系统故障情况下孤岛运行和重合闸的逻辑与控制方法等,保障微电网的高效稳定运行。

微电网能量管理系统的控制系统:

从微电网能量管理系统的控制结构来看,微电网可以分为集中式控制和分散式控制。

1集中式控制结构:

集中式控制一般由中央控制器和局部控制器构成,其中,中央控制器通过优化计算后向局部控制器发出调度指令,局部控制器执行该指令控制分布式电源的输出。文献给出了一种 3 层结构的典型集中式能量管理系统,其 3层结构分别为市场和配电网中心、中央控制器、局部控制器。市场中心负责电力市场和微电网之间的信息交流。配电网中心负责微电网与主网之间的信息交流。中央控制器是微电网能量管理系统的核心单元,其负责上层系统与底层单元的信息交流。一方面,中央控制器要满足配电网的负荷需求,参与电力市场,监测系统运行,维护系统稳定,处理微电网工作模式的转换;另一

方面,中央控制器要根据局部控制器传来的机组信息、市场和配电网中心的信息,在各种机组约束和物理约束条件下,以系统网损最小、利润最大等为控制目标安排分布式电源的功率分配,并将指令传递给局部控制器。

集中式控制的优点是:有明确的分工,较容易执行和维护;具有较低的设备成本,能控制整个系统;目前使用得比较广泛,技术上更加成熟。其缺点是:随着分布式电源的增加&要求中央控制器有较强的计算处理能力,同时对其通信能力也有较高的要求;一旦中心单元故障,整个系统面临瘫痪的风险;分布式电源不能即插即用,不容易拓展应

用。这些缺点成为这种模式的发展瓶颈。

2分散式控制结构:分散式控制是微电网能量管理系统的另一种控制方式。分散式控制方式下,微电网中的每个元件都由局部控制器控制,每一个局部控制器监测微源运行状况,并通过通信网络与其他的局部控制器交流。局部控制器不需要接收中央控制器的控制指令,有自主决定所控微源运行状况的权力。由于局部控制器仅需要与邻近的设备通信交流,其信息传输量比集中式控制要少;其计算量也分担到各个局部控制器当中,降低了中央控制器的工作负担。中央控制器在分散式控制结构中主要负责传递上层系统的负荷和电价信息,以及在紧急事件或故障情况下从系统层面上操控局部控制器。

分散式控制的优点是:中央控制器的计算量得到了大幅的削减;如果中央控制器故障,系统仍然能够运行;其分散式的控制模式保证了分布式电源即插即用的功能;适用于大规模、复杂的分布式系统。其缺点有:由于局部控制器有较大的自主权,其存在安全方面的隐患,较难及时检测和维修;分布式电源的平滑控制依赖于局部控制器之间的交流,需要设计一种有效的通信拓扑结构;其局部控制器之间的交流可能需要更长的时间达成协议;由于此种控制方式相比传统的主从式控制有较大的通信变革,在实际当中还面临较大的设备投资和复杂的通信要求。这使得这种较有潜力的控制方式仍然需要深入研究。集中式和分散式控制方式都有中央控制器和局部控制器,只是分散式控制弱化了中央控制器的主导功能,通过强化周边通信,将控制权力

分散到局部控制器。中央控制器和局部控制器甚至配电网中心在管理系统中均扮演着一定的角色,多代理系统这一概念可以较好地模拟这一特定功能的角色。多代理系统具有较好的灵活性与可扩展性,既可以设计成集中式控制,又可以设计成分散式控制,在微电网的能量管理和控制领域受到了关注。多代理系统的能量管理策略主要有基于市场交易的竞争协调和基于各种智能算法的优化调度。基于市场交易的多代理系统模拟电力市场环境,由各分布式电源代理和负荷代理根据成本和需求进行投标,中央控制代理经过决策确定最后的出力状况。基于智能算法的优化调度类似于传统的集中式控制,其根据各代理申报的情况以特定的目标进行优化计算来确定各微源的发电安排。

微电网能量管理系统的机遇与挑战

目前微电网能量管理主要采用集中式控制,随着技术的成熟,分散式控制将逐渐成为微电网能量管理控制结构的发展方向。分散式控制使得分布式电源能够即插即用,任何分布式电源或储能设备在任何时间都可以连接到微电网中,大幅提高了用电的灵活性。微电网能量管理系统对微电网的使用便利性和高效性起着重要的作用。由于微电网的特殊性,微电网的能量管理依然面临一系列挑战,主要有以下 3 个方面。

1 微电网中可再生能源如风电、光伏出力受自然环境的影响,具有间歇性、波动性和可预测性差等特点。微电网能量管理系统的设计当中需要考虑这些随机因素的影响。另一方面,随着可控负荷形式的增多,可控负荷如 PEV 可以随时随地连接到微电网中,这增加了微电网负荷侧时间和空间上的不确定性。微电网能量管理系统在需求侧的管理中需充分考虑到这些不确定性因素。

2 各种储能技术各具优缺点,单一的储能技术很难在技术性和经济性上满足要求,常常需要多种储能技术的配合才能达到效果。多种储能技术的优化配合以及多储能系统的联合调度将成为微电网能量管理的一个难点。

3 可靠且兼容的通信网络是微电网能量管理系统的基础。通信可能会存在的延时、超时失败等问题,将影响微电网能量管理系统的执行。另一方面,微电网的通信主要是通过无线网络传输,而无线网络的共享和易接近等特点,使得其存在安全陷患。因此微电网能量管理系统的通信网络建设和通信安全也是一个值得研究的问题。

微电网能量管理系统的概念:微电网能量管理系统(MGEMS)是以计算机为基础的一个综合自动化系统,主要用于一个微电网的调度管理中心,它融合了先进的IT技术,对微电网内部的分布式电源和储能装置进行优化管理。微电网能量管理系统相对与传统大电网的能量管理系统具有更加针对性的特点,它能够针对某一个具体的微电网,对其内部的众多资源进行有效地管理,提高微电网的能源利用效率。

存在问题:

由于微电网中分布式电源数量多、位置分散,因此监测控制管理更加复杂。当前,微电网能量管理系统主要面临以下几个问题。

通信问题:微电网中需要实时监测点增多,所需要采集的信息量增大,使通信难度加大,不利于调度员的正确决策。为了保证微电网的灵活供电模式与高质量的供电服务,必须具有足够的监视控制点和完善的通信系统,以便能够将采集到的信息及时上传、控制信息及时下达,实现主网和微电网及微网内部电源的实时控制。

接入控制问题:控制系统是微电网技术中的一大难题,也是一关键问题。微电网的控制包括:微电网和主网并网控制和微电网内部分布式电源的控制。微电网和主网的并网控制要求具有实时性。在微电网不能满足用户的需求时,要求能够及时接入主网,无需切除负荷,而在微电网能够满足用户需求或主网外部故障时,微电网能够及时与主网断开独立运行。对于微电网内部的分布式电源,由于传统小火电和生物质能发电等发电量相对稳定,因此可以采用传统的接入方式,而对于间歇式发电由于发电量受气候和季节影响较大,具有较大的不确定

性将会频繁的接入和切除,这就要求具有实时的接口控制技术来消除分布式电源的接入和切除对微电网的影响。

新能源和可再生能源发电不可预测问题:由于分布式电源中存在许多间歇式电源,如太阳能、风能其发电量受天气状况和季节影响较大,存在不可预测问题,不利于稳定供电。

解决方法:

针对微电网特点提出适合的能量管理系统,对于充分发挥微电网的优势具有重要作用。微电网能量管理系统除了具有传统能量管理系统的功能模块外,还需要注意以下几点。

加强通信通道建设:在微电网中采用先进的通信技术,如:光纤IP 网、电力宽带载波、宽带无线网络技术来解决微电网中信息的实时传输和双向交互。

开发新的接口控制技术:目前,已有三种典型的控制方法:基于电力电子装置的“即插即用”技术;基于功率管理系统的控制;基于多代理技术的控制方法。这三种方法在不同的程度上都有了一定进展,相信随着研究的不断进展,这三种技术会越来越成熟。

开发分布式电源协调控制模块:分布式电源协调控制模块是用来优化微电网内的电源配置,实现分布式电源最优协调控制。可以采用如下协调控制方法:当间歇式发电装置所发电能超出负荷需求时,检测储能装置是否充电完成,若充电未完成则充电,若已完成则减少稳定能源(可调节电源)的发电量;当间歇式发电装置低于负荷需求时,检测储能装置是否能够提供电能,若能则接入,否则增加稳定能源的发

电量,在稳定能源达到最大发电量时还不能满足负荷需求,则接入主网。

开发新能源和可再生能源预测模块:根据微电网所在区域,采集当地气候信息,编制气候数据库,来预测间歇式能源短期发电量,从而为电网的运行方式提供决策。

微电网关键技术:

微电网技术虽然取得了一定成果,但是目前仍然存在许多需要进一步研究和攻克的技术问题,微电网的关键技术主要包含以下几点。

1新能源和可再生能源发电技术。现在只有少数国家掌握了新能源和可再生能源发电技术,其成本造价相对于传统能源发电优势并不明显。因此,如何降低这些新的发电技术成本,使其能够市场化也是一个非常关键的问题。

2电力电子控制装置。微电网的灵活运行方式是基于先进的电力电子接口,正是由于这种先进的电力电子接口控制,使得微电网不仅可以灵活的接入主网,而且还可以使得各个微电源实现“即插即用”。

3储能关键技术。储能装置也是微电网中不可缺少的一部分,它在电网中能够起到削峰填谷的作用,极大的提高间歇式能源的利用效率。当前,人们已经广泛开展了储能装置的研究。我国在储能装置上的研究也已取得了一定的进展,目前已经成功研制出650 AH钠硫电池单体、100 kW/200 kW的全钒液流电池系统,除此之外在飞轮储能上

也取得了突破性进展。

4协调继电保护和无功补偿技术。由于微电网的多电源特性,改变了

传统配电网的辐射型结构,使得微电网的保护方法与传统保护有着极大区别,主要难点在于潮流的双向流动、并网和孤立运行时短路容量的变化。另外,由于间歇式电源电压、频率的波动性,使得保护变得更加复杂。而对于无功补偿问题,传统配电网的低压侧集中补偿已经不再适合,必须研究适合微电网的新的无功补偿方法。

5先进的监测技术。微电网的结构已经改变了传统配电网的供电模式,需要监测的点急剧增多,先进的监测技术为微电网的有效管理提供了基础。

综上所述可知,微电网进展的快慢和新能源发电技术、电力电子技术、储能技术和通信等技术密切相关,因此必要加大相关技术的研发力度,从而为微电网的发展打下基础。

微电网在中国的应用前景:

随着社会经济的不断进步,广大电力用户对电能质量和服务要求不断提高。微电网以其独特的运行方式不仅可以满足电力用户的多种需求,还可以保证在极端情况下保证电能的持续供应,微电网的诸多优点将使它成为大电网的一个有益补充。

从长远观点来看,分布式能源技术是我国的必然选择,但是分布式能源入网却又存在很多问题,微电网技术的提出有效地解决了分布式电源入网的众多问题,极大地促进了分布式电源的进展。我国当前正在大力发展分布式能源发电,在“十一五”期间将有大量风电和光伏等分布式能源接入电网。微电网能够很好的解决分布式能源和大电网之间的众多矛盾,应充分挖掘分布式能源所带来的效益,使其在未来能够为电网的发展做出更大的贡献。

目前我国许多中小城市和偏远地区拥有众多火力发电和小水电等传统发电机组,这些机组存在损耗大、效率低、运行费用高和污染大等问题,面临停运或拆除。这些机组容量小且靠近负荷,具有充当微电网中分布式电源的特性,因此可以考虑对现有小机组进行技术升级改造,将其纳入微电网,组成区域性的小型微电网,从而实现对现有资源的合理再利用,减少新的投资费用,并且可以达到节能减排的作用。在“十一五”期间我国制定了相关能源政策法规,采取了新能源和可再生能源优先上网和价格优惠等政策来推动新能源的进展,这为推广建设微电网提供了有力支撑。

国内外微电网研究现状:

在微电网研究方面,欧美及日本等发达国家已经完成部分基础理论研究,相关成果已经通过实验室测试和现场示范工程验证进行了初步验证,部分解决了微型电网运行、保护和经济性分析等的基本理论问题。

1 美国微电网研究现状

美国最早提出了微电网概念,其微电网理论研究成果已经在实验室平台检验通过,并在美国北部建立了第一个微电网示范性工程。美国微电网未来研究的重点主要集中在满足多种电能质量的要求、提高供电的可靠性、降低成本和实现智能化等方面。

2 欧洲微电网研究现状

欧洲各国对微电网的研究也越来越重视,尤其是近几年来各国之间开展了微电网方面的诸多合作和研讨工作。已经初步形成了微电网的运行、控制、保护、通信等理论基础。欧洲未来的研究重点主要集中在先进的控制策略和相关标准的制定方面。

3 日本微电网研究现状

日本在国内能源日益紧缺、负荷日益增长的背景下,也展开了微电网研究,但其发展目标主要定位于能源供给多样化、减少污染、满足用户的个性化电力需求方面。

目前,日本的微电网示范工程的建设处于世界领先。

4 中国微电网研究现状

2008 年初的南方雪灾中,由于大电网受损严重,只有少数小电网在支撑重要用户运行,将微型电网的作用充分展示了出来,同时促使我

国加快了对微型电网的研究步伐。 2009 年,中国国家科技部通过“973”计划项目专门资助了分布式发电供能系统的相关基础研究。2010 年,中国国家科技部通过《国家高科技研究发展计划(863)》立项了近十个有关微电网方面的研究课题。“十二五”期间,我国将在太阳能、风能占优势的地区建设成微电网示范区,同时还将推动建设100 座新能源示范城市。我国微电网的发展虽尚处于起始阶段,但微电网的特点适应我国电力发展的需求和方向,具有广阔的发展前景。

国内外微电网现状比较:

为最大限度地发挥分布式发电技术在经济、能源和环境中的优势,微电网被纳入诸多国家未来电网发展的日程中。

美国由于近年来发生了几次比较大的停电事故,因此十分关注电能质量和供电可靠性。对微电网的研究主要集中在利用微电网提高电能的质量和供电的可靠性方面。

日本资源匮乏,因此其对可再生能源利用的重视程度远高于其他国家,但很多新能源具有随机性,限制了新能源的应用,所以日本在微电网方面的研究主要强调控制与电储能。

欧洲互联电网中的电源比较靠近负荷,更容易形成多个微电网,因此欧洲微电网的研究主要关注于多个微电网的互联问题。

目前中国大多在分布式发电和分布式储能上开展相关的研究,对微电网的研究还处在起始阶段。

微电网是智能电网领域的新兴市场,目前无论国内还是国外均还处于

研究、试点阶段。另外,国内和国外的能源结构差异较大,这也决定了中国与欧美等国家的微电网解决方案存在较大差异。

微电网运行模式:

微电网存在两种典型的运行模式:并网运行模

式和孤岛运行模式。

微电网储能方式:鉴于微电网系统的特点和储能的作用,对储能装置的性能特点具有较为独特的要求。概括起来包括:能量密度大,能够以较小的体积重量提供较大的能量;功率密度大,能够提供系统功率突变时所需的补偿功率,具有较快的响应速度;储能效率高;高低温性能好,能够适应一些特殊环境;以及环境友好等。现阶段微电网中可利用的储能装置很多,主要包括蓄电池储能、超导储能、飞轮储能、超级电容器储能、超级电容器与蓄电池混合储能系统,抽水储能、压缩空气储能等。

分布式能源与微电网技术

分布式能源与微电网技术 摘要:在现代城市化进程加快发展下,能源需求量逐渐增长。分布式能源和微 电网技术能促进城市的绿色化和清洁能源的应用,达到节能减排的目的,也能为 现代智能电网建设提供有效依据,保证电网的安全与稳定。 关键词:分布式;能源;微电网技术 在中国经济快速提升下,工业化和城镇化进程加快发展,其存在的能源安全 问题更为突出。尤其是二氧化碳带来的全球变暖问题,引起社会的关注。在该发 展背景下,对城市的建设思想和发展模式有序转变,加大力度引进风力发电、太 阳能发电模式等,促进整体的规模化发展。 一、分布式能源和微电网技术的研究意义 第一,加强对分布式能源和微电网技术的研究,能确保清洁能源的有效应用。基于太阳能、风能等多个形式清洁能源的应用,能保证能源的灵活接入和智能化 控制,将其应用到智能终端进行消费,促使低碳城市建设目标的实现。第二,加 强对分布式能源和微电网技术的研究,也能提升总体的供电可靠性。基于分布式 发电的投入以及微网的统一管理,在先进系统和设备下,为电网运行提供强大保障,促使电能质量更可靠。第三,分布式能源和微电网技术的研究,也能为其提 供双向互动用电服务模式。基于微网、智能家居和分布式发电,能为系统提供统 一接口,维护用户和电网之间的相互沟通和交流,也能使用户获得新的体验。加 强对分布式能源和微电网技术的研究,将其作为智能电网建设中的主要部分,是 新时期建设与发展下的主要模式,也承担者社会建设职责。其中的分布式能源, 在智能集成模式下,能保证接入系统的安全与可靠,也能确保微网更灵活。所以,加强对分布式能源和微电网技术的应用,是城市绿色、清洁能源推动和应用的主 要条件,在节能减排工作中,将其渗透到工作中,对电网的安全运行也具备十分 重要的作用[1]。 二、分布式能源和微电网技术的关键 (一)容量配置 清洁能源具备明显的间歇式能源特点,受到天气情况影响较大,电能的输出 波动大。基于对分布式能源和微电网技术的应用,能够在各个单位组成模式下, 对其容量有效配置,确保风能、太阳能相互应用,发电单位和储能单元之间也能 互补。在整个分布式能源和微电网中,结合时间功率,为其输出曲线,也能避对 电网产生的影响。通过对储能系统应用,对分布式能源和微电网技术有效调度, 以达到清洁能源的充分应用。比如:储能电池,能对分布式能源生产中存在的问 题有效解决,尤其是在较小负荷下,达到电能的储存目的。如果负荷较大,将释 放电能,保证系统的科学稳定运行。如:将储存电池和系统交流侧进行链接,基 于储能单元和发电单元的协调,为其提供对平滑分布式能源的波动,避免给电力 系统带来较大冲击,维护其稳定性。储能电池也能对当地的交流负荷需要无功功率、负荷电流谐波的获取,以免电压波动、闪变现象的发生,这样才能达到有效 的节能效率[2]。 (二)接入方式 结合当前的建设标准和规程,需要在谐波、电压波动和电压不平衡度上给予 全面控制和探讨,也要为分布式能源和微电网技术的应用提出合理对策。分布式 能源和微电网利用分布发电和集中并网接入方式来实现。集中并网多为直流母线 汇流、各个发电单元在电能控制模式下,将其转变为直流母线。基于逆变器,将

微电网能量管理系统相关资料汇总

微电网能量管理系统相关资料 微电网采用了大量的现代电力电子技术将光伏发电、风电、燃气轮机、燃料电池、储能设备等微电源装置并在一起,直接接在用户侧,构成规模较小的分散的独立系统。对于大电网来说,微电网可被视为电网中的一个可控单元,由于电力电子器件的高反应特点,它可以迅速满足外部输配电网络的需求。另外,对用户来说,由于微电网的分布特点,可以维持本地电压稳定、增加本地可靠性、降低馈线损耗、通过利用余热提高能量利用的效率及提供不间断电源等,能够满足他们特定的需求。 在接入电网问题上,微电网的入网标准不针对各个具体而分散的微电源,只针对PcC(微电网与大电网的公共连接点)。微电网不仅解决了分布式电源单机接入成本高的问题,还充分发挥了分布式电源的各项优势,并且为用户带来了其它多个方面的效益。 微电网能量管理系统的主要管理对象: 1.分布式电源 微电网中的分布式电源包括燃料电池、微型燃气轮机、柴油发电机、热电联产系统、风电、光伏等。其中,热电联产系统通过燃料电池、微型燃气轮机或其他燃机在发电的同时提供热能,能量利用率超过 80%,在微电网中具有较好的应用前景。不同类型的电源通过整流器和逆变器等电力电子设备将不同频率的电能平滑地转换为相同频率的交流或直流电能。通过控制逆变器可以控制分布式电源的输出,让分布式电源按指定的电压和频率(U/f 控制)或有功和无功(PQ控制)输出。这些基于逆变器的控制方式支撑着微电网系统的总体控制策略。分布式电源按可控性分为不可调度机组和可调度机组。风电、光伏的发电主要取决于自然环境,具有随机性和波动性,属于不可调度机组,其具有一定的可预测性,但目前仍具有较大的预测误差。而燃料机组如微型燃气轮机、燃料电池、柴油机属于可调度机组,微电网能量管理系统需要预测风电、光伏的出力,并根据预测出力、燃料机组油耗、热电需求等制定可调度机组的调度计划。 2.储能系统 储能系统在微电网中得到了广泛的应用,适合微电网的储能技术主要有蓄电池、飞轮、超级电容。蓄电池具有电能容量大、能量密度大、循环寿命短等特点,在并网时起削峰填谷和能量调度的作用,在孤网时常作为中心存储单元,维护微电网的频率与电压稳定。飞轮具有较大的能量密度、较高的功率输出和无限的充放电次数,常用来平抑微电网中的瞬时功率波动。超级电容具有功率密度大、循环寿命长、能量密度低等特点,但相对于其他 2种储能技术具有较高的成本。由于具有较低的惯性、储能系统在微电网中可以平抑可再生能源和负荷的功率波动,维护系统的实时功率平衡,同时能在微电网并网与孤网状态切换时提供瞬时的功率支撑,维持系统稳定。储能系统一般通过逆变器接入微电网,采用U/f 控制和 PQ控制,接受微电网能量管理系统的指令来决定工作方式和发电功率。储能系统的管理目标取决于微电网的工作方式。在并网模式下,其主要是确保分布式电源的稳定出力,容量充足时可以起削峰填谷和能量调度的辅助作用;在孤网模式下,储能系统主要是维护系统稳定,减少终端用户的电能波动。

新能源微电网技术条件

附件1:新能源微电网技术条件 一、联网微电网 联网微电网是解决波动性可再生电力高比例接入配电网的有效方案。相对于不带储能的简单可再生能源分布式并网发电系统具有如下功能和优势: 1、通过微电网形式可以有效提高波动性可再生能源接入配电网的比例,功率渗透率(微电网额定装机功率与峰值负荷功率的比值)可以做到100%以上,此次申报项目原则上要求做到50%以上; 2、微电网具备很强的调节能力,能够与公共电网友好互动,平抑可再生能源波动性,消减电网峰谷差,替代或部分替代调峰电源,能接受和执行电网调度指令; 3、与公共电网联网运行时,并网点的交换功率和交换时段可控,且有利于微电网内电压和频率的控制; 4、在微电网自发自用电量效益高于从电网购电时,或在公共电网不允许“逆功率”情况下,可以有效提高自发自用电量的比例,避免损失可再生能源发电量,提高效益;当公共电网发生故障时,可以全部或部分孤岛运行,保障本地全部负荷或重要负荷的连续供电; 5、延缓公共电网改造,不增加甚至减少电网备用容量; 6、在电网末端可以提高供电可靠性率,改善供电电能质量,延缓电网(如海缆)改造扩容,节约电网改造投资;

7、与其它清洁能源(如CHP)和可再生能源不同利用形式结合,可以同时解决当地热水、供热、供冷和炊事用能问题。 主要技术条件 1、与公共配电网具有单一并网点,应能实现联网和孤岛2种运行模式,根据所在地区资源特点、负荷特性以及电网需求和架构,可以具备上节联网微电网的一种或多种功能。 2、微电网接入110kV公共配电网,并网点的交换功率应≤40MW,微电网接入35kV公共配电网,并网点的交换功率应≤20MW,微电网接入10kV公共配电网,并网点的交换功率应≤6MW,微电网接入400V公共配电网,并网点的交换功率应≤500kW; 3、储能装置的有效容量由所希望实现的功能、负荷的日分布特性、孤岛运行时间以及电网调峰需求决定,应根据实际情况设计; 4、在具备天然气资源的条件下,可应用天然气分布式能源系统,作为微电网快速调节电源,为消纳高比例、大规模可再生能源发电提供快速调节能力; 5、具有从发电到用电的智能能量管理系统,具有用户用能信息采集功能和远程通信接口; 6、微电网与公共配电网并网,应符合分布式发电接入电力系统的相关技术规定;微电网供电范围内的供电安全和电能质量亦应符合相关电力标准。

微电网能量管理运行优化研究

微电网能量管理运行优化研究 发表时间:2017-07-03T11:17:13.947Z 来源:《电力设备》2017年第7期作者:侯方域陈灿灿 [导读] 摘要:主要研究微电网能量管理优化问题,提出了电网分级分布式衰减能量管理系统的建设方案,设计了电力预测,经济调度,需求响应和联络线功率控制等功能电网能源管理系统软件。 (国网晋城供电公司山西省晋城市 048000) 摘要:主要研究微电网能量管理优化问题,提出了电网分级分布式衰减能量管理系统的建设方案,设计了电力预测,经济调度,需求响应和联络线功率控制等功能电网能源管理系统软件。在此基础上,本文提出了一种基于改进遗传算法的最小化总运营成本目标的微电网,通过仿真验证了一种用于优化能量管理和算法有效性的新方法。 关键词:微电网;能源管理;分层优化;多代理系统 为了充分发挥低碳微电网的优势,经济,需要优化微电网功率调度,以最大限度地利用微型电源。根据微网系统的特点,提出了一套相对完整的微网能量管理系统,每个功能模块和主要任务的特点完善细节,系统可以实现综合监测,预测,时间和历史信息的微网系统的状态同步监测,预报警和预防控制以及微网电力多目标优化运行综合协调控制功能。微电网能量管理系统进一步完善微电网控制功能,提高微电网的控制精度和有效性,为开发和工程应用原型系统提供重要支撑。 微电网具有分布式发电(微)电源小型化和数量少的特点,微发电特性不同,发电和环境条件,如温度,风速,日照辐射密切相关,输出具有很大的随机性和挥发性。微电网中的负载将随时间,天气和经济因素而变化。这使得分布式发电设备的故障率也随环境条件和时间而变化,电源和负载程序之间的能量交换也变得更加复杂。 对于更多能源的微电网,能源管理系统需要从微电网系统的安全性,电源质量,经济和环境等方面全面控制。目前,微网系统网络结构框架,调度控制策略和控制单元级功率/能量存储的微网系统级能量管理系统研究的主要研究仍然在婴儿理论中。主要对微电网能量管理系统的人机界面设计进行了优化。提出了基于中央控制器的微电网能量管理策略的层次控制,微电网运行分析的两种市场政策。微电网经济运行调度政策的能量研究和人机界面的设计。通过对基于PQ控制仿真模型的逆变器的研究和基于下垂控制逆变器数学建模,微网控制策略的分析。微网格系统的微网格研究领域目前很少有研究文献层面的能源管理系统。综上所述,根据传统能源管理系统的电网本身的特点,本文提出了一种相对完善的微电网能源管理系统, 实现同步监测,预报预警和预防控制以及多目标优化运行综合协调控制功能的综合监测,预报,实时和历史信息系统。下面从系统功能和系统结构两个方面介绍,并重点介绍信息采集和数据预处理,网络分析,能量优化功能模块的主要任务及其完善的特点。 微电网能量管理系统功能系统结构如图所示 分为信息采集和数据预处理,网络分析和能量优化三个方面。 1 信息采集和数据预处理主要任务是收集微网单元的模拟量和开关量数据,天气信息,相量数据,并连接到电网能源管理系统数据;结合CIM模型,微电网管理历史部分信息,数据预处理,为下一步应用提供集成模型,图形和参数。通过使用SCADA测量实现,与 - PMU-2混合,用于微网系统状态的同步监测,克服了SCADA监测过程,对不同监测点之间的统一监测结果缺乏精确的定时和总体动态分析进行了在整个系统上,仿真模型只能通过离线校准问题。利用SCADA和-PMU-2与微电网和模块之间的能量管理系统进行数据传输,传输控制模块之间,一套基于CIM模型的PI(工厂信息)实时数据库系统进行数据交换存储基地,通过CIM模型,可以在微网能量管理系统内部和不同能源管理系统之间进行数据共享和交换,实时监测微电网等电气参数的并网节点信息,保证微电网电网和连接到电网之间的能量交换的安全稳定性。使用历史段管理模块,关联,合并,数据修改模型,如数据挖掘预处理,数据BuZhao功能实现收集信息的集成并形成历史段,下一步系统使用先进应用功能模块分析。 2 网络分析结合综合模型,图形和参数在一个单元中,用于微电网状态估计,基于微电网状态变量的混合测量;根据微网状态变量和控制变量,结合微电网,设备的健康状况,评估风险分析和敏感性分析,并预测潜在故障,定量消除趋势故障的调整因素限制;通过预警和报警模块,可以通过声光报警,故障情况,快速采取相应的预防措施或应急控制。基于混合测量的状态估计,在网络拓扑分析的基础上,基于模拟数据采集,SCADA模块和相量数据 - PMU-2模块采集,计算电网的状态变量。系统进入风险分析和敏感性分析。使用风险分析模块,在微网系统中定量随机故障因素,建立定量指标计算的风险表征系统,进行分析。经过灵敏度计算与控制变量的微小变化和状态变量之间的关系的变化,计算分支微电源的限制趋势,负载灵敏度,计算在此分析的基础上迅速消除限制量的微功率有功功率的调整,可以调整为更小,更快,更好的结果用于提供快速指导预防和控制危险情况。综合分析和灵敏度分析结果进行风险评估,安全分析,通过声光报警,预防措施和应急控制模块预测可能的风险状况和故障状况,同时处理微网系统是自动或手动干预或危险情况的故障,其优先级高于微电网优化调度模块。 3 能量优化的主要任务是确保系统安全的微网系统网络分析,在基于微电网信息的状态估计的基础上,结合微型发电机,负荷预测,储能单元能量状态预报和分析系统运行,实现微电网多目标优化运行和综合协调控制。根据微网控制目标的不同操作模式和系统,在预测信息和基于系统分析的运行中,分析微电网互联/隔离网运行模式的系统状态,微功率控制策略和储能系统,运行系统分析指标,具体单位

园区微电网方案资料

园 区 微 电 网 建 设 方 案 杭州品联科技有限公司 2017.3

一.项目背景 园区工程建设项目-智能微电网示范与研发中心,将充分利用园区内楼顶及空地安装一定容量的光伏发电与风力发电系统,并接入燃气轮机,储能装置,电动汽车充电站,模拟柴油发电系统,与大电网一起为园区内负荷供电,同时在研究生宿舍楼建设智能用电系统实现智能用电双向互动。 本方案将根据园区建设的实际情况,利用自身优势,搭建一套功能完善的微电网系统,以现实光伏,风力再生能源的最大化利用,节约储能系统建设成本,使得分布式可再生能源发电系统与整个园区内的配电网络协调运行。 改姓名集工程开放性,应用示范性,技术研发性和科普展示性于一体。 智能微电网示范与研发中心建设的主要内容包括: 1)新能源发电系统:本示范与研发中心将以光伏发电为主,并包含风力发电及燃气轮等新型能源,最终形成一个含多种分布式能源的微电网系统。 2)多种储能系统:本项目将建设综合铅酸蓄电池,铅酸铁锂电池,超级电容等多种形式的储能系统,保障微电网示范平台的安全可靠性,并实现电力削峰填谷及经济运行。 3)模拟柴油发电系统:本项目将选用一台50KW的模拟柴油发电机,布置于地下停车场。 4)电动汽车充电示范平台:建设一定规模的电动汽车充电设施,主要应用于小型车辆充电,且具备V2G扩展功能,后期实现能量的双向流动。 5)智能用电系统:以园区公寓为对象,对现有标计进行改造,运用用电采集器进行信息采集,通过用电能量管理系统,实现供电与用户的双向互动及用电能效的最优。 通过该平台的建设,希望实现以下功能: (1)实现光伏发电,风力发电、燃气轮机等分布式电源以及储能,电动 汽车能量转换单元等关键技术与设备的示范与应用,并开展如下技术研 究: 1)分布式电源与能量转换单元的布局优化、选型与结构设计;

微电网能量管理系统概述

微电网能量管理系统概述 一、微电网能量组成 微电网是近年来出现的一种新型能源网络化供应与管理技术的简称,它能够利地将可再生能源和清洁能源系统的接入,实现需求侧管理以及现有能源的最大化利用。微电网将发电子系统、储能系统及负荷相结合,通过相关控制装置间的配合,可以同时向用户提供电能和热能,并能够适时有效地支撑大电网,起到消峰填谷的作用。所以微电网概念一经提出,就引起世界能源专家和电力工业界的广泛重视,世界很多国家都加强了相关基础科学研究的力度,对微电网的认识随着研究的进行在不断地具体化、深入化和系统化。而微电网对于解决我国现有大电网运行中凸显的问题,以及能源危机等相关问题,无疑是提供了一个好的解决途径。 1.1风能 风能是因空气流做功而提供给人类的一种可利用的能量。空气流具有的动能称风能。空气流速越高,动能越大。人们可以用风车把风的动能转化为旋转的动作去推动发电机,以产生电力,方法是透过传动轴,将转子(由以空气动力推动的扇叶组成)的旋转动力传送至发电机。到2008年为止,全世界以风力产生的电力约有94.1 百万千瓦,供应的电力已超过全世界用量的1%。风能虽然对大多数国家而言还不是主要的能源,但在1999年到2005年之间已经成长了四倍以上。 风能优点: 1.风能为洁净的能量来源。 2.风力发电是可再生能源,很环保。 3.风能设施多为不立体化设施,可保护陆地和生态。 4.风能设施日趋进步,大量生产降低成本,在适当地点,风力发电成本已 低于发电机。

1.风力发电需要大量土地兴建风力发电场,才可以生产比较多的能源。 2.进行风力发电时,风力发电机会发出庞大的噪音,所以要找一些空旷的 地方来兴建。 3.在一些地区、风力发电的经济性不足:许多地区的风力有间歇性,更糟 糕的情况是如台湾等地在电力需求较高的夏季及白日、是风力较少的时 间;必须等待压缩空气等储能技术发展。 1.2光伏 光伏是太阳能光伏发电系统的简称。是一种利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。 光伏能量的来源由光伏板组件,它是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。 光伏优点: 1.普遍:太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或 岛屿,都处处皆有,可直接开发和利用,且无须开采和运输。 2.无害:开发利用太阳能不会污染环境,它是最清洁能源之一,在环境污 染越来越严重的今天,这一点是极其宝贵的。 3.巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,其总 量属现今世界上可以开发的最大能源。 4.长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年, 而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是 用之不竭的。

微电网能量管理运行优化研究

微电网能量管理运行优化研究 摘要:主要研究微电网能量管理优化问题,提出了电网分级分布式衰减能量管 理系统的建设方案,设计了电力预测,经济调度,需求响应和联络线功率控制等 功能电网能源管理系统软件。在此基础上,本文提出了一种基于改进遗传算法的 最小化总运营成本目标的微电网,通过仿真验证了一种用于优化能量管理和算法 有效性的新方法。 关键词:微电网;能源管理;分层优化;多代理系统 为了充分发挥低碳微电网的优势,经济,需要优化微电网功率调度,以最大 限度地利用微型电源。根据微网系统的特点,提出了一套相对完整的微网能量管 理系统,每个功能模块和主要任务的特点完善细节,系统可以实现综合监测,预测,时间和历史信息的微网系统的状态同步监测,预报警和预防控制以及微网电 力多目标优化运行综合协调控制功能。微电网能量管理系统进一步完善微电网控 制功能,提高微电网的控制精度和有效性,为开发和工程应用原型系统提供重要 支撑。 微电网具有分布式发电(微)电源小型化和数量少的特点,微发电特性不同,发电和环境条件,如温度,风速,日照辐射密切相关,输出具有很大的随机性和 挥发性。微电网中的负载将随时间,天气和经济因素而变化。这使得分布式发电 设备的故障率也随环境条件和时间而变化,电源和负载程序之间的能量交换也变 得更加复杂。 对于更多能源的微电网,能源管理系统需要从微电网系统的安全性,电源质量,经济和环境等方面全面控制。目前,微网系统网络结构框架,调度控制策略 和控制单元级功率/能量存储的微网系统级能量管理系统研究的主要研究仍然在婴儿理论中。主要对微电网能量管理系统的人机界面设计进行了优化。提出了基于 中央控制器的微电网能量管理策略的层次控制,微电网运行分析的两种市场政策。微电网经济运行调度政策的能量研究和人机界面的设计。通过对基于PQ控制仿 真模型的逆变器的研究和基于下垂控制逆变器数学建模,微网控制策略的分析。 微网格系统的微网格研究领域目前很少有研究文献层面的能源管理系统。综上所述,根据传统能源管理系统的电网本身的特点,本文提出了一种相对完善的微电 网能源管理系统, 实现同步监测,预报预警和预防控制以及多目标优化运行综合协调控制功能 的综合监测,预报,实时和历史信息系统。下面从系统功能和系统结构两个方面 介绍,并重点介绍信息采集和数据预处理,网络分析,能量优化功能模块的主要 任务及其完善的特点。 微电网能量管理系统功能系统结构如图所示 分为信息采集和数据预处理,网络分析和能量优化三个方面。 1 信息采集和数据预处理主要任务是收集微网单元的模拟量和开关量数据,天气信息, 相量数据,并连接到电网能源管理系统数据;结合CIM模型,微电网管理历史部分信息,数 据预处理,为下一步应用提供集成模型,图形和参数。通过使用SCADA测量实现,与 - PMU- 2混合,用于微网系统状态的同步监测,克服了SCADA监测过程,对不同监测点之间的统一 监测结果缺乏精确的定时和总体动态分析进行了在整个系统上,仿真模型只能通过离线校准 问题。利用SCADA和-PMU-2与微电网和模块之间的能量管理系统进行数据传输,传输控制 模块之间,一套基于CIM模型的PI(工厂信息)实时数据库系统进行数据交换存储基地,通 过CIM模型,可以在微网能量管理系统内部和不同能源管理系统之间进行数据共享和交换,

微电网能量管理系统

WORD文档,可下载修改 1微电网的典型结构 图1 微电网结构图 图1为微电网的结构图[1][2],它通过隔离变压器、静态开关和大电网相连接。微电网中绝大部分的微电源都采用电力电子变换器和负载相连接,使其控制灵活。微电网内部有三条馈线,其中馈线A和B上连接有敏感负荷和一般负荷,根据用电负荷的不同需求情况,微电源安装在馈线上的不同位置,而没有集中安装在公共馈线处,这种接入形式可以减少线路损耗和提供馈线末端电压支撑。馈线C上接入一般负荷,没有安装专门的微电源,而直接由电网供电。每个微电源出口处都配有断路器,同时具备功率和电压控制器,在能量管理系统的控制下,调整各自功率输出以调节馈线潮流。当监测到大电网出现电压扰动等电能质量问题或供 动作,微电网转入孤岛运行模式,以保证微电网内重要敏电中断时,隔离开关S 1 感负荷的不间断供电,同时各微电源在能量管理系统的的控制下,调整功率输出,保证微电网正常运行。对于馈线A、B、C上的一般负荷,系统则会根据微电网功率平衡的需求,将其切除。 2负荷分类、要求及接入设备功能 2.1负荷分类与要求 根据负荷对电力需求的特性可将负荷分为基本两大类[3]: 敏感负荷:对这一级负荷断电,将造成人身事故、设备损坏,将生产废品,使生产秩序 长期不能恢复,人民生活发生紊乱等。这是这是敏感负荷中的重要负荷。由于供电中断会造成大量减产、人民生活会受到较大影响的用户负荷,这是敏感负荷中的比较重要的负荷。一般负荷(非敏感负荷):敏感负荷以外的属于一般负荷。

可视为一个可控的负荷参与微电网的能量调度,并且在适当的时候(孤网模式时)可中断其供电,以此确保敏感负荷的正常供电。 要求:敏感负荷。保证不间断供电以及较高的供电质量。并由独立电源供电。 非敏感负荷对供电方式无特殊要求。 2.2负荷接入设备功能 (1)负荷通断控制 在正常情况下,敏感负荷与一般负荷均应正常供电,当微电网系统因事故出现功率缺额或运行在孤岛模式,应采取切断一般负荷,确保敏感负荷的正常供电。 (2)负荷保护 具有自动跳闸和电动合闸功能,可切断故障电流,发挥保护作用。 (3)微电网功率平衡控制-自动低频减载[4] 当微电网系统因事故出现功率缺额时,其频率将随之急剧下降,自动低频减载装置的任务是迅速断开相应数量的一般负荷,使系统频率在不低于某一允许值的情况下,达到有功功率的平衡,以确保微电网系统安全运行。 (4)负荷监测 提供微电网线路负荷的实时数据包括负荷功率,线路电流情况。对所有线路进行监控,对大负荷及超负荷提供预警和报警信号。 3微电源分类、特点、工作方式及接入设备功能 3.1微电源分类与特点[5] 光伏电池无废气排放、无化石燃料消耗,采用与建筑物集成在一起的模块可联合生产低温热能为房间供暖。但输出的功率由光能决定,因此是断续的,不能与负荷完全匹配,因此常常需要蓄电池或其他辅助系统。一般光伏电池发电模块拥有最大功率点跟踪(MPPT)功能、电池板监测和保护功能、逆变并网等功能,以保

能量管理系统(EMS)

能量管理系统 1 微电网结构 制器开关断路器敏感 负荷一般负荷电力传输线信息流线 图1 微电网结构图 图1微电网的结构图[1][2],它通过隔离变压器、静态开关和大电网相连接。微电网中绝大部分的微电源都采用电力电子变换器和负载相连接,使其控制灵活。微电网内部有三条馈线,其中馈线A 和B 上连接有敏感负荷和一般负荷,根据用电负荷的不同需求情况,微电源安装在馈线上的不同位置,而没有集中安装在公共馈线处,这种接入形式可以减少线路损耗和提供馈线末端电压支撑。馈线C 上接入一般负荷,没有安装专门的微电源,而直接由电网供电。每个微电源出口处都配有断路器,同时具备功率和电压控制器,在能量管理系统的控制下,调整各自功率输出以调节馈线潮流。当监测到大电网出现电压扰动等电能质量问题或供电中断时,隔离开关S 1动作,微电网转入孤岛运行模式,以保证微电网

内重要敏感负荷的不间断供电,同时各微电源在能量管理系统的的控制下,调整功率输出,保证微电网正常运行。对于馈线A、B、C上的一般负荷,系统则会根据微电网功率平衡的需求,将其切除。 2负荷分类、要求及接入设备功能 2.1负荷分类与要求 根据负荷对电力需求的特性可将负荷分为基本两大类[3]: 敏感负荷:对这一级负荷断电,将造成人身事故、设备损坏,将生产废品,使生产秩序长期不能恢复,人民生活发生紊乱等,这是敏感负荷中的重要负荷。由于供电中断会造成大量减产、人民生活会受到较大影响的用户负荷,这是敏感负荷中的比较重要的负荷。 一般负荷(非敏感负荷):敏感负荷以外的属于一般负荷。可视为一个可控的负荷参与微电网的能量调度,并且在适当的时候(孤网模式时)可中断其供电,以此确保敏感负荷的正常供电。 要求:敏感负荷,保证不间断供电以及较高的供电质量,并由独立电源供电。 非敏感负荷,对供电方式无特殊要求。 2.2负荷接入设备功能 (1)负荷通断控制 在正常情况下,敏感负荷与一般负荷均应正常供电,当微电网系统因事故出现功率缺额或运行在孤岛模式,应采取切断一般负荷,确保敏感负荷的正常供电。 (2)负荷保护 具有自动跳闸和电动合闸功能,可切断故障电流,发挥保护作用。 (3)微电网功率平衡控制-自动低频减载[4] 当微电网系统因事故出现功率缺额时,其频率将随之急剧下降,自动低频减载装置的任务是迅速断开相应数量的一般负荷,使系统频率在不低于某一允许值的情况下,达到有功功率的平衡,以确保微电网系统安全运行。 (4)负荷监测 提供微电网线路负荷的实时数据包括负荷功率,线路电流情况。对所有线路进行监控,对大负荷及超负荷提供预警和报警信号。 3微电源分类、特点、工作方式及接入设备功能 3.1微电源分类与特点[5]

微电网能量管理系统

微电网能量管理系统 This manuscript was revised by the office on December 10, 2020.

W O R D文档,可下载修改1微电网的典型结构 图1 微电网结构图 图1为微电网的结构图[1][2],它通过隔离变压器、静态开关和大电网相连接。微电网中绝大部分的微电源都采用电力电子变换器和负载相连接,使其控制灵活。微电网内部有三条馈线,其中馈线A和B上连接有敏感负荷和一般负荷,根据用电负荷的不同需求情况,微电源安装在馈线上的不同位置,而没有集中安装在公共馈线处,这种接入形式可以减少线路损耗和提供馈线末端电压支撑。馈线C上接入一般负荷,没有安装专门的微电源,而直接由电网供电。每个微电源出口处都配有断路器,同时具备功率和电压控制器,在能量管理系统的控制下,调整各自功率输出以调节馈线潮流。当监测到大电网出现电压扰动等电能质量问题或供电中断时,隔离开关S 动作,微电网转入孤岛运行模 1 式,以保证微电网内重要敏感负荷的不间断供电,同时各微电源在能量管理系统的的控制下,调整功率输出,保证微电网正常运行。对于馈线A、B、C上的一般负荷,系统则会根据微电网功率平衡的需求,将其切除。 2负荷分类、要求及接入设备功能 2.1负荷分类与要求 根据负荷对电力需求的特性可将负荷分为基本两大类[3]: 敏感负荷:对这一级负荷断电,将造成人身事故、设备损坏,将生产废品,使生产秩序 长期不能恢复,人民生活发生紊乱等。这是这是敏感负荷中的重要负荷。由于供电中断会造成大量减产、人民生活会受到较大影响的用户负荷,这是敏感负荷中的比较重要的负荷。一般负荷(非敏感负荷):敏感负荷以外的属于一般负荷。可视为一个可控的负荷参与微电网的能量调度,并且在适当的时候(孤网模式时)可中断其供电,以此确保敏感负荷的正常供电。 要求:敏感负荷。保证不间断供电以及较高的供电质量。并由独立电源供电。 非敏感负荷对供电方式无特殊要求。 2.2负荷接入设备功能 (1)负荷通断控制 在正常情况下,敏感负荷与一般负荷均应正常供电,当微电网系统因事故出现功率缺额或运行在孤岛模式,应采取切断一般负荷,确保敏感负荷的正常供电。 (2)负荷保护 具有自动跳闸和电动合闸功能,可切断故障电流,发挥保护作用。 (3)微电网功率平衡控制-自动低频减载[4] 当微电网系统因事故出现功率缺额时,其频率将随之急剧下降,自动低频减载装置的任务是迅速断开相应数量的一般负荷,使系统频率在不低于某一允许值的情况下,达到有功功率的平衡,以确保微电网系统安全运行。 (4)负荷监测 提供微电网线路负荷的实时数据包括负荷功率,线路电流情况。对所有线路进行监控,对大负荷及超负荷提供预警和报警信号。

能量管理系统

微电网能量管理系统 1 微电网的典型结构 制器开关断路器敏感 负荷一般 负荷电力传输线信息流线 图1 微电网结构图 图1为微电网的结构图[1][2],它通过隔离变压器、静态开关和大电网相连接。微电网中绝大部分的微电源都采用电力电子变换器和负载相连接,使其控制灵活。微电网内部有三条馈线,其中馈线A 和B 上连接有敏感负荷和一般负荷,根据用电负荷的不同需求情况,微电源安装在馈线上的不同位置,而没有集中安装在公共馈线处,这种接入形式可以减少线路损耗和提供馈线末端电压支撑。馈线C 上接入一般负荷,没有安装专门的微电源,而直接由电网供电。每个微电源出口处都配有断路器,同时具备功率和电压控制器,在能量管理系统的控制下,调整各自功率输出以调节馈线潮流。当监测到大电网出现电压扰动等电能质量问题或供电中断时,隔离开关S 1动作,微电网转入孤岛运行模式,以保证微电网内重要敏感负荷的不间断供电,同时各微电源在能量管理系统的的控制下,调整功率输出,保证微电网正常运行。对于馈线A、B、C上的一般负荷,系统则会根据微电网功率平衡的需求,将其切除。 2 负荷分类、要求及接入设备功能 2.1 负荷分类与要求

根据负荷对电力需求的特性可将负荷分为基本两大类[3]: 敏感负荷:对这一级负荷断电,将造成人身事故、设备损坏,将生产废品,使生产秩序长期不能恢复,人民生活发生紊乱等。这是这是敏感负荷中的重要负荷。由于供电中断会造成大量减产、人民生活会受到较大影响的用户负荷,这是敏感负荷中的比较重要的负荷。 一般负荷(非敏感负荷):敏感负荷以外的属于一般负荷。可视为一个可控的负荷参与微电网的能量调度,并且在适当的时候(孤网模式时)可中断其供电,以此确保敏感负荷的正常供电。 要求:敏感负荷。保证不间断供电以及较高的供电质量。并由独立电源供电。 非敏感负荷对供电方式无特殊要求。 2.2负荷接入设备功能 (1)负荷通断控制 在正常情况下,敏感负荷与一般负荷均应正常供电,当微电网系统因事故出现功率缺额或运行在孤岛模式,应采取切断一般负荷,确保敏感负荷的正常供电。 (2)负荷保护 具有自动跳闸和电动合闸功能,可切断故障电流,发挥保护作用。 (3)微电网功率平衡控制-自动低频减载[4] 当微电网系统因事故出现功率缺额时,其频率将随之急剧下降,自动低频减载装置的任务是迅速断开相应数量的一般负荷,使系统频率在不低于某一允许值的情况下,达到有功功率的平衡,以确保微电网系统安全运行。 (4)负荷监测 提供微电网线路负荷的实时数据包括负荷功率,线路电流情况。对所有线路进行监控,对大负荷及超负荷提供预警和报警信号。 3微电源分类、特点、工作方式及接入设备功能 3.1微电源分类与特点[5] 光伏电池无废气排放、无化石燃料消耗,采用与建筑物集成在一起的模块可联合生产低温热能为房间供暖。但输出的功率由光能决定,因此是断续的,不能与负荷完全匹配,因此常常需要蓄电池或其他辅助系统。一般光伏电池发电模块拥有最大功率点跟踪(MPPT)功能、电池板监测和保护功能、逆变并网等功能,以保证光伏电池能够可靠、安全地运行。 微型燃气轮机,具有体积小、质量轻、发电效率高、污染小、运行维护简单可以统一调度。微型燃气轮机模块具有气体温度、压力、流量测量、燃料供给、燃料注入控制、热量处理、转速监控,气体污染物监测、功率调节及并网等功能。具有电力电子转换和控制接口的微型燃气轮机可跟随电网的电压和频率变化,主要起负荷跟踪和削峰填谷的作用。它的另一个作用是完成基本的有功功率控制的同时,可调节系统输出的无功功率,实现电压调节和功率因数的调整。因此是目前最成熟、最具有商业竞争力的分布式电源之一。 3.2微电源典型工作方式 (1)光伏电池具有MPPT和定电压两种工作方式。 当工作在MPPT工作方式且无功功率可调时遵循Q-V下垂特性。 当工作在定电压工作方式时遵循P-f下垂特性。 (2)微型燃气轮机可工作在功率可调的运行方式或定功率的运行方式。 当工作在功率可调的方式时遵循P-f下垂特性和Q-V下垂特性。在此工作方式下,微型燃气轮机可作为具有自适应调节功能的调节电源,快速跟踪负荷有功功率和无功功率的变化。 当工作在定功率的方式时按照设定值输出有功功率和无功功率。

微电网标准体系

微电网标准体系建设 微电网在全国范围发展迅速,亟需标准化工作给予技术支撑和规范。微电网改变了电力系统在中低压层面的结构和运行方式。与微电网的电网运营企业和设备供应商们熟悉的传统原则受到挑战。迫切需要国家层面的标准化工作支撑,很多时候我们一些供电原则、保护原则等受到挑战,迫切需要从国家层面标准化工作的支撑,必须要有国标才方便管理层面,甚至政府、法院认可的程度。 微电网的标准体系急需统一的规划和顶层设计,微电网和分布式电源并网涉及发电、电网、用户等多个领域,系统复杂性突出。需要将微电网作为一个相对独立单元,对相关技术领域开展系统分析。对不同应用场景下微电网、分布式电源功能进行定位和系统边界区分。从系统的角度辨识标准缺失和可能出现的重复甚至矛盾的地方,识别亟需制定的标准,制定微电网标准化路线图和标准体系。这是我们标委会在做的工作。 目前定的标准,包括微网建模及仿真、微网并网、微源接入微网、微网规划设计、微网运行特性测试、微网调试及验收、微网运行维护、微网内发电侧管理、微网内需求侧管理、微网内储能管理、微网保护、微网信息与通讯、微网监控系统功能、微网黑启动、微网运行评价。在标准领域都有很多工作急需要做,没有这些标准支撑很难形成大规模网站化推广。 针对微电网建设的难题,北京群菱专注于微电网研究试验平台的开发,推出多个微电网实验平台: 1.微电网仿真试验研究平台 2.微电网监控及能量调度管理系统 3.微电网电缆阻抗模拟系统 4.多源互补智能微电网供电系统 5.开放式交直流电力电子研究与试验平台

以上平台均为群菱能源专业设计制造,详细技术方案请联系群菱获取。试验平台可以满足交直流混合微电网的关键设备检测、功能性验证试验、能量调度管理及控制策略研究、微电网之间的相互影响及调度控制技术研究、微电网储能研究以及风光储科学配比优化研究与高渗透率研究。 群菱能源微电网仿真实验室成功案例:中国电科院“先进配电自动化与配电网优化控制联合实验室”、“电力需求侧管理和智能用电仿真实验室”,中科院电工研究所“多能互补发电系统运行和保护性能测试系统”,国网智能电网研究院“交/直流电网物理仿真试验平台”,河南电科院“智能配电网新能源接入研究平台”,浙江工业大学“智能微电网试验、测试与储能系统”,南昌大学“微电网仿真模拟试验平台”等数十家科研院所,为我国微电网标准体系建设贡献出一份力量。 标准化工作的现状以及展望,中国在IEC先后发起成立adhocG53微电网特别工作组和IECSEG6微电网系统评估组,这个组的使命去年年底已经完成了,制定IEC在微电网领域的战略规划。目前微网标准的现国家标准层面,微电网领域6项,行业标准微电网领域4项。微电网标准体系的研究和编制,内容涵盖微电网的规划设计、调试验收、并网测试、运行控制等内容。

含煤改电设备的户用光伏微电网能源管理系统的制作流程

本技术涉及一种含煤改电设备的户用光伏微电网能源管理系统。双向计量装置,智能逆变器,光伏电池板,储能蓄电池和能效管理系统,能效管理系统与智能逆变器连接,智能逆变器分别与光伏电池板和储能蓄电池连接,能效管理系统还与本地负载连接,电网与双向计量装置连接,双向计量装置分别与智能逆变器和本地负载连接;能效管理系统具有并网运行策略、离网运行策略和储能系统运行策略。本技术一种含煤改电设备的户用光伏微电网能源管理系统,先根据单个家庭的用电情况,制定相应的控制策略分为并网运行策略和离网运行策略,根据具体运行控制策略编写PLC程序,实现PLC对发电单元、储能单元和负载等单元的控制,具有相当大的实用性。 技术要求 1.一种含煤改电设备的户用光伏微电网能源管理系统,其特征在于:它包括双向计量装置,智能逆变器,光伏电池板,储能蓄电池和能效管理系统,能效管理系统与智能逆变 器连接,智能逆变器分别与光伏电池板和储能蓄电池连接,能效管理系统还与本地负载 连接,电网与双向计量装置连接,双向计量装置分别与智能逆变器和本地负载连接; 能效管理系统具有并网运行策略、离网运行策略和储能系统运行策略; 并网运行策略如下:

当P发电>P负荷且Soc<SocMax;△P1输送到微电网储能系统; 当P发电>P负荷且Soc=SocMax;△P1输送到电网; 当P发电=P负荷;系统达到暂态平衡,不进行能量调度控制; 当P发电<P负荷且Socmin<Soc;△P2由微电网储能系统提供; 当P发电<P负荷且Socmin=Soc;△P2由电网提供; 其中,P发电表示光伏电池板的发电功率,P负荷表示本地负载的负荷功率;SOCmin表示储能蓄电池最低容量下限;SOCmax表示储能蓄电池最高容量上限;△P1=P发电-P用电,△P1表示发电大于用电时微电网盈余功率;△P2=P用电-P发电,△P2表示用电大于发电时微电网不足功率; 离网运行策略如下: 当P发电>P负荷且Soc<SocMax;△P1输送到微电网储能系统; 当P发电>P负荷且Soc=SocMax;△P1为发电单元减小的功率; 当P发电=P负荷;系统达到暂态平衡,不进行能量调度控制; 当P发电<P负荷且Socmin<Soc;△P2由微电网储能系统提供; 当P发电<P负荷且Socmin=Soc;△P2为负荷切投的功率; 其中,P发电表示光伏电池板的发电功率;P负荷表示本地负载的负荷功率;SOCMin表示储能蓄电池最低容量下限;SOCMax表示储能蓄电池最高容量上限;△P1=P发电-P用电,△P1表示发电大于用电时微电网盈余功率;△P2=P用电-P发电表示用电大于发电时微电网不足功率; 储能系统运行策略如下:

智慧能源管理系统APP

智慧能源管理系统APP 软件技术要求 1 需求概述 该APP系统主要是通过GPRS、以太网、WIFI等多种方式上传到网络服务器或本地电脑,使用户可以在互联网或本地电脑上查看相关数据,方便电站管理人员和用户对光伏电站的运行数据查看和管理; 本系统需具有友好的用户界面、强大的数据分析功能以及完善的故障报警系统,并且能够实时展示微电网的相关数据,确保微电网安全可靠和稳定运行。 智慧能源管理系统针对项目投资方或业主、调动中心调度员、运维人员三方不同的角色及目标,设定了三方不同的任务处理功能和流程管理功能,调度中心调度员主要负责账户管理、提交故障信息、流程审批、验收归档等;投资方或业主主要负责故障申报、投诉管理及流程管理;运维人员主要负责监控系统、故障申报、现场检修及体检等任务,可实现智能化监控及故障申报、及时响应检修需求、自动生成各类报表等功能。 兼容南邮校园微电网系统控制软件 兼容南邮校园微电网系统数据通讯格式。 兼容南邮校园微电网系统控制通讯协议。 需支持IOS和安卓双系统。 2 主要技术指标 1.用户注册: 提供管理员,普通用户注册和运维人员注册,并提供用户信息,微网信息页 面显示和查询 2.电站选择:对用户电站进行分区域管理(如华北区,华中区,华南区,西部区) 3.电站总览:根据不同用户进行电站项目的选择,对电站布局信息,发电量信息进行数据 展示(电站描述,电站布局,发电总览) 4.实时监控:提供微电网内光伏发电系统,风力发电系统,储能系统等组成部分的信息显 示并提供历史记录查询,包括功率、电压、电流和气象站等信息。 5.数据分析:提供电力数据分析,预测信息,实时数据和历史记录显示,包括光伏发电预 测,风力发电预测,负荷预测,故障预测,历史发电信息记录,告警信息等(电力分析,发电预测,故障诊断,统计报表)。 6. 告警查询:不同权限的用户可以根据自己的需求进行故障分类查询, 7. 推送信息:将报表、故障信息、运维信息智能推送至用户。

微电网能量管理解决方案

微电网能量管理解决方案 一、概述 微电网是由分布式电源、储能系统、能量转换装置、监控和保护装置、负荷等汇集而成的小型发、配、用电系统,是一个具备自我控制和自我能量管理的自治系统,既可以与外部电网并网运行,也可以孤立运行。从微观看,微电网可以看作小型的电力系统;从宏观看,微电网可以认为是配电系统中的一个“虚拟”的电源或负荷。 微电网概念的兴起主要是解决分布式电源并网带来的技术、市场和政策上的问题。为了最大限度地发挥分布式发电技术在经济、能源和环境中的优势,很多国家都将微电网纳入未来电网发展的日程中。欧洲以及美国、日本等国家都针对本国实际提出了微电网的概念并积极开展研究,到目前为止,微电网在理论与应用上都取得了丰硕的成果。中国的微电网发展起步较晚,目前主要处在实验室及示范工程阶段。 西安高压电器研究院有限责任公司(以下简称西高院)在微电网发展初期开始关注该领域的动态,并结合自身的生产发展实际于2011年开始筹备组建用于微电网及相关配套新能源产品研究的示范平台。为了能够更加深入的研究微电网的运行特性,西高院项目组自主研发了用于微电网的能量管理系统,实现了对微电网内各个微电源、混合储能、可分级调控负荷及其他相关设备的综合管理。 二、微电网系统简述 西高院微电网系统的主要组成有,太阳能光伏发电和模拟风力发电组成的微源模块,由电池和超级电容组成的混合储能模块,可以进行分级控制的负荷模块,可以实现自动检测和无缝切换的并网模块。系统主要组成见图1。 该系统一期建设容量为22kW,以交流母线为主,直流母线预留接口,方便后期扩建。系统建成后为西高院综合办公楼提供照明用电,在充分利用新能源的同时,也为用电负荷提供了双重供电的保障。 根据初步的统计测算数据,该系统年发电量超过三万千瓦时,减少碳排放量约为两万七千五百余千克。系统的建成不仅能够为相关新能源领域内的研究提供平台,同时提供了清洁能源的电能,为环境的净化贡献了一份力量。 三、能量管理解决方案 西高院微电网的能量管理解决方案是项目组自主研发的一套系统,软件系统完全自主开发,硬件系统主要由CAN通信网络组成,并配置了适当的控制设备。它是一个一体化信息处理平台,将微电网监控和能量管理结合起来,实现了对微电网各个设备状态的监控,微电网内部能量运行的管理,系统运行模式及策略的优化,对系统的控制保护等功能集合在一起的综合管理系统。

相关文档
最新文档