高速电路传输线反射问题的分析与解决

高速电路传输线反射问题的分析与解决
高速电路传输线反射问题的分析与解决

武汉理工大学

班级:___电子与通信工程153班_____ 姓名:_________ ___________ 学号:________1049731503239_______ 教师:____ ____________

高速电路传输线反射问题分析与解决

(武汉理工大学信息工程学院,武汉,430070)

摘要:高速数字信号的传输线反射问题是影响现代数字电路设计的重要原因因素之一,严重的反射将破坏信号的完整性,并引起过冲现象,从而出现错误的数字逻辑和影响电路上元器件的正常使用。本文重点的分析高速电路中信号反射产生的原因,和给出解决反射问题的方案。

关键词:传输线;反射;解决方案

Abstract: Reflection high-speed digital signal is an important factor affecting the modern digital circuit design, serious reflection would undermine the integrity of the signal, and cause overshoot phenomenon, which appears erroneous digital logic and destruction devices. This paper analyzes in detail the causes of signal reflections and phenomena, and give a reflection solution.

Keyword: Transmission line;reflection; solution

1.引言

反射就是在传输线上的回波,如果传输线的长度满足长线时,且没有合适的终端匹配,那么来自于驱动端的信号脉冲在接收端被反射,从而引起非预期效应,使信号轮廓失真。反射是传输线的基本效应,即当信号沿着传输线传输时,碰到阻抗不连续时会发生反射。当信号在传输时,碰到了比目前高的阻抗时会发生正向发射,使得信号边沿的幅度增加,信号边沿会出现过冲。过冲就是指接收信号的第一个峰值或者谷值超过了设定电压,对于上升沿是指第一个峰值超过最高电压;对于下降沿是指第一个谷值超过了最低电压。当信号在传输时碰到比目前阻抗低时,会产生负向反射,使得信号边沿的幅度减小,信号边沿出现台阶,即欠冲。严重时,可能会产生假时钟信号,导致系统的读写出现误读或者误写等操作。

在一个时钟周期中,反复的出现过冲和欠冲,我们就称之为振荡。振荡是电路中因为反射而产生的多余能力无法及时吸收的结果。在印制电路板中,反射通常由连线阻抗的不匹配造成,如:不同布线层阻抗不一样、T型连接、过孔、线宽的变化、器件的输入输出阻抗,封装寄生参数等等。以下图 1.1理想传输线模型来分析与信号反射有关的重要参数。

理想传输线L被内阻R0的数字信号驱动源VS驱动,传输线的特性阻抗为Z0,负阻抗为Rl。理想的情况是当且仅当R0=Z0=RL时,传输线的阻抗是连续的,不会发生任何反射,但能量一半消耗在源内阻R0上,另一半消耗在负载电阻RL 上。如果负载阻抗大于传输线的特性阻抗,Z0

负载端阻抗与传输线阻抗不匹配会发生在负载端,反射一部分信号回源端,反射电压信号的幅度由负载反射系数ρ决定,见下式:

ρ=(RL-Z0)/(RL+Z0)(1.1)

上式中,ρ称为负载电压反射系数,其定义是反射电压与入射电压之比。

由(1.1)可知,-1<ρ<1,当RL=Z0时,ρ=0,将不会产生反射。即只要根据传输线的特性阻抗进行终端匹配,就能消除反射。从原理上说,反射滤波的幅度可以大到入射电压的幅度,极性可正可负。当RL0时,ρ>0处于欠阻尼状态,反射波极性为正。如果传输线由两段不同特性阻抗的传输线组成,则连接点处也会产生信号的反射。传输线上出现的分叉点就是这样一个阻抗不连续点。反射信号产生的原因有,过长的走线;未被匹配终端的传输线,过量电容或电感以及阻抗失配。

当信号在终端处的阻抗不连续点被反射时,信号的一部分将反射回源头。当反射信号到达源头时,若源头端阻抗不等于传输线阻抗就会产生第二次反射。因此若传输线的两端在阻抗不连续的情况下,信号将在驱动线路和接收线路之间来

回反射。信号反射波因传输线的损耗将最后达到直流稳态。

2.产生反射现象的因素

产生反射现象的原因的因素有信号上升沿时间、传输线的端接、短分支节线、容性分支节线、拐角和通孔、载重线、电感性间断线等。

2.1上升时间对反射的影响

当上升时间变得大于传输线延迟时间的两倍时,传输线为短线,上升时间对波的形状不会存在影响。因为信号到达负载端时,产生了反射,反射信号回到源端,但是此时源端的信号正处于上升阶段,这样的反射会在信号缓慢的上升过程中被吸收掉,从而不会影响信号电平的幅值。但是如果上升时间小于传输线延时时间的两倍时,上升时间开始会对波的形状产生重要影响。

2.2串联传输线的反射影响

通常,电路板上走线的宽度必须被压缩,因为它可能经过通孔或在密集区域的周围布线。如果走线的宽度有一小段发生变化,特性阻抗就会改变,一般是增加。有三个特征会决定短的传输线片段的影响:不连续性的延时,不连续性特性阻抗,信号上升时间。当延时与上升时间相比很长时,反射系数将饱和。反射系数的最大值与不连续性的反射有关。

2.3短分支传输线的反射影响

分析短线的影响是比较复杂的,因为要考虑很多反射的问题。当信号离开驱动端,首先会遇到分支点。这里我们会看到两段传输线并联产生一个低的阻抗,则一个负反射将会返回到源端。

2.4容性分支在传输线中间引起的反射影响

附着在走线中间的测试点,通孔,封装引线,甚至一小段分支,作用就像一个集总电容。发射信号最初不会受到影响,但是当它从走线末端返回到源端时,就会受到反射回到接收端就为负的电压,使得接收到的信号下降,导致下冲。

传输线中间理想电容的影响依赖于信号的上升时间和电容的大小。电容越大,阻抗越小,就会产生更大的负极性反射电压,导致接收端出现更大的下冲。在时域内,电容的阻抗为:

Zcap=V/(Cdv/dt)

2.5拐角和通孔的影响

当信号沿着均匀的互连线传输是,发射信号不存在反射集失真。如果均匀互连线存在90度的弯角,就有阻抗的改变,则发生反射及信号的失真。90度的拐角导致了均匀互连线阻抗的不连续性,影响了信号的完整性。

将90度的拐角换成45度的弯曲将会减小这种影响,如果改用常宽的圆弧状弯曲,影响会进一步的减小。拐角对信号传输线的唯一影响是由于走线弯曲处的额外宽度,这个额外的线宽作用就像一个容性的不连续性。这个容性的不连续性导致了信号的反射和时延。如果走线的弯曲处是常宽的,走线宽度没什么变化,信号在拐弯的每一点遇到的阻抗都是相同的,那么就不会有反射。

3.抑制反射的端接技术

消除反射现象的方法一般有:布线时的拓扑法和相应的端接技术。常用布线时的拓扑结构有:点到店,菊花链,星型,分支和周期性负载等结构。如下图所示:

(a)点到点(b)菊花链

(c)星型(d)远端分支

(e)周期性负载

点到点:点到点的拓扑结构比较简单,只要在发送端或接受端进行适当的阻抗匹配。

菊花链:当网络的整个走线长度延时小于信号的上升或者下降时间时,用菊花链拓扑结构会比较好,这时网络上的负载都可以看作为容性负载。菊花链同时也限制了信号的速率,只能工作在低速电路中。

星型:使用星型的拓扑结构时,对每个分支都进行均衡设计,要求每个分支的接收端负载一致,并选择适当的匹配方式。

远端分支:跟星型类似,只不过分支是靠近接收端的。这种拓扑结构中,也要限制远端stub的长度,使stub上的传输延时小于信号的上升沿,这样每个接收端都可以被看作为一个简单的容性负载。

周期性负载:周期性负载的拓扑结构同样要求每段stub的长度足够小,使得stub上的产生延时小于信号上升沿,这种主干传输和所有的stub端组合起来的结构可以看作为一段新的传输线,其特征阻抗要比原来主干传输性的特征阻抗小,传输速率也比原来的低,因此在进行足感匹配是要注意。

3.1单端端接技术

传输线的长度符合下式的条件应使用端接技术:

L>t/(2p)

式中,L为传输线线长,t为源端信号的上升时间,p为传输线上每单位长度的带载传输延时。传输线的端接原则:如果负载反射系数或源反射系数二者任一为零,反射将被消除。通常采用两种方法(1)使负载阻抗与传输线阻抗匹配,即并行端;(2)是源阻抗与传输线阻抗匹配,即串行端接。

并行端接主要是在尽量靠近负载端的位置加上拉或者下拉电阻以实现终端的阻抗匹配,根据不同的应用环境,并行端接可以分成以下几类:

(1)简单的并行端接

这种端接方式是简单的在负载端加入一个下拉电阻来实现匹配,采用此端接的条件是驱动端必须能够提供输出高电平是的驱动电流以保证通过端接电阻的搞电平电压满足门限电压要求。在输出为高电平的状态时,这种并行端接电路消耗电流过大,对于50欧的端接负载,维持TTL搞电平消耗电流高达48mA,因此一般器件很难靠近的支持这种端接电路。

优点:并行端接提供了一张简单的设计方案。它是一种最简单的终接方案。在大多数情况下,这种方法只需要一个附加元件,如果传输线的两端需要端接就需要要个电阻。

缺点:并行端接浪费电阻的直流功耗。这种方法无论在高电平还是低电平,都需要驱动端具有稳定的直流,这样就增加了驱动端的直流负载。当传输线的一端接容性负载时,端接时,上升沿斜率就会变化。当末端接时,在时间常数Z0c内,电压是激励信号幅值的2倍。当增加并行端接时,上升的时间会更快。

当采用并行端接时,必须注意到,对TTL级,线阻抗小于100欧姆时采用这种端接方式,要求直流输出为24mA。因此对于电池驱动系统,不推荐采用并行端接方案。另外,端接电阻要消耗多达0.25W的功率,这对于仅消耗几豪瓦功率的CMOS系统来说是不合适的,功耗的大小依赖于占空比:对于低占空比,连接电阻到底使用有最低功耗,对高占空比,连接电阻到VCC使得有最低的功耗。还有一点就是,大的下拉电阻可能会使下降沿比上升沿快,这会导致占空比内信号的失真。

(2)戴维宁并行端接

戴维宁端接机分压器型端脚,如下图所示:

它采用的上拉电阻R1和下拉电阻R2构成端接电阻,通过R1和R2吸收反射。

R1和R2阻值的选择由下面的条件决定。R1的最大值由可接受的信号的最大上升时间决定,R1的最小值由驱动源的吸电流数值决定。R2的选择应该满足当传输线断开时电流逻辑高电平的要求。

戴维宁终端匹配的优点:在这种匹配方式下,终端匹配电阻同时还作为上拉电阻和下拉电阻来使用,因而提高了系统的噪声容限,降低了对源端器件驱动能力的要求。这种方案能够很好的抑制过冲。

戴维宁终端匹配的缺点就是无论逻辑状态时高还是低,在VCC到地之间都会有一个常量的直流电流存在,因而会导致终端匹配电阻中有静态的直流功耗。信号负载为电容时,相对于没有匹配的信号线而言,戴维宁终端匹配技术同样会改善信号的质量,是的信号的摆动缩小。

(3)主动并行端接

在此端接方法中,端接电阻RT(RT=Z0)将负载端信号拉至偏移电压Vbias,如上图所示。Vbais的选择依据是使输出驱动源能够对搞定电平信号有几区电路能力。这种端接方式需要一个具有吸,灌电流能力的独立的电压源电压,输入为逻辑地电平的跳变速度的要求。在此端接方案中,如果偏移电压为正电压,输入逻辑低电平是有DC直流功率损耗,如果偏移电压为负电压则输入为逻辑搞电平是有直流功率损耗。

(4)并行AC端接

如下图所示,并行AC端接使用电阻和电容网络(串联RC)作为端接阻抗。

理想的电容值将随着传输线阻抗,边沿速率,预期的信号质量的变化而变化。

这个值不是最关键的,但是测试表明,对于FCT逻辑,100pf的电容值能够得到很好的折衷,将电容值增加到200pf会改善信号的质量,但是却以功耗随后为代价。把电容值减小到47pf,降低了功耗随后,但是信号质量会变差。值低于47pf会对滤波有非常高的频率响应,对于传输线的端接是无效的。值高于200pf,会曾加功耗而不会有附加的信号质量的改善。

(5)二极管并行端接

某些情况下可以使用肖特基二极管或者快速开关硅管进行传输线端接,条件是二极管的开关速度必须至少比信号上升时间快4倍以上。在面包板和底板的线阻抗不好确定的情况下,使用二极管端接即方便又省事。如果在系统调试是发现振铃问题,可以很容易的加入二极管来消除。

3.2多负载端端接技术

在实际电路中常常会遇到单一驱动源驱动多个负载的情况,这时需要根据负载的情况及电路的布线拓扑结构来确定端接方式和使用端接的数量。一般情况下可以考虑以下两种方案。如果负载之间的距离比较近,可通过一条传输线与驱动端连接,负载都位于这条传输线的终端,这是只需要一个端接电路。如采用串行端接,这在传输线源端加入一串行电阻即可。如果多个负载之间的距离较远,需要通过多条传输线与驱动端连接,这时每个负载都需要一个端接电路。如采用串行端接,则在传输线源端每条传输线上均加入一串行电阻。

3.3端接技术比较

4 结束语

本文基于课程要求,讨论了阻抗匹配与端接方案随着互联长度和电路中逻辑器件的家族在不同也会有所不同,只有针对具体情况,使用正确适当的端接方法才能有效的减少信号的反射。

参考文献

[1] 张鹏飞. 高速PCB信号完整性设计与分析[D]. 内蒙古大学 2010

[2] 李小荣. 高速数模混合电路信号完整性分析与PCB设计[D]. 杭州电子科技大学2010

[3] 吴毅杰. 智能火灾监控系统视频采集与处理模块的研制[D]. 南京航空航天大学2010

[4] 罗朋. 电路板电磁兼容分析软件研发[D]. 西安电子科技大学 2010

[5] 乔明月. 高速电路馈电接地系统的电源完整性和电磁兼容研究[D]. 上海交通大学

2008

[6] 闫宏. 受电磁干扰的人脸图像检测与识别方法研究[D]. 哈尔滨工程大学 2007

[7] 李琳. 基于ARM的平台设计和系统移植[D]. 天津工业大学 2006

[8] 刘渝. 高速数字印制电路板中的电磁辐射分析[D]. 西安电子科技大学 2006

[9] 吴聪达. 高速数字设计中的信号完整性研究[D]. 西安电子科技大学 2005

[10] Eric Bogatin.Signal integrity: simplified. . 2004

[11] Cory, Haim,Shiran, Shabtay.Importance of losses in the coupling of

transmission lines. IEEE Transactions on Electromagnetic Compatibility .

1988

[12] M. Swaminathan,A. E. Engin.Power integrity modeling and design for

semiconductors and systems. . 2007

[13] Lj Er-Ping,Yuan Wei-Liang.Signal integrity simulation and analysis in

high-speed interconnects by using FDTD. 3rd International Symposium on Electromagnetic Compatibility . 2002

[14] Swaminathan, M.,Joungho Kim,Novak, I.,Libous, J.P.Power distribution

networks for system-on-package: status and challenges. Advanced Packaging, IEEE Transactions on . 2004

[15] Tnag Tung Yan,Jenu Z.Mohd."Capacitive and inductive couplings of PCB traces". ENCON2000Proceedings . 2000

[16] 杨古月. PCB板的电磁协同设计[D]. 哈尔滨工程大学 2013

[17] 付兆静. 基于Hyperlynx的PCB板信号完整性分析[D]. 哈尔滨工程大学 2013

[18] 李小荣. 高速数模混合电路信号完整性分析与PCB设计[D]. 杭州电子科技大学2010

[19] 张鹏. 高速PCB板信号完整性仿真分析及应用[D]. 西安电子科技大学 2011

[20] 闫铁铮. 高速PCB信号完整性分析及硬件系统设计中的应用[D]. 厦门大学2009

变压器等值电路总结

变压器总结 首先看变压器的序电抗及等值电路 1:变压器负序电抗及等值电路与正序相同 2:零序电抗及等值电路与变压器的结构以及接线方式,需要按每一种结构,每一种接线仔细分析后确定,要特别注意零序等值电路的画法 3:画变压器零序等值电路时将变压器正序等值电路中的激磁电抗Xm以零序激磁电抗Xmo代替 4:在分析经电抗接地情况时,注意接地电抗中流过的是三倍零序电流,故在等值电路中接地电抗值应以三倍表示,电阻也是三倍 电力系统各序网络的制定 对应对称分量法分析计算不对称故障时,首先必须做出电力系统的各序网络。为此,应根据电力系统的接线图,中性点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该网络中,并用相应的序参数和等值电路表示。 例如

在这里要看懂这个复合序网图,首先分解两卷变和三卷变的各序等值电路 1:两卷 (母线端) Jx1 jx2 正序 负序 零序有四种接线方式 一:三角形连接 (母线端) Jx0 (1) f V (1)f I 1E LD

母线端 二:星行连接jx0 三:星行接地连接 Jx0 四:星形带阻抗接地 J3Xg jx0 上面的四种零序接线图简化后,就很容易整理出两两接线图 表2.1 双绕组变压器零序等值电路

同理:)三绕组变压器 jx1 jx2 三jx3绕组正(负)序等值电路 零序与二卷变一样,所以组合方式如下图 表2.2 三绕组变压器零序等值电路 等值电路图均同左图, 但Z III 应改为Z III //Z Ⅱ V :1k 图2.13 三绕组变压器正负序等值电路 3 13 3I II I I I

传输线反射以及终端电阻

传输线反射以及终端电阻 传输线反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 按照传输线理论,当负载与输出不匹配时,信号的传输为非理想行波状态(驻波或反射),会出现波形失真或衰减。阻抗匹配则传输功率大,对于一个电源来讲,当它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器 ,输出阻抗50 Q,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即电缆长度可以忽略的话,就无须考惠阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了;反之则在传输中有能量损失。在高速的设计中,阻抗的匹配与否关系到信号质量的优劣。阻抗匹配的技术可以说丰富多样,但是在具体的系统中怎样才能比较合理地应用,需要衡量多个方面的因素。例如,在系统设计中,很多采用的都是源端的串联匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式,以下逐一分析。例如,差分的匹配多数采用串联终端的匹配;时钟采用并联终端匹配。1)串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻 R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。串联终端匹配后的信号传输具有以下特点:(1)由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播。(2)信号在负载端的反射系数接近十1,因此反射信号的幅度接近原始信号幅度的50%。(3)反射信号与源端传播的信号叠加,使负载端接收到的信号与原始信号的幅度近似相同。(4)负载端反射信号向源端传播,到达源端后被匹配电阻吸收。(5)反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5 V的CMOS驱动器,在低电平时典型的输出阻抗为37 Q,在高电平时典型的输出阻抗为45 Q;TTL驵动器和CMOS驱动器一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。2)并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。并联终端匹配后的信

混频器原理分析

郑州轻工业学院 课程设计任务书 题目三极管混频器工作原理分析 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一、主要内容 分析三极管混频器工作原理。 二、基本要求 1:混频器工作原理,组成框图,工作波形,变频前后频谱图。 2:晶体管混频器的电路组态及优缺点。 3:自激式变频器电路工作原理分析。 4:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 5:设计时间为一周。 三、主要参考资料 1、李银华电子线路设计指导北京航天航空大学出版社2005.6 2、谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3、张肃文高频电子线路高等教育出版社 2004.11 完成期限:2010.6.24-2010.6.27 指导教师签名: 课程负责人签名: 2010年6月20日

目录 第一章混频器工作原理------------------------------------------4 第一节混频器概述------------------------------------------------4 第二节晶体三极管混频器的工作原理及组成框图---------5 第三节三极管混频器的工作波形及变频前后频谱图------8 第二章晶体管混频器的电路组态及优缺点------10 第一节三极管混频器的电路组态及优缺点------- 第二节三极管混频器的技术指标------ 第三章自激式变频器电路工作原理分析--------------------12 第一节自激式变频器工作原理分析---------------------12 第二节自激式变频器与他激式变频器的比较------------------------13 第四章心得体会---------------------------------------14 第五章参考文献---------------------------------------15

电力电子电路分析与仿真实验报告模板剖析

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号: 年月日

实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

变压器等效电路

(四)、等值电路 变压器空载时,从一次绕组看进去的等效阻抗为Z m ,有 ? -1E =? 0I (m m jx r +)=? 0I Z m (3-14) Z m =m m jx r +;m r 称励磁电阻,是变压器铁心损耗的等效电阻,即m Fe r I p 20=;m x 为主磁通在铁心中引起的等效电抗,称为励磁电抗,其大小正比于铁心磁路的磁导。 将式(3—14)代入式(3—11)得 ? ? -=11E U +? 0I Z 1=? 0I Z m +? 0I Z 1=? 0I (Zm +Z 1) 相应的等值电路如图3-7所示。 例3-2 一台180kV ·A 的铝线变压器,已知U 1N /U 2N =10000/400V ,Y ,yn 接线,铁心截面积S Fe =160cm 2,铁心中最大磁密度B m =1.445T ,试求一次及二次侧绕组匝数及变压器变比。 图3-7 变压器空载时的等值电 路

解 变压器变比 k = 2 1U U =253 /4003 / 10000= 铁心中磁通 Фm =B m S Fe =1.445 ×160×10- 4=231×10— 4Wb 高压绕组匝数 N 1=1125 10 2315044.4310000 44.44 1 =-????= Φm f U 匝 低压绕组匝数 N 2=4525 1125 1 == k N 匝 第三节 变压器的负载运行 当变压器一次绕组加上电源电压? 1U ,二次绕组接上负载Z L ,这时变压器就投入了负载运行,如图3—8所示。 图3-8 变压器负载运行 一、变压器负载运行时的电磁关系

变压器负载运行时,二次绕组中流过电流? 2I ,产生磁动势? 2F =? 2I N 2,由于二次绕组的磁动势也作用在同一条主磁路上,从而打破了变压器空载运行时的电动势平衡状态。变压器负载运行时,一次绕组中的电流从空载时的0? I 转变成负载时的? 1I 。变压器负载运行时,铁心中合成磁动势为? 2I N 2+ ? 1I N 1,并由此建立主磁通Ф,同时在一次绕组二次绕组中感 应电动势?1E 和? 2E 。从空载运行到负载运行,一次侧电流由空载时的0?I 增加了??1I =?1I -0? I ,该增量所产生的磁动势正好与二次侧所产生的磁动势互相抵消,从而使变压器中的电磁关系重新达到平衡状态。即 ? ?1I N 1+? 2I N 2=0 或 ? ?1I =? -21 2I N N (3-15) 上式表明一次绕组从电源吸收的电功率,通过电磁感应关系传递到二次绕组并向负载输出功率。 二、基本方程式 (一)、电压平衡方程式 根据图3-8,变压器负载运行时,由于一次侧二次侧漏磁电动势的存在,由基尔霍夫定律得到以下电动势平衡方程式,即 ??-=11E U +j ?1I 1x +?1I 1r =-?1E +? 1I Z 1 ??-=22E U -j ?2I 2x -?2I 2r =?2E -? 2I Z 2 ? 2I N 2+? 1I N 1=? 0I N 1, 2 1 21N N E E k ==, L Z U =? 2? 2I

微波实验二传输线上的波的测量与阻抗匹配教材

微波技术与天线实验报

(1)负载开路,负载短路,与负载匹配 负载开路与短路即为令终端负载L Z 为∞或0,而对于功率输出,当负载匹配时会得到最大的功率输出;对于电源电压输出,指电源内阻越小在内阻上的压降越小,会得到最大的电压输出,就是说电源的效率最大,当内阻r=0,电源的效率等于1(100%)。 (1)传输线的工作状态 传输线的工作状态取决于传输线终端所接的负载,有三种状态。其中负载开路与短路即为令终端负载L Z 为∞或0导致传输线工作于驻波状态,Z L =Z 0时传输线工作于行波状态。 行波状态:传输线上无反射波出现,只有入射波的工作状态。 当传输线终端负载阻抗等于传输线的特性阻抗,即Z L =Z 0时,线上只有入射波(反射系数为零)。此时 z z e U e Z I U z U '' =+= 'γγ20222 )( z z e I e Z Z I U z I ' +'=+= 'γγ20 0222)( 对于无损耗线=γj β,则

本实验用微带传输线模块模拟测量线。利用驻波测量技术测量传输线上的波,可以粗略地观察波腹、波节和波长,进而测量反射系数|Γ|和驻波比ρ。若条件允许可以使用反射测量电桥以较精确地测量反射损耗。 (1)实验仪器 RZ9908综合实验箱频率合成信号发生器电场探头频谱分析仪反射测量电桥终端负载(2)实验思路 用驻波分布法测量微带传输线上电磁波的波长。观测微带传输线上驻波分布,测量驻波的波腹、波节、反射系数和驻波比。 (3)实验过程 实验装置大致如下,应用实验箱固定模块可简化操作。 原理如下: 实验连接图如下:

微带传输线模块测量端开路(不接负载)。 把频率合成信号发生器设置成为:CENTER FREQUENCY=1000MHz,SPAN=1MHz,参考电平-30dBm,在保证信号不超出屏幕顶端的情况下,参考电平越小越好,尽量使信号谱线的峰值显示在屏幕的第一格和第二格之间。 频率合成信号发生器设置为输出频率1000MHz和最小衰减量。 如图1连接,逐次移动探头。记录探头位置刻度读数和频谱分析仪读数,必要时可调节信号发生器的输出功率或频谱分析仪的参考电平。 改变频率合成信号发生器的输出频率为800MHz,再重复进行驻波分布测试。 用反射测量电桥来测量驻波损耗,按图2连接好实验装置

第三章 人工特异材料的传输线网络模型及其实现方法

第三章人工特异材料的传输线网络模型及其实现方 法 内容提要:我们首先介绍右手材料和左手材料的传输线实现方法,在此基础之上,提出了一套完整的利用周期性理想L-C电路实现二维(2-D)各向异性特异材料的方法。根据这套电路模型,考虑实际情况,用L-C加载传输线周期性网络实现各向异性特异材料。作为一个例子,我们研究了特定各向异性特异材料界面的高阻反射性质,并采用L-C加载传输线结构实现了相位可调谐的二维高阻反射表面,进行了实验验证。 3.1 右手材料和左手材料的传输线模型及实现方法 绪论中介绍了实现左手材料的几种方法,可以利用周期性的SRR和金属线阵列[1-4],也可以利用周期性的传输线(TL)加载电感-电容(L-C)[5-12]。平面传输线网络既可以实现普通介质的电磁波传播,也可以实现左手介质的电磁波传播特性,它不仅被用来验证负折射和平板聚焦等物理现象[10,11],并且在微波电路器件应用方面也有重要的意义和广阔的前景[13-21]。与金属介质谐振结构相比,传输线结构具有较小的损耗和较宽的左手传输线工作带宽。 电磁波在介质材料中的传播可以与电磁波在传输线上传播相类比,这一类比源于电磁场波动方程与传输线电报方程在形式上的相似性,利用电压、电流波在周期性网络结构中的传播来模拟电磁波在电磁介质中的传播。介质的介电常数和磁导率可以用传输线模型中的单位长度电容和单位长度电感来类比[5]。为了说明传输线模型与介质材料的电磁参数的类比关系,可考虑一个由串联阻抗和并联导纳组成的网络单元,如图3.1所示。

该二维结构的电报方程表达式为 , y y z x v v i Z i Z z x ??=-=-??, (3.1) Y v x i z i y x z -=??+ ??, (3.2) 联立以上二式,有 02 2 2 22 =+??+ ??y y y v z v x v β, (3.3) 其中传播常数 ZY -±=β。 (3.4) 分析其中的电磁场传播情况。当单元尺寸远小于波长时,可以把单元中的场看作准静态场来处理。考虑二维介质情况,场在y 方向没有变化。这种二维平面介质中传播的是TE y 和TM y 模式。对于TM y 模,根据Maxwell 方程组有 , y y z x E E j H j H x z ωμωμ??=-=??, (3.5) x z y H H j E z x ωε??- =??。 (3.6) 根据电压电流波与电磁波的物理联系,比较式(3. 1)、(3. 2)与(3. 5)、(3. 6),可以建立以下映射关系:v y → E y ,i x → H z ,i z → -H x 。得到介电常数及磁导率与电路模型之间的联系: 图 3.1 二维分布式L-C 网络单元模型

电路基础分析报告知识点整理

电路分析基础 1.(1)实际正方向:规定为从高电位指向低电位。 (2)参考正方向:任意假定的方向。 注意:必须指定电压参考方向,这样电压的正值或负值才有意义。 电压和电位的关系:U ab=V a-V b 2.电动势和电位一样属于一种势能,它能够将低电位的正电荷推向高电位,如同水路中的水泵能够把低处的水抽到高处的作用一样。电动势在电路分析中也是一个有方向的物理量,其方向规定由电源负极指向电源正极,即电位升高的方向。 电压、电位和电动势的区别:电压和电位是衡量电场力作功本领的物理量,电动势则是衡量电源力作功本领的物理量;电路中两点间电压的大小只取决于两点间电位的差值,是绝对的量;电位是相对的量,其高低正负取决于参考点;电动势只存在于电源内部。 3. 参考方向 (1)分析电路前应选定电压电流的参考方向,并标在图中; (2)参考方向一经选定,在计算过程中不得任意改变。参考方向是列写方程式的需要,是待求值的假定方向而不是真实方向,因此不必追求它们的物理实质是否合理。 (3)电阻(或阻抗)一般选取关联参考方向,独立源上一般选取非关联参考方向。 (4) 参考方向也称为假定正方向,以后讨论均在参考方向下进行,实际方向由计算结果确定。 (5)在分析、计算电路的过程中,出现“正、负”、“加、减”及“相同、相反”这几个名词概念时,切不可把它们混为一谈。 4. 电路分析中引入参考方向的目的是为分析和计算电路提供方便和依据。应用参考方向时,“正、负”是指在参考方向下,电压和电流的数值前面的正、负号,若参考方向下一个电流为“-2A”,说明它的实际方向与参考方向相反,参考方向下一个电压为“+20V”,说明其实际方向与参考方向一致;“加、减”指参考方向下列写电路方程式时,各项前面的正、负符号;“相同、相反”则是指电压、电流是否为关联参考方向,“相同”是指电压、电流参考方向关联,“相反”指的是电压、电流参考方向非关联。 5.基尔霍夫定律 基尔霍夫定律包括结点电流定律(KCL)和回路电压(KVL)两个定律,是集总电路必须遵循的普遍规律。 中学阶段我们学习过欧姆定律(VAR),它阐明了线性电阻元件上电压、电流之间的相互约束关系,明确了元件特性只取决于元件本身而与电路的连接方式无关这一基本规律。 基尔霍夫将物理学中的“液体流动的连续性”和“能量守恒定律”用于电路中,总结出了他的第一定律(KCL);根据“电位的单值性原理”又创建了他的第二定律(KVL),从而解决了电路结构上整体的规律,具有普遍性。基尔霍夫两定律和欧姆定律合称为电路的三大基本定律。 6.几个常用的电路名词 1.支路:电路中流过同一电流的几个元件串联的分支。(m) 2.结点:三条或三条以上支路的汇集点(连接点)。(n) 3.回路:由支路构成的、电路中的任意闭合路径。(l) 4.网孔:指不包含任何支路的单一回路。网孔是回路,回路不一定是网孔。平面电路的每个网眼都是一个网孔。

高频电路原理与分析

. 高频电路原理与分析 期末复习资料 陈皓编 10级通信工程 2012年12月 1.

单调谐放大电路中,以LC并联谐振回路为负载,若谐振频率f0=10.7MH Z,C Σ = 50pF,BW0.7=150kH Z,求回路的电感L和Q e。如将通频带展宽为300kH Z,应在回路两端并接一个多大的电阻? 解:(1)求L和Q e (H)= 4.43μH (2)电阻并联前回路的总电导为 47.1(μS) 电阻并联后的总电导为 94.2(μS) 因 故并接的电阻为 2.图示为波段内调谐用的并联振荡回路,可变电容C的变化范围为12~260 pF,Ct为微调电容,要求此回路的调谐范围为535~1605 kHz,求回路电感L 和C t的值,并要求C的最大和最小值与波段的最低和最高频率对应。 12 min , 22(1210) 3 3 根据已知条件,可以得出: 回路总电容为因此可以得到以下方程组 160510 t t C C C LC L C ππ ∑ - =+ ? ?== ? ?+ ? ?

题2图 3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试 问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1 )总的通频带为 121212121232 260109 121082601091210260108 10198 1 253510260190.3175-12 6 1605 535 ()()10103149423435 t t t t C C C C pF L mH π-----?+==?+=?-??-= ?==??+?=≈

电路分析实验报告

电压源与电流源的等效变换 一、实验目的 1、加深理解电压源、电流源的概念。 2、掌握电源外特性的测试方法。 二、原理及说明 1、电压源是有源元件,可分为理想电压源与实际电压源。理想电压源在一定的电流 范围内,具有很小的电阻,它的输出电压不因负载而改变。而实际电压源的端电压随着电流变化而变化,即它具有一定的内阻值。理想电压源与实际电压源以及它们的伏安特性如图4-1所示(参阅实验一内容)。 2、电流源也分为理想电流源和实际电流源。 理想电流源的电流是恒定的,不因外电路不同而改变。实际电流源的电流与所联接的电路有关。当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电 并联来表示。图4-2为两种电流越大。实际电流源可以用一个理想电流源和一个内阻R S 流源的伏安特性。

3、电源的等效变换 一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。两者是等效的,其中I S=U S/R S或 U S=I S R S 图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的 电压源变换为一个参数为I s 和R S 的等效电流源。同时可知理想电压源与理想电流源两者 之间不存在等效变换的条件。 三、仪器设备 电工实验装置: DG011、 DG053 、 DY04 、 DYO31 四、实验内容 1、理想电流源的伏安特性 1)按图4-4(a)接线,毫安表接线使用电流插孔,R L 使用1KΩ电位器。 2)调节恒流源输出,使I S 为10mA。, 3)按表4-1调整R L 值,观察并记录电流表、电压表读数变化。将测试结果填入表4-1中。 2、实际电流源的伏安特性 按照图4-4(b)接线,按表4-1调整R L 值,将测试的结果填入表4-1中。

高频电路原理与分析

高频电路原理与分析期末复习资料 陈皓编 10级通信工程 2012年12月

1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0 =10.7MH Z , C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻? 解:(1)求L 和Q e (H )= 4.43μH (2)电阻并联前回路的总电导为 47.1(μS) 电阻并联后的总电导为 94.2(μS) 因 故并接的电阻为 2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。 题2图 12min 12max ,22(1210) 22(26010)3 3根据已知条件,可以得出: 回路总电容为因此可以得到以下方程组16051053510t t t C C C LC L C LC L C ππππ∑ --=+? ?== ??+?? ??== ??+?

3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试 问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1)总的通频带为 4650.51 5.928()40 e z e Q kH =≈?= (2)每个回路允许最大的Q e 为 4650.5123.710 e e Q =≈?= 4.图示为一电容抽头的并联振荡回路。谐振频率f 0 =1MHz ,C 1 =400 pf ,C 2= 100 pF 121212121232 260109 121082601091210260108 10198 1 253510260190.3175-12 6 1605 535 ()()10103149423435 t t t t C C C C pF L mH π-----?+==?+=?-??-= ?==??+?=≈

现代电力电子技术报告—SEPIC电路分析分析

现代电力电子技术报告

SEPIC 电路分析 一、 电路结构图: 图1为SEPIC 电路拓扑图 V R 图1 SEPIC 电路拓扑图 二、 电路分析 SEPIC 变换器原理电路如图1所示。1L i 、2L i 分别为电感1L 、2L 上的电流,D 表示占空比,T 表示开关周期,on T 、off T 分别表示开关导通和关断的时间。由于SEPIC 电路中存在两个电感,一般定义电路连续或不连续导电模式以整流二极管D 的导电模式为准。在一个开关周期中开关管1Q 的截止时间()1-D T 内,若二极管电流总是大于零,则为电流连续;若二极管电流在一段时间内为零,则为电流断续工作。若二极管电流在T 时刚好降为零,则为临界连续工作方式。假设1C 很大,变换器在稳态工作时,1C 的电压基本保持不变 (1)连续状态 连续导电模式时电路工作可以分为1Q 导通和1Q 关断两个模态: 工作模态1:(0,on T )模态 V R 图2 1Q 导通时SEPIC 电路等效电路图(连续) 在这个模态中,开关管1Q 导通,二极管D 截止,如图2所示。变换器有三个回路: 第一个回路:电源、1L 和1Q 回路,在g V 的作用下,电感电流1L i 线性增长; 第二个回路:1C ,1Q 和2L 回路,1C 通过1Q 和进行放电,电感电流2L i 线性增长; 第三个回路是2C 向负载供电回路,2C 电压下降,因2C 较大,故2C 上电压下降很少,可以近似地认为2C O U U =,流过1Q 的电流112=+Q L L i i i

1 1=L g di L V dt (1) 2 2 =L o di L U dt (2) 当t=on T 时,1L i 和2L i 达到最大值1max L i 和2max L i 。 工作模态2:(on T ,T )模态 V R 图3 1Q 关断时SEPIC 电路等效电路图(连续) 在t=on T 时刻,1Q 关断,此时形成两个回路,如图3所示: 第一个回路:电源、1L 、1C 经二极管D 至负载回路,电源和电感1L 储能同时向1C 和负载馈送,1C 储能增加,而1L i 减小; 第二个回路是2L 和D 至负载的续流回路,2L 储能释放到负载,故2L i 下降。因此二极管的电流D i 是1L i 、2L i 的电流之和,且 2 2=L o di L U dt (3) 1 1 1=-L g c o di L V U U dt - (4) 根据1L 上的伏秒原理: ()()1=+g on O C g on V T U U V T T ?-?- (5) 根据2L 上的伏秒原理: 10=C on off U T U T (6) 由上面两式可得: =1o i U D U D - (7) 1==c i g U U V (8) 由输入输出功率平衡有: 1=i L o o U I U I ?? (9) 即:

变压器等效模型

1. 理想变压器 理想变压器(ideal transformer)也是一种耦合元件,它是从实际变压器中抽象出来的理想化模型。理想变压器要同时满足如下三个理想化条件: (1)变压器本身无损耗;这意味着绕制线圈的金属导线无电阻,或者说,绕制线圈的金属导线的导电率为无穷大,其铁芯的导磁率为无穷大。 (2)耦合系数1=k ,12 1== L L M k 即全耦合; (3)21L L 、和M 均为无限大,但保持n L L =2 1 不变,n 为匝数比。 理想变压器的电路符号如图1所示, 图1 理想变压器 2. 全耦合变压器 全耦合变压器如图2所示,其耦合系数1=k ,但21L L 和是有限值。由于其耦合系数1=k ,所以全耦合变压器的电压关系与理想变压器的电压关系完全相同。即 2 121N N u u = 图2 全耦合变压器 全耦合变压器初级电流()t i 1由两部分组成,()()()t i t i t i ' +=Φ11,一部分()t i Φ称

为励磁电流,它是次极开路时电感1L 上的电流,()()ξξΦd u L t i t ?= 1 1 1;另一部分 ()t i ' 1,()()t i N N t i 21 21-=',它与次极电流()t i 2满足理想变压器的电流关系。根 据上述分析可得到图3所示全耦合变压器的模型,图中虚线框部分为理想变压器模型。 图3 全耦合变压器模型 3. 实际变压器 实际变压器的电感即不能为无限大,耦合系数也往往小于1。这就是说,它们的磁通除了互磁通外,还有漏磁通,漏磁通所对应的电感称为漏感。如果从两个线圈的电感中减去各自所具有的漏感,考虑变压器绕组的损耗,我们就可以得到一个利用全耦合变压器表示的变压器的模型,如图4 所示,其中11S M L L L -=称为励磁(或磁化)电感。 图4 实际变压器模型 若L M 足够大,则该模型可以等效为图5。 u 1-+ u 2 N 1 N 2

传输线的反射干扰分析

传输线的反射干扰分析 一.引言 在微机系统中,接口与其它设备之间的连接要通过一定长度的电缆来实现,在计算机内部,印制电路板之间需要通过焊接线来连接。在一些其它的脉冲数字电路中也存在这类事的问题。脉冲信号包含着很多的高频成分,即使脉冲信号本身的重复频率并不十分高,但如果前沿陡峭,在经过传输通道时,将可能发生信号的畸变,严重时将形成振荡,破坏信号的正常传输和电路的正常工作。脉冲信号的频率越高,传输线的长度越长,即便问题越严重。 二.传输线的反射干扰及其造成的危害 任何信号的传输线,对一定频率的信号来说,都存在着一定的非纯电阻性的波阻抗,其数值与集成电路的输出阻抗和输入阻抗的数值各不相同,在他们相互连接时,势必存在着一些阻抗的不连续点。当信号通过这些不连续点时便发生“反射”现象,造成波形畸变,产生反射噪声。另外,较长的传输线必然存在着较大的分布电容和杂散电感,信号传输时将有一个延迟,信号频率越高,延迟越明显,造成的反射越严重,信号波形产生的畸变也就越厉害。这就是所谓的“长线传输的反射干扰”。对于TTL器件来说,“过冲”超过6V时,对器件输入端的P-N结就有造成损坏的可能。同时从3V~-6V的大幅度下降,将会对邻近的平行信号产生严重的串扰,且台阶将造成不必要的延时,给工作电路造成不良的后果。一旦形成震荡,危害就更严重,这种振荡信号将在信号的始端和终端同时直接构成信号噪声,从而形成有效的干扰。 三.信号传输线的主要特性及阻抗匹配 1.信号传输线的特征阻抗 对于计算机及数字系统来说,经常使用的信号传输线主要有单线(含接连线和印制线等)、双绞线、带状平行电缆、同轴电缆和双绞屏蔽电缆等。传输线的特性参数很多,与传输线的反射干扰有关的参数主要有延迟时间和波阻抗。一般说来,反显得信号延迟时间最短,同轴电缆较长,双绞线居中,约为6ns/m。波阻抗为单线最高,约为数百欧,双绞线的波阻抗,双绞线的波阻抗一般在100Ω-200Ω之间,且绞花越短,波阻抗越低。从抗干扰的角度讲,同轴电缆最好,双绞线次之,而带状电缆和单线最差。 2.阻抗的匹配 当传输线终端不匹配时,信号被反射,反射波达到始端时,如始端不匹配,同样产生反射,这就发生了信号在传输线上多次往返反射的情况,产生严重的反射干扰。因此要尽可能做到始端和终端的阻抗匹配,是抑制反射干扰的有效途径。为此,确定“长线”的最佳长度是至关重要的。 在实际实践中,一般以公式的经验来决定实际电路信号传输线的最大允许不匹配长度(也即“长线”界限)。其中,为电路转换边沿的平均宽度,对于常用的中速TTL电路,取15ns,为传输线的延迟时间。可以计算出,其最大允许匹配长度分别为1m,0.6m和0.4m,否则应考虑阻抗匹配。对于高速运行的ECL器件,由于其传输时间只有4ns-5ns,故传输长度一般超过20cm时,就应考虑匹配问题。 阻抗匹配的方法可以分为始端阻抗匹配和终端阻抗匹配。 始端阻抗匹配的方法是在电路的输出端,即传输线的输入端串接一个电阻R,使电路的输出电阻(对TTL而言分别为14R和135R)与所用传输线的波阻抗(如双绞线典型波阻抗为130R)相近似,。这种方法简单易行,波形畸变也较小。但由于电流流经,使在线低压电平上升,从而降低信号低电平的噪声容限。一般规定低电平的升高要小于0.2V,为此应考虑减少负载们的个数来减小电阻R上的电压降。 无源终端匹配可以在接收端的逻辑门的输入端,即传输线的终端并联一个电阻,其阻值应近似等于传输线的波阻抗,。这种方法一般仅限于发送端采用功率驱动门的场合,如用普通

PCB中的传输线理论

PCB中的传输线理论 PCB板上的信号传输速率越来越高,PCB走线已经表现出传输线的性质.在集总电路中视为短路线的连线上,在同一时刻的不同位置的电流电压已经不同,所以集总参数在这时已经不起作用了,必须采用分布参数传输线理论来处理(注:如果线长度大于信号传输有效长度的1/6(1/4),那么我们就看做是一个分布式系统)。传输线的模型可以用图1表示: 单根传输线模型 如果是理想的无损传输线,这没有G 和 R。当然这也在现实中不存在的理想状况。所以,我们以下的考虑都是有损传输线。 对于图传输线的性质可以用电报方程来表达,电报方程如下: dU/dz = ( R + jwL) I dI/dz = ( G +jwC) U 电报方程的解为: 通解中的 由于R, G 远小于 jwL、jwC,所以通常所说的阻抗是指: 从通解中可以看到传输线上的任意一点的电压和电流都是入射波和反射波的叠加,传输因此传输线上任意一点的输入阻抗值都是时间、位置、终端匹配的函数,再使用输入阻抗来研究传输线已经失去意义了,所以引入了特征阻抗、行波系数、反射系数的概念描述传输线。 特征阻抗的物理意义就是:入射波的电压和入射波的电流的比值,或反射波的电压和反射波电流的比值。 电磁波在介质的中的传输速度只与介质的介电常数或等效介电常数有关。 根据经验:FR4内层带状线的传输速度为180ps/inch,表层微带线的传输速度为 140~180ps/inch。 PCB常见的传输线主要有以下几种: 1.1.1 微带线(Microstrip)

式中: w--导线宽度 t --导线厚度 h--介质厚度适用范围: w/h 的比值在0.1~1.0之间; 相对介电常数在1~15之间; 地线宽度大于信号线宽度7倍以上。 1.1.2 嵌入式微带线(Embedded Microstrip) 式中: w--导线宽度 t--导线厚度 h--介质厚度适用范围: w/h 的比值在0.1~1.0之间; 相对介电常数在1~15之间; 地线宽度大于信号线宽度7倍以上。 1.1.3 差分线(Differential Pair)

变压器的等效电路和向量图

变压器的等效电路和向量图 2009-09-26 23:16:48 标签Tag: 1224人阅读 一变压器的折算法 将变压器的副边绕组折算到原边,就是用一个与原绕组匝数相同的绕组,去代替匝数为N2的副绕组,在代替的过程中,保持副边绕组的电磁关系及功率关系不变。 二参数折算 折算前 原边 N1 U1 I1 E1 R1 X1σ 副边 N2 U2 I2 E2 R2 X2σRL XL 折算后 原边 N1 U1 I1 E1 R1 X1σ 副边 N2' U2' I2' E2' R2' X2σ'RL' XL'

变压器副绕组折算到原边后其匝数为N1,折算后的副边各量加“ ' ”以区别折算前的各量。 1 电势折算 E2'=Фm=E1 E2=Фm 所以E2'/E2=N1/N2=k,E2=kE2 折算前后电磁关系不变,那么铁心中的磁通不变,k为变比,也即是电势,电压折算的系数2 磁势折算 N1I2'=N2I2=I2N2/N1=I2/k 变压器折算前后副绕组磁势不变。k也为电流折算系数。 3 阻抗折算 阻抗折算要保持功率不变 折算前后副边铜耗不变 I2'I2'R2'=I2I2R2 R2'=(I2/I2')(I2/I2')R2=kkR2 (kk)---阻抗折算系数 副边漏抗上的无功功率不变,则

I2'I2'X2σ'=I2I2X2σ X2σ'=(I2/I2')(I2/I2')X2σ=kkX2σ 负载阻抗上的功率不变,则可求出 I2'I2'RL'=I2I2RL RL'=kkRL I2'I2'XL'=I2I2XL XL'=kkXL 4 副边电压折算 u2'=I2'ZL'=(I2/k)(RL+jXL)kk=kI2(RL+jXL)=kU2三变压器的等效电路 折算后方程 U1=-E1+I1(R1+jX1σ) U2'=E2'-I2'(R2+jX2σ) I1+I2'=Im≈I0 -E1=-E2=Im(Rm+jXm)=ImZm

传输线阻抗匹配的方法

传输线阻抗匹配的方法 传输线简介传输线(transmission line)输送电磁能的线状结构的设备。它是电信系统的重要组成部分,用来把载有信息的电磁波,沿着传输线规定的路由自一点输送到另一点。 以横电磁(TEM)模的方式传送电能和(或)电信号的导波结构。传输线的特点是其横向尺寸远小于工作波长。主要结构型式有平行双导线、平行多导线、同轴线、带状线,以及工作于准TEM模的微带线等,它们都可借助简单的双导线模型进行电路分析。各种传输TE模、TM模,或其混合模的波导都可认为是广义的传输线。波导中电磁场沿传播方向的分布规律与传输线上的电压、电流情形相似,可用等效传输线的观点分析。 传输线的特性传输线的均匀性 传输导体横截面的形状、使用的材料、导体间的间隔和导体周围的介质,在线路的全部长度上都保持均匀不变的,称为均匀传输线。否则便叫做不均匀传输线。均匀传输线的一次参数均匀地分布于整个传输线上,其数值不随考察点的位置而变化。 传输线在制造和建筑过程中可能出现的偏差,都规定有必要的允许范围。如果出现的不均匀性偏差不超过这些规定,都可以看作是均匀传输线。 性能参数 通常用衰减系数、相移系数、特性阻抗,或与之相对应的其它参数来描述。其数值仅与传输线的结构、几何尺寸、制造传输线使用的材料、工作波长(或工作频率)有关,见表。 传输线阻抗匹配的方法匹配阻抗的端接有多种方式,包括并联终端匹配、串联终端匹配、戴维南终端匹配、AC终端匹配、肖特基二极管终端匹配。 1、并联终端匹配 并联终端匹配是最简单的终端匹配技术,通过一个电阻R将传输线的末端接到地或者接到VCC上。电阻R的值必须同传输线的特征阻抗Z0匹配,以消除信号的反射。终端匹配到VCC可以提高驱动器的源的驱动能力,而终端匹配到地则可以提高电流的吸收能力。

变压器的等效电路和向量图

变压器的等效电路和向量图 ?2009-09-26 23:16:48 标签Tag: ?1224人阅读 一变压器的折算法 将变压器的副边绕组折算到原边,就是用一个与原绕组匝数相同的绕组,去代替匝数为N2的副绕组,在代替的过程中,保持副边绕组的电磁关系及功率关系不变。 二参数折算 折算前 原边 N1 U1 I1 E1 R1 X1σ 副边 N2 U2 I2 E2 R2 X2σ RL XL 折算后 原边 N1 U1 I1 E1 R1 X1σ 副边 N2' U2' I2' E2' R2' X2σ' RL' XL' 变压器副绕组折算到原边后其匝数为N1,折算后的副边各量加“ ' ”以区别折算前的各量。 1 电势折算 E2'=4.44fN1Фm=E1 E2=4.44fN2Фm 所以E2'/E2=N1/N2=k,E2=kE2 折算前后电磁关系不变,那么铁心中的磁通不变,k为变比,也即是电势,电压折算的系数 2 磁势折算

N1I2'=N2I2=I2N2/N1=I2/k 变压器折算前后副绕组磁势不变。k也为电流折算系数。 3 阻抗折算 阻抗折算要保持功率不变 折算前后副边铜耗不变 I2'I2'R2'=I2I2R2 R2'=(I2/I2')(I2/I2')R2=kkR2 (kk)---阻抗折算系数 副边漏抗上的无功功率不变,则 I2'I2'X2σ'=I2I2X2σ X2σ'=(I2/I2')(I2/I2')X2σ=kkX2σ 负载阻抗上的功率不变,则可求出 I2'I2'RL'=I2I2RL RL'=kkRL I2'I2'XL'=I2I2XL XL'=kkXL 4 副边电压折算 u2'=I2'ZL'=(I2/k)(RL+jXL)kk=kI2(RL+jXL)=kU2 三变压器的等效电路 折算后方程 U1=-E1+I1(R1+jX1σ) U2'=E2'-I2'(R2+jX2σ) I1+I2'=Im≈I0 -E1=-E2=Im(Rm+jXm)=ImZm

传输线阻抗匹配方法

传输线阻抗匹配方法 匹配阻抗的端接有多种方式,包括并联终端匹配、串联终端匹配、戴维南终端匹配、AC终端匹配、肖特基二极管终端匹配。 1.并联终端匹配 并联终端匹配是最简单的终端匹配技术,通过一个电阻R将传输线的末端接到地或者接到V CC上。电阻R的值必须同传输线的特征阻抗Z0匹配,以消除信号的反射。终端匹配到V CC可以提高驱动器的源的驱动能力,而终端匹配到地则可以提高电流的吸收能力。 并联终端匹配技术突出的优点就是这种类型终端匹配技术的设计和应用简便易行,在这种终端匹配技术中仅需要一个额外的元器件;这种技术的缺点在于终端匹配电阻会带来直流功率消耗。另外并联终端匹配技术也会使信号的逻辑高输出电平的情况退化。将TTL输出终端匹配到地会降低V OH的电平值,从而降低了接收器输入端对噪声的免疫能力。 对长走线进行并联终端匹配后仿真,波形如下: 2.串联终端匹配 串联终端匹配技术是在驱动器输出端和信号线之间串联一个电阻,是一种源

端的终端匹配技术。驱动器输出阻抗R0以及电阻R值的和必须同信号线的特征阻抗Z0匹配。对于这种类型的终端匹配技术,由于信号会在传输线、串联匹配电阻以及驱动器的阻抗之间实现信号电压的分配,因而加在信号线上的电压实际只有一半的信号电压。 而在接收端,由于信号线阻抗和接收器阻抗的不匹配,通常情况下,接收器的输入阻抗更高,因而会导致大约同样幅度值信号的反射,称之为附加的信号波形。因而接收器会马上看到全部的信号电压(附加信号和反射信号之和),而附加的信号电压会向驱动端传递。然而不会出现进一步的信号反射,这是因为串联的匹配电阻在接收器端实现了反射信号的终端匹配。 串联终端匹配技术的优点是这种匹配技术仅仅为系统中的每一个驱动器增加一个电阻元件,而且相对于其它的电阻类型终端匹配技术来说,串联终端匹配技术中匹配电阻的功耗是最小的,而且串联终端匹配技术不会给驱动器增加任何额外的直流负载,也不会在信号线与地之间引入额外的阻抗。 由于许多的驱动器都是非线性的驱动器,驱动器的输出阻抗随着器件逻辑状态的变化而变化,从而导致串联匹配电阻的合理选择更加复杂。所以,很难应用某一个简单的设计公式为串联匹配电阻来选择一个最合适的值。 对长走线进行串联终端匹配后仿真,波形如下: 3.戴维南终端匹配

相关文档
最新文档