炼铁高炉热风炉现状及发展方向

炼铁高炉热风炉现状及发展方向
炼铁高炉热风炉现状及发展方向

炼铁高炉热风炉现状及发展方向

张振峰冯晓军

摘要:根据国家《钢铁产业发展政策》,以及国家节能减排政策的实施,对我国钢铁工业健康发展提出相关要求,技术装备现代化、大型化,高效节能是高炉炼铁生产的发展方向,而做为高炉炼铁生产,热风炉的效率、装备水平对炼铁生产能耗降低起到重要作用。本文对我国高炉炼铁热风炉装备水平及运行现状和发展方向做以总结分析。

关键词:高炉、热风炉、现状及发展方向

1、引言:目前,我国高炉炼铁生产技术步入了飞速发展阶段,随着国家节能减排,以及淘汰落后产能的步伐加大,对于高炉炼铁能耗降低、热风炉提供高风温、增加煤粉喷吹量,节能降低焦比的有效措施,随着高炉大型化装备水平的现代化,热风炉各种新技术的应用,使热风炉逐渐走向节能、高效、长寿的步伐。改进内燃式、外燃式均取得了1200℃以上的高风温。随着顶燃式热风炉的发展,特别是卡鲁金顶燃式热风炉的引进,其高效、长寿、投资成本低的特点,逐渐为大型高炉所采用,并取得成功,已成为热风炉发展方向。

2、目前我国炼铁高炉热风炉现状:

2.1 现代热风炉的分类:

热风炉做为高炉炼铁重要组成设备,随着高炉炼铁技术的发展进步,热风炉结构形成发展的步伐从来就没有停止,其历史久远,现代热风炉分为以下几类:

①按燃烧室位置分:内燃式、外燃式和顶燃式。

②按燃烧入口位置分:低架式(落地式)和高架式。

③按燃烧室形状分:眼睛形、苹果型和圆形。

④按蓄热体形状分、板状、块状和球状。

本文以现代主流热风炉分类依据,按燃烧室位置来分别讨论内燃式、外燃式、顶燃式热风炉的现状及发展方向。

2.2国内炼铁高炉装备内燃式热风炉的现状。

2.2.1内燃式热风炉结构特点:

热风炉的燃烧室(又叫火井)和蓄热室同置于一个圆型炉壳内,称之为内燃式热风炉,内燃式热风炉又分为传统内燃式和改进内燃式,传统内燃式热风炉的风温低、寿命短,已被改进内燃式所代替,改进内燃式的主要特点:①采用悬链线型拱顶结构,优化拱顶高温稳定性及气流分布;②采用圆型火井及新型隔墙;③采用陶瓷燃烧器和弧形炉衬板。

2.2.2内燃式热风炉在国内高炉的装备情况:

目前,内燃式热风炉是在国内炼铁高炉装备最为广泛的热风炉之一,经过改进优化热风炉结构,新技术的应用,平均风温达到了1150——1200℃的水平,具有代表性的有:

武钢:4# 2200m3高炉 5、6、7# 3200m3高炉 8# 3800m3高炉鞍钢:11#2580 m3高炉新1#高炉3200m3高炉

唐钢:2560 m3高炉 2000m3高炉

首钢:1726m3高炉

太钢:1200m3高炉

攀钢:1260m3高炉

邯钢:2*3200m3高炉

2.2.3以武汉钢铁公司7#3200 m3高炉内燃式热风炉为例,体现了内燃式热风炉的新技术应用水平。

①陶瓷燃烧器的改进,在能够满足混合燃烧能力的前提下,调整燃烧器的长度,以5、6、7#做比较,5#燃烧器长度4.5m,6#燃烧器长度5.4m,混合煤气能力174000 m3/h,7#燃烧器长度5m,混合能力168000 m3/h,燃烧器变小,蓄热面积由51.2/52.3m2变为52.2/53.3 m2,增大1 m2,单炉蓄热面积增加2.5%,同时整体降低陶瓷燃烧器高度2m,增加了燃烧室上部空间,燃烧效果好。

②火井隔墙的独立结构与大墙之间不咬砌,设有滑缝和膨胀缝,并在中下部设不锈钢板。

③关键部位采用组合砖,热风出口、热风主管和支管三岔口,热风主管与围管三岔口、烟道口、主管与围管转折点均采用组合砖。

④在设计初期,提前调和热风主管与热风围管的高度差,取消了混风室,避免高风温(大于1200℃),混风室的影响热风主管高温稳定性,内衬设置合理的滑动结构和膨胀结构。

⑤采用混合煤气。

⑥装备烟气回收装置。

2.3外燃式热风炉:

2.3.1结构特点:

外燃式热风炉是内燃式热风炉的进化与发展,它的燃烧室独立于蓄热室之外,两个室顶部以一定的方⑤式连接起来,外燃式热风炉目前有四种类型:地得式、科珀斯式、马琴式和新日铁式,其特点是①燃烧室拱顶与蓄热室单体分开,消除了内燃式热风炉的隔墙不均受热。

②燃烧室拱顶与蓄热室各部砌体可以单独自由膨胀。

③燃烧器呈圆形有利于燃烧。

④有利于蓄热室气流分别。

⑤高温长寿其缺点:a、占地面积大,投资大。

b、壳体影响应力腐蚀严重易开裂。

2.3.2 外燃式热风炉在国内高炉的装备情况:

宝钢引进吸收了新日铁外燃式热风炉技术并在国内炼铁高炉有了推广:

宝钢所有热风炉都是新日铁外燃式。

鞍钢10# 2580m3高炉采用新日铁或外燃式热风炉。

太钢 4350m3马钢2*3600m3高炉都采用新日铁外燃式热风炉。

鞍钢鮁鱼圈新建4038m3高炉拟采用PW公司大型地得式外燃式热风炉。

2.4 顶燃式热风炉:

2.4.1 顶燃式热风炉的特点:顶燃式热风炉是将燃烧室设在热风炉顶部,不单独设立燃烧室,利用拱顶部位空间,使混合煤气燃烧,待用旋流式燃烧器,保证煤气完全燃烧。

与内燃式比较,特点如下:

①去掉火井,蓄热面积增加25—30%,增加蓄热能力,清除了燃烧室和蓄热室中、下部“短路的”可能性。

②炉底结构对称稳定、炉型监督、结构强度好、受力均匀、稳定区分明,与外燃式比较占地小、投资少、效率高。

②节省热风炉周围操作平台空间。

2.4.2 顶燃式热风炉分类:

①首钢式:特点:十字排布、结构紧凑,具有自主知识产权。

②承德式:特点:采用旋流顶燃式燃烧器,燃烧效率高,蓄热面积大,投资少,寿命长。

③球式顶燃式热风炉,球式热风炉做为顶燃式热风炉的特殊形式,将蓄热室的各种砖用自然堆积的耐火球代替,热效率高,蓄热面积大。

④卡鲁金式:1982年在苏联下塔吉尔冶金公司1513m3高炉装备,经发明者卡鲁金做了改进,并正式命名卡鲁金型,已经在我国引进并广泛推广应用。

2.4.3顶燃式热风炉的装备情况:

①球式热风炉:目前已装备到1327m3高炉。

②卡鲁金顶燃式热风炉的装备情况(1000m3以上)

莱钢 1880m3高炉济南钢铁公司 3*17510m3高炉

国丰 2*1800m3高炉首秦 1200 m3高炉2200 m3高炉

天钢 3200 m3高炉唐钢 3200 m3高炉鞍

钢 2580 m3高炉

首钢曹妃 3*5500 m3高炉

3、国内炼铁高炉热风炉的先进技术应用以及主流发展方向。

热风炉为高炉提供平稳、高风温、增加高炉喷吹量,是节焦的有力措施,随着高炉大型化、高效节能的主流发展方向,对热风炉的应用提出了新的要求:①热效率高。

②投资省。③结构稳定、长寿、维修费用少。④占地面积小。在国内大量淘汰落后产能,炼铁系统技术升级改造过程中,卡鲁金热风炉与现代先进节能技术相结合,被许多大型高炉采用,并表现出明显的优势,成为热风炉结构形式的主流发展方向。

3.1 热风炉节能高效技术潮流:

①热风炉废气余热利用技术,采用烟气、空气双预热,提高热风炉热效率。

②冷风气流均布技术,优化热风炉炉子部位冷风气流均布,提高热风炉热交换效率。

③纳米涂层技术,提高格子砖的反射率,从而提高热风炉热效率。

④煤气富化技术,在高炉煤气中掺入高热随煤气。

⑤燃烧系统助燃风富氧技术。

⑥全干法煤气除尘技术?降煤气含量在5m/m3以下,提高煤气显热。

⑦炉体关键部位采用组合砖,拱顶、球顶大墙结构,独立膨胀自如,互不影响,荷载于托砖环上,通过炉壳传递到炉基,结构更加稳固。炉体管道隔热防腐新技术的应用,防止间应力腐蚀和热量损失。

热风炉阀门设备的轻量化技术,将原来笨重的闸阀,盘式阀用密封式蝶阀代替。

⑧自动燃烧系统。

⑨安全吹扫系统:引进欧洲安全设计理念,在煤气支管加装氮气吹扫系统。

3.2 国内大型钢铁改造项目采用卡鲁金顶燃式热风炉,应同时采用许多先进技术,通过灵活配置达到1250~1300m3送风温度,其中,京唐钢铁公司3*5500高炉配置4座卡鲁金热风炉送风温度达到1300℃。鞍钢2580m3高炉采用卡鲁金热风炉风温达到1250℃。

首秦1200m3、1780m3高炉应用卡鲁金热风炉灵活配置,采用3+2全新结构;3座卡鲁金燃式热风炉12座,卡鲁金预热炉获得1300℃的风温。4结语:

通过国内大型钢企对卡鲁金顶燃式(改进顶燃式)热风炉结合当前新技术,取得了良好的效益,使得改进顶燃式热风炉成为高炉炼铁系统技术的发展方向和潮流,目前有许多内燃式、球式热风炉进行改造,取得了明显的效果,顶燃式热风炉以及明显的优势,引领热风炉向节能、高效、长寿的方向前进。

热风炉送风温度控制系统的设计说明

学号: 课程设计 题目热风炉送风温度控制系统设计 学院自动化学院 专业自动化卓越工程师 班级自动化zy1201班 姓名 指导教师傅剑 2015 年12 月8 日

课程设计任务书 学生:专业班级:自动化zy1201 指导教师:傅剑工作单位:理工大学 题目: 热风炉送风温度控制系统的设计 初始条件:炼钢高炉采用燃式热风炉,燃烧所采用的燃料为高炉煤气和转炉煤 气。两种燃料混合后进入热风炉燃烧室,再与助燃空气一起燃烧,要求向高炉送 风温度达到1350 ℃,则炉顶温度必须达到1400 ℃±10℃。 要求完成的主要任务: 1、了解燃式热风炉工艺设备 2、绘制燃式热风炉温度控制系统方案图 3、确定系统所需检测元件、执行元件、调节仪表技术参数 4、撰写系统调节原理及调节过程说明书 时间安排 11月3日选题、理解课题任务、要求

11月4日方案设计 11月5日-11月8日参数计算撰写说明书 11月9日答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 前言 (1) 1.热风炉工艺 (2) 1.1主要结构............................................................................. .. (2) 1.2工作方式 (3) 1.2.1 直接式高净化热风炉 (3) 1.2.2 间接式热风炉 (3) 1.3工作原理 (3) 1.4高炉炼铁、转炉炼钢工艺流程 (4) 2.热风炉温度控制方案设计 (7) 2.1熟悉工艺过程,确定控制目标 (7) 2.2选择被控变量 (7) 2.3选择操纵变量 (7)

热风炉作用

热风炉———高炉高风温的重要载体 来源:中国钢铁新闻网作者:毛庆武张福明发布时间:2008.04.29 高风温是现代高炉的重要技术特征。提高风温是增加喷煤量、降低焦比、降低生产成本的主要技术措施。近几年,国内钢铁企业高炉的热风温度逐年升高,2007年重点企业热风温度比上年提高25℃。特别是新建设的一批大高炉(大于2000立方米)热风温度均超过1200℃,达到国际先进水平。如2002年后,首钢技术改造或新建高炉的热风温度均实现高于1200℃的目标。 热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。 高风温有赖热风炉的结构优化 20世纪50年代,我国高炉主要采用传统的内燃式热风炉。这种热风炉存在着诸多技术缺陷,且随着风温的提高而暴露得更加明显。为克服传统内燃式热风炉的技术缺陷,20世纪60年代,外燃式热风炉应运而生。该设备将燃烧室与蓄热室分开,显著地提高了风温,延长了热风炉寿命。20世纪70年代,荷兰霍戈文公司(现达涅利公司)对传统的内燃式热风炉进行优化和改进,开发了改造型内燃式热风炉,在欧美等地区得到应用并获得成功。与此同时,我国炼铁工作者开发成功了顶燃式热风炉,并于上世纪70年代末在首钢2号高炉(1327立方米)上成功应用。自上世纪90年代KALUGIN顶燃式热风炉(小拱顶)投入运行,迄今为止在世界上已有80多座KALUGIN(卡鲁金)顶燃式热风炉投入使用。 截至目前,顶燃式热风炉由于具有结构稳定性好、气流分布均匀、布置紧凑、占地面积小、投资省、热效率高、寿命长等优势,已在国内几十座高炉上应用。首钢第5代顶燃式热风炉自投产以来,已正常工作22年3个月,曾取得月平均风温≥1200℃的业绩。生产实践证实,顶燃式热风炉是一种长寿型的热风炉,完全可以满足两代高炉炉龄寿命的要求。然而,由于国内有的企业高炉煤气含水量高、煤气质量差,致使顶燃式热风炉燃烧口出现过早破损;而且采用的大功率短焰燃烧器在适应助燃空气高温预热(助燃空气预热温度≥600℃)方面还存在一些技术难题。因此,国内钢铁企业进行了技术改造,Corus(康力斯)高风温内燃式热风炉也因此得到应用。 合理的热风炉配置保持高炉稳定 根据实践,现代大型高炉配置3~4座热风炉比较合理。大型高炉如果配置4座热风炉,可以实现交错并联送风,能提高风温20℃~40℃,在炉役的中后期,还可以在1座热风炉检修的情况下,采用另外3座热风炉工作,使高炉生产不会出现过大的波动。目前,国内外许多大型高炉都配套建设了4座热风炉,但采用3座热风炉可以大幅度降低建设投资,减少占地面积,也同样具有非常大的吸引力。随着设计和安装大直径热风炉条件的改进,热风炉设计的日趋合理,热风炉使用的耐火材料质量也得到提高,设备更经久耐用,控制系统也日益成熟可靠,形成了多种多样的热风炉高风温和长寿技术,使得热风炉操作可以更加平稳可靠,从而保证了高炉稳定操作。以此为基础,现代热风炉的发展方向转变为减少热风炉座数、延长热风炉寿命、强化燃烧能力、缩短送风时间、减少蓄热面积、回收废气热量、提高总热效率上。另外,尽量缩短送风时间的操作方式也得到重视,基于新设计理念和完备的技术支撑,国内钢铁企业将热风炉数量由4座减少为3座,热风炉的操作模式改为“两烧一送”,风温的调节控制依靠混风实现,也同样达到了高风温的效果。 提高加热炉传热效率和寿命是可靠保证

技术协议-热风炉拱顶红外测温系统20110428

中钢集团工程设计研究院有限公司 设备采购合同 技术协议 项目名称:永昌钢铁公司节能减排技术改造项目 1080m3高炉工程 设备名称:热风炉炉顶在线红外线测温系统 合同编号:A0983-2SB-CG045-1.1 业主:安宁市永昌钢铁有限公司 甲方:中钢集团工程设计研究院有限公司乙方:武汉正元自动化仪表工程有限公司 2011年05月

中钢集团工程设计研究院有限公司(以下简称甲方)以工程总承包形式承接了安宁市永昌钢铁有限公司(以下简称业主)节能减排技术改造项目1080m3高炉工程。就甲方总包永昌钢铁有限公司节能减排技术改造项目高炉工程热风炉炉顶在线红外线测温检测控制系统设备的设计、制造、检验等进行了充分协商和交流后达成如下技术协议: 一、设备名称、数量及系统组成 1. 工艺设备主要设计技术条件 技术要求 设备名称及数量: 。热风炉炉顶在线红外线测温检测系统: 型号:WFD-600RF-L+ WFD-RFBX 型电源箱+ WFD-600-X 型信号处理显示器 数量:3套 每套内容包括:WFD-600RF-D 红外探测头 1 台 WFD-RFBX 电源箱 1 台(必配) 防尘罩 1 只 保护窗口 1 只 手动阀门 1 只 窥视管 1 只 调角器 1 只 气封垫 1 套 WFD-600-X 信号处理显示器 1 台(选配) 专用信号电缆 1 根 专用电源线 2 根 保险管(1A)2只 概述: 热风炉红外测温仪是一种智能化高精度非接触式仪表。它适用于热风炉拱顶的温度测量,通过被测物体的红外辐射能量来确定物体的温度。仪表显示性能稳定、响应速度快、操 作简单、安装与调整方便,是理想的非接触式测温仪。 热风炉采用垂直安装方式,通过测温探头瞄准孔观察和通过调角器调节,使测温探头瞄准 到格子砖上,要保持分划板小圈在系统内径的中心。落在格子砖上的测斑通常可以覆盖若干

炼铁高炉热风炉现状及发展方向

炼铁高炉热风炉现状及发展方向 张振峰冯晓军 摘要:根据国家《钢铁产业发展政策》,以及国家节能减排政策的实施,对我国钢铁工业健康发展提出相关要求,技术装备现代化、大型化,高效节能是高炉炼铁生产的发展方向,而做为高炉炼铁生产,热风炉的效率、装备水平对炼铁生产能耗降低起到重要作用。本文对我国高炉炼铁热风炉装备水平及运行现状和发展方向做以总结分析。 关键词:高炉、热风炉、现状及发展方向 1、引言:目前,我国高炉炼铁生产技术步入了飞速发展阶段,随着国家节能减排,以及淘汰落后产能的步伐加大,对于高炉炼铁能耗降低、热风炉提供高风温、增加煤粉喷吹量,节能降低焦比的有效措施,随着高炉大型化装备水平的现代化,热风炉各种新技术的应用,使热风炉逐渐走向节能、高效、长寿的步伐。改进内燃式、外燃式均取得了1200℃以上的高风温。随着顶燃式热风炉的发展,特别是卡鲁金顶燃式热风炉的引进,其高效、长寿、投资成本低的特点,逐渐为大型高炉所采用,并取得成功,已成为热风炉发展方向。 2、目前我国炼铁高炉热风炉现状: 2.1 现代热风炉的分类: 热风炉做为高炉炼铁重要组成设备,随着高炉炼铁技术的发展进步,热风炉结构形成发展的步伐从来就没有停止,其历史久远,现代热风炉分为以下几类: ①按燃烧室位置分:内燃式、外燃式和顶燃式。 ②按燃烧入口位置分:低架式(落地式)和高架式。 ③按燃烧室形状分:眼睛形、苹果型和圆形。 ④按蓄热体形状分、板状、块状和球状。 本文以现代主流热风炉分类依据,按燃烧室位置来分别讨论内燃式、外燃式、顶燃式热风炉的现状及发展方向。 2.2国内炼铁高炉装备内燃式热风炉的现状。 2.2.1内燃式热风炉结构特点: 热风炉的燃烧室(又叫火井)和蓄热室同置于一个圆型炉壳内,称之为内燃式热风炉,内燃式热风炉又分为传统内燃式和改进内燃式,传统内燃式热风炉的风温低、寿命短,已被改进内燃式所代替,改进内燃式的主要特点:①采用悬链线型拱顶结构,优化拱顶高温稳定性及气流分布;②采用圆型火井及新型隔墙;③采用陶瓷燃烧器和弧形炉衬板。 2.2.2内燃式热风炉在国内高炉的装备情况: 目前,内燃式热风炉是在国内炼铁高炉装备最为广泛的热风炉之一,经过改进优化热风炉结构,新技术的应用,平均风温达到了1150——1200℃的水平,具有代表性的有:

高炉热风炉自动控制系统

高炉热风炉自动控制系统 1.l 概述 1.1.1 研究背景 高炉热风炉是给高炉燃烧提供热风以助燃的设备,是一种储热型热交换器。国内大部分高炉均采用每座高炉带3至4台热风炉并联轮流送风方式,保证任何瞬时都有一座热风炉给高炉送风,而每座热风炉都按:燃烧-休止-送风-休止-燃烧的顺序循环生产。当一座或多座热风炉送风时,另外的热风炉处于燃烧或休止状态。送风中的热风炉温度降低后,处于休止状态的热风炉投入送风,原送风热风炉即停止送风并开始燃烧、蓄热直至温度达到要求后,转入休止状态等待下一次送风。 热风炉是一个非线性的、大滞后系统,影响热风炉的因素有很多,并且各种因素相互牵制,因此导致它的控制过程非常复杂,很难用精确的数学模型描述。用传统的方法建模,使整个控制系统置于模型框架下,缺乏灵活性及应变性,很难胜任对复杂系统的控制。 1.1.2 国内热风炉控制系统现状及存在的问题 目前许多钢厂热风炉控制系统采用由可编程控制器(PLC)与过程控制器(或集散系统)分别完成电气与仪表控制的方法进行控制。例如改造前的广钢3#高炉热风炉采用HONEYWELL S9000过程控制器完成仪表控制,采用西门子S5115U可编程控制器完成换炉控制;莱钢1#750M3高炉热风炉控制系统采用美国MODICON公司的E984-685 PLC完成顺序控制和回路控制;鞍钢10号高炉热风炉采用英国欧陆公司生产的网络6000过程自动化(DCS)控制系统完成热风炉燃烧控制,通过接口与MODICON(PLC)通讯,由PLC完成热风炉自动换炉、送风控制;宝钢1#高炉热风炉电控系统采用日本安川CP-3500H PLC,仪表控制系统采用日本横河CENTUM-CS集散控制系统,上位机采用HP-9000,电气的PLC和仪表的现场控制站间以V-NET 网连接,上位机间通过以太网连接,V-NET网和以太网间通过ACG(通信接口)连接。 这类热风炉存在的问题主要有两方面: (1)基础自动化控制系统设计不合理 大都采取用可编程序控制器和过程控制器(或集散系统)分别完成的方法进行控制。这种方法的缺点是为了将各部分连接成一个统一的系统,必须投入相当大的工程费用、时间和专门知识将不同类型的软件和用户接口予以配置、编程、调试和测试。这使得整个控制系统变得复杂、维护困难。 (2)热风炉燃烧控制问题 传统的高炉热风炉燃烧自动化系统采用数学模型计算所需的加热煤气流量和助燃空气流量,并计算出空燃比。热风炉流量设定数学模型的基本原理是使燃烧时热风炉格子砖的蓄热量能够满足热风温度和流量的要求,以获得最佳经济效益。由于热风炉的燃烧过程是一个连续的动态变化过程,控制的主要困难是不能及时得到控制作用的反馈信息,等到控制效果能通过输出测量体现时,此时的控制作用强度往往已过头了。因此,欲实现燃烧过程的实时控制,所需的数学模型相当复杂。此外,对于燃烧高炉煤气和焦炉煤气的具有三眼燃烧器的热风炉来说,由于高炉煤气和焦炉煤气分别送入,因此需分别进行高炉煤气和焦炉煤气流量控制,且需进行高炉煤气和焦炉煤气流量比例控制,这使得系统回路更多、更复杂,同时还需设置煤气成分分析仪,这种仪器不仅昂贵,而且还需要良好的维护。一座高炉通常都带有4个(或3

讲课内容,国内高炉热风炉现状,高炉热风炉设计思路

我们能不能干得比外国人更好一些 ——中冶京城吴启常大师于2015年4月,做客于山东慧敏科技公司,讲授热风炉的相关知识,同时对目前钢铁行业热风炉的情况进行讲解,受益匪浅,仅此上传吴大师的讲授资料,大家共同学习,向吴大师致敬! 1. 格子砖热工特性: 对于没有影响热交换过程横向凸台和水平通道的格子砖,都可以通过两个基本参数——格子砖的水力学直径d Э和相应的活面积f ——来表述,即: 单位加热面积(m 2/m 3) 4f H d = 1m 3格子砖中砖的容积(m 3/m 3) k 1V =-f 烟气辐射的厚度(cm ) 3.41004 d S =ЭЭФ 砖的半当量厚度(mm ) (1)4f d R f -=ЭЭ 格孔间最小壁厚(mm ) m i n 1d f ?=-??? Эδ 2.高炉风温有没有上限? 上一世纪70年代,西方国家的高炉设计纷纷高喊要使用1350℃以上的高风温,试图获得提高风温给高炉带来的最大好处。但实际的结果是热风炉拱顶钢壳 出现了大量裂纹,给高炉生产带 来了极大的困难。欧洲人深入研 究了此问题之后认为:这是高炉 采用高风温高压操作之后,燃烧 产物中出现了大量的NO X 和SO X 造成钢壳出现晶间应力腐蚀的缘 故。 尤其是炉壳在高应力状态下 工作时,晶粒之间的腐蚀更为严重。此外,NO X 和SO X 对于环境污染也是极大的

挑战。它们是PM2.5指标的重要组成部分。 NO X 生成量与拱顶温度之间关系 欧洲人从防止热风炉炉壳出现晶间应力腐蚀以及保护大气环境的角度出发,他们以热风炉的拱顶温度水平来对热风炉进行分类(详见图2)。按欧洲人的观念,拱顶温度范围:>1420℃属超高风温热风炉;1350~1420℃属高温热风炉;1250~1350℃属中温热风炉;1100~1250℃属低温热风炉。 晶间应力腐蚀是怎么回事? 晶间应力腐蚀的定义:在腐蚀介质和应力的双重作用下,没有产生变形而出现沿晶间方向的开裂,最终导致材料的破坏。热风炉出现晶间应力腐蚀开裂破坏的主要部位在拱顶的焊缝附近,并且工地焊缝比工厂焊缝出现开裂的频率要高。可见焊接产生的残余应力对于腐蚀开裂有很大的影响。 晶间应力腐蚀产生的原因:在高温条件下,N 2和O 2分解成单体的N 和O 并生成NO x 。NO x 产生的化学反应式如下: N 2 + xO 2 = 2NO x x 22111N O +O =N O x 2x x 如果热风炉炉壳没有特殊的隔热层,炉壳的温度会低于100℃,其内表面会形成冷凝水。氧化氮与这些冷凝水接触便会生成硝酸根离子水溶液,这样,腐蚀介质就形成了。其反应式如下: 2NO 2 + H 2O = HNO 2 + HNO 3 2NO 2 + H 2O + 0.5O 2 = 2HNO 3 硝酸对钢板产生化学侵蚀破坏,反应式如下: 2Fe + 6HNO 3 =Fe 2O 3 + 3N 2O 4 + 3H 2O 研究还表明,在有SO 2介质的存在条件下,应力腐蚀的速度将加快。 为了防止热风炉高温区炉壳出现晶间应力腐蚀,人们曾经采用过一些技术措施: 1)拱顶温度控制在1420℃的水平上; 2)拱顶外壳内表面喷砂除锈后涂刷耐酸高温漆并喷涂耐酸耐火材料; 3)适当加厚拱顶外壳钢板,采用‘低应力设计’,并选用细晶粒耐龟裂钢板作为炉壳材料;

炉顶炉前槽下热风炉液压系统技术协议

关联的合同号: 山东富伦钢铁有限公司 2#高炉大修技术改造工程 炉顶、炉前、槽下及热风炉液压系统 设备制造与供货 技 术 协 议 买方:山东富伦钢铁有限公司 卖方:北京华德液压工业集团有限责任公司 2010-3-19

山东富伦钢铁有限公司(买方),北京华德液压工业集团有限责任公司(卖方),于 2010年03月19日在莱芜市羊里镇,就山东富伦钢铁有限公司2#高炉大修技术改造工程所需炉顶、炉前、槽下及热风炉液压系统的制造和供货等有关技术问题进行充分技术交流和协商,共同达成技术协议如下: 1总则 1.1本技术协议的适应范围仅限于山东富伦钢铁有限公司2#高炉大修技术改造工程炉顶、炉前、槽下及热风炉液压系统的制造和供货等有关技术问题。 1.2本技术协议提出的是对设备最低限度的要求,并未对一切细节做出规定,也未充分引述有关标准和规范的条文,卖方保证提供符合本技术协议和有关行业及国家标准的产品。 1.3在签定合同后,买方保留对本技术协议提出补充要求和修改的权利,卖方承诺予以配合,如提出修改,具体项目和条件由买、卖双方商订。 1.4本技术协议所适用的标准,如中外双方、卖方与买方所执行的标准相矛盾时,按较高标准执行。 1.5本技术协议经双方签订认可后,与设备投标过程中的招标文件、卖方投标书、答疑澄清文件一起作为订货合同的附件,与合同正文具有同等的效力。2设备技术参数 2.1炉顶液压系统的主要技术参数 主液压泵站: 1套 蓄能器单元: 1套 工作介质:抗磨液压油ISOVG46,NAS 7级 油箱:容量:1.8m3油箱(带有内部挡板,斜底面,检修孔和填充连接,材料为碳钢) 1套 主泵装置:A10VSO71DR/31R-12N00 2台 单台排量:71ml/r、工作压力:200bar

包钢1号高炉热风炉的高风温及长寿技术的介绍

包钢1号高炉热风炉的高风温及长寿技术的介 绍 方平 摘要介绍了为配合包钢1号高炉扩容而易地新建的4座改造内燃式热风炉,为保证高炉获得高风温并保证热风炉的长寿,设计中采用了多项先进和实用的技术。 关键词内燃式热风炉高风温长寿技术 INTRODUCTION TO HIGH BLAST TEMPERATURE LONG LIFE TECHNIQUE FOR HOT BLAST STOVE OF NO.1 BF AT BAOTOU IRON & STEEL CORP. Fang Ping Baotou Iron & Steel Corp. Synopsis The present paper described 4 modified internal combustion type hot blast stoves which were rebuilt in the new site in the volumetric enlargement of No.1 BF at Baotou Iron & Steel Corp. To ensure high blast temperature as well as long service life of the hot blast stoves a number of advanced application techniques have been adopted in the design. Keywords internal combustion type hot blast stove high blast temperature long life technology 1 前言 包钢1号高炉于1959年9月建成,有效容积为1513m3。在1981年4月至1985年3月间进行了1号高炉的改造性大修。从上次大修后高炉已生产10余年时间,其间虽经几次中修但并未根本改变炉子的状况。随着包钢原料条件的不断改善,炼钢、轧钢生产规模的不断扩大,炼铁生产能力已不能满足要求。为此,包钢公司决定对1号高炉实施扩容改造大修,将炉容由1513m3扩容至2200m3。 实践证明,对于包钢的原料条件,高炉容积达到1800m3时,就需要有2个出铁口才能满足高炉的正常生产,所以1号高炉扩容改造需新建出铁场,将热风炉易地建,为新建北出铁场提供场地。 基于上述原因,决定在1号高炉东北侧新建4座改造内燃式热风炉。 2 热风炉主要技术参数 新建4座改造内燃式热风炉是按高炉扩容至2200m3进行设计的,热

热风炉工艺流程图

2009-09-21 13:26:12 来源: 作者: 【大中小】浏览:6207次评论:1条 一、热风炉技术操作规程 (一)烧炉和送风制度 1 烧炉制度 (1) 炉顶温度1250℃~1300℃ (2) 烟道温度350℃~380℃ (3) 高炉煤气压力8℃~9℃ 2 烧炉原则: (1) 以煤气流量和烟道残氧仪显示值(应在~%)为参考调节助燃空气,在烧炉初期使炉顶温度尽快达到规定值,以后控制炉顶温度,提高烟道温度,提高热量储备,满足高炉的需要. (2) 烧炉初期应尽量加大煤气量和空气量,实现快速烧炉. (3) 炉顶温度达到规定值时应加大空气量来保持炉顶温不在上升,使炉子中、下部温度上升,扩大蓄热量. (1) 烟道温度达到规定值时,应减小煤气量和空气量,保持烟道温度不在上升,顶温和烟道温度都达到规定值则转入闷炉. (2) 高炉使用风温低,时间在4小时以上时,可采取小烧或者适当增加并联送风时间. (3) 烧炉要注意煤气压力,发现煤气压力低时要和净化室联系提高压力,当煤气压力低于3Kpa时,要停止烧炉. (4) 热风炉顶温度低于700℃时,烧炉要用焦炉煤气引火. 3送风制度: (1)正常情况:四座热风炉同时工作,采用交叉并联送风运行方式,风温使用较低或一座热风炉因故障停用时,可临时采用两烧一送的运行方式,运行方式的改变需工长批准。长期改变运行方式要经工段长批准。 (2) 一个炉子的换炉周期为小时,换炉时间按作业表进行,改变换炉周期应经工段批准,一定要先送风后烧炉.

(3) 换炉时,风压波动〈5Kpa,波动超过范围,要立即查清原因(如冲压不当、换炉操作失误等). (4) 在送风或换炉中,风压和风量突然下降,可能鼓风机失常,应及时报告值班工长,风压降到20Kpa时,立即关闭冷风大闸. (二)热风炉换炉操作选择 (1)手动操作(一般在正常情况下不使用). (2)机旁操作箱手动操作(特殊情况下使用). (3)操作室手动(遥控手动),自动失常情况下使用. (4)半自动操作(温度控制或特殊情况). (5)全自动操作(定时换炉). (6)单炉自动操作. (7)自动烧炉与停烧. (8)交叉并联送风. 注:操作制度经过同意可以互换,操作方法可根据需要选择. (三)热风炉换炉操作顺序 1.燃烧转送风 (1)关煤气调节阀. (2)关煤气阀. (3)关助燃空气调节阀. (4)关燃烧阀. (5)关助燃阀. (6)开支管放散阀及蒸汽阀. (7)关烟道阀(2个). (8)通知值班工长,同意后. (9)开冷风旁通阀(充压)待炉内压力充满后. (10)开热风阀,开冷风阀. (11)关冷风旁通阀.

烧结机中温SCR脱硝热风炉技术协议

XX钢铁有限公司 1#200㎡烧结机烟气SCR脱硝 2000×104Kcal/h 高炉煤气热风炉及其燃烧控制系统 技 术 协 议 甲方: 乙方: 2018年5月

甲方: 乙方: 乙方针对甲方脱硝系统配供热风炉及其高炉煤气燃烧系统,需要1套热风系统用于烟气升温,共计1台热风炉,1台烟道混风室,1台燃高炉煤气燃烧器及1套控制系统,满足相关标准规定,为使项目顺利进行,本着平等、自愿、协商一致的原则,双方达成如下技术协议。 本技术协议是热风系统采购合同(合同编号:)的有效补充及说明,是采购合同不可分割的一部分,与热风炉采购合同具备同等的法律效力。 一、项目概况 2.1项目简介:用户现为XX钢铁有限公司200m2烧结烟气配供脱硝项目SCR脱 硝装置前端需要烟气升温炉一台,用来将原200℃烟气温度升高到260℃,以便后续脱硝工序正常运行。 2.2已知设计参数:

二、设计方案介绍 由已知条件计算得知,正常工作时,以高炉煤气为燃料将200℃的75万Nm3/h的烟气提升至260℃所需的理论热量为1860×104kcal/h,由于开机状态下需提高烟气升温速度,且热风管道存在热量损失,在理论计算基础上添加适当余量,最终选择热风炉功率为2000×104kcal/h。 在烟气管道旁边设计制作一台2000×104kcal/h燃高炉煤气热风炉,燃烧产生的高温烟气通入置于管道中的混风室内与原200℃烟气进行混合,以此产生所需的260℃混合烟气。此时总烟气量约增多4.9万Nm3/h。 热风炉系统工艺流程示意图 三、热风炉及燃烧器设计技术参数 ◆热风炉型号:LRF2000 ◆热风炉额定功率:2000×104kcal/h ◆系统换热方式:直接换热式 ◆热风炉结构形式:卧式(立式) ◆热风炉设计出口热风温度: 800-900℃ ◆热风出口方向:水平后面,燃烧器对面 ◆燃烧器数量:每台热风炉配置1台燃烧器

热风炉精细化烧炉控制技术

技术秘密全文 一、技术秘密名称:热风炉精细化烧炉控制技术 二、股份公司原有技术及存在的问题 现有大中型高炉的热风炉一般为四座热风炉,采用两烧两送方式工作,烧炉采用DCS(即Distributed control system,直译为分散控制系统)进行控制的,对煤气和空气采取双闭环比值控制的方式进行配比燃烧,由操作工根据拱顶温度的变化情况及废气残氧量不定时地修改空燃比。为了满足高炉对高风温的需要。一般采用尽量提供足够的焦炉煤气或热值较高的转炉煤气,采用废气含氧量加双闭环比值控制和过量氧气系数的办法来满足自动控制和高风温的需要。 在热风炉作业中要保护设备而须管理格子砖温度分布,此外还因使能耗最小而需在燃烧时对煤气流量作最优设定。前者除了保护拱顶使不超上限温度外,由于硅变形点为1350℃以下,为防止达到此温度时硅砖膨胀而破裂,还须在送风末期管理这一温度。现有技术的热风炉煤气等流量自动设定主要是按热平衡和检测数据来计算送风终了时的蓄热量,但没有足够精确度的残热推断和温度分布的数学模型,为此还需手动设定。 但上述方法不足在于: 使用方法(1)无法用最经济简单方法提供尽可能高温度的热风。而最经济科学的方法是,尽可能多的使用高炉煤气,并且在保证高风温情况下尽可能减少焦炉或转炉煤气的使用量。 使用方法(2)由于其使用废气烟道中装有的残氧量测量仪对残氧量进行闭环跟踪调节,由于其控制输入参数为已发生,因此调节反映较慢,不利于节

约能源,同时此也不能满足最佳空燃比所要求的精度。 三、国内外解决同类问题的技术方案 目前国内高炉热风炉的烧炉控制方式因建炉时间和体积的不同以及不同钢铁企业之间,其控制水平千差万别,但目前均无法真正实现烧炉的自动控制,主要有以下几种控制方式: A、采用分立仪表控制的,多见于一些比较老的中小高炉(100-1000m3)上,这部分热风炉燃烧控制都是手工调节,燃烧效果的好坏取决于热风炉操作工的“勤心”、“细心”、“精心”。根本谈不上自动控制。 B、采用PLC或DCS进行控制的,多见于后期新建或大修后改造过,有些企业对煤气和空气的配比燃烧采取双闭环比值控制的方式,或分别采用单回路自动控制,由操作工根据拱顶温度的变化情况不定时地修改空燃比,以提高拱顶温度。但是煤气热晗值的变化是比较频繁的,尽管有经验丰富且勤快的操作工经常操作,也难于保证给出的空燃比是最佳的,何况要保持其长期性。加上调节阀频繁动作,容易损坏。因此热风炉的烧炉控制根本无法达到最优。虽然部分热风炉采用新的工艺技术,使热风炉送出的风温较高,多在1050-1250℃之间,甚至更高,但是还是无法使热风炉的烧炉真正实现自动控制,并使得空燃比随时处于最佳值。 C、国内部分高炉操作水平很高的企业,对热风炉自动烧炉和对风温要求自然也很高,因此想尽办法提高风温并实现自动烧炉,除热风炉采用新的工艺技术外,在烧炉控制上除采取上述双闭环比值控制外,还增加煤气热值仪和废气分析仪,这样从理论上可以实现自动烧炉。但是煤气热值仪和废气分析仪滞后大、控制精度低、稳定性差、维护量极大,在自动烧炉和风温的提

向1500m3高炉送风的热风炉设计说明书

目录 1 热风炉本体结构设计 (1) 1.1炉基的设计 (2) 1.2炉壳的设计 (2) 1.3炉墙的设计 (3) 1.4拱顶的设计 (3) 1.5蓄热室的设计 (5) 1.6燃烧室的设计 (5) 1.7炉箅子与支柱的设计 (6) 2 燃烧器选择与设计 (7) 2.1金属燃烧器 (7) 2.2陶瓷燃烧器 (7) 3 格子砖的选择 (10) 4 管道与阀门的选择设计 (15) 4.1管道 (15) 4.2.阀门 (16) 5 热风炉用耐火材料 (18) 5.1 硅砖 (18) 5.2 高铝砖 (18) 5.3 粘土砖 (18) 5.4 隔热砖 (18) 5.5 不定形材料 (18) 6 热风炉的热工计算 (22) 6.1 燃烧计算 (22) 6.2简易计算 (26) 6.3砖量计算 (28) 7 参考文献 (30)

1 热风炉本体结构设计 热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。冷风被加热并通过热风管道送往高炉。 目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。 传统内燃式热风炉(如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。 图1-1 内燃式热风炉 我国实际的热风炉尺寸见表1-1。

表1-1我国设计的热风炉尺寸表 1.1炉基的设计 由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。地基的耐压力不小于2.0~2.5kg/2cm ,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm ,以防水浸基础由3A F 或16Mn 钢筋和325号水泥浇灌成钢筋混泥土结构。土壤承载力不足时,需打桩加固。 生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。 1.2炉壳的设计 热风炉的炉壳由8~20mm 厚的钢板焊成。对一般部位可取:δ=1.4D (mm )。开孔多的部位可取:δ=1.7D (mm ), δ为钢板厚度(mm ),D 为炉壳内径(m ),钢板厚度主要根据炉壳直径、内压、外壳温度、外部负荷而定。炉壳下部是圆柱体,顶部为半球体。为确保密封炉壳连同封板焊成一个不漏气的整体。由于炉内风压较高,加上炉壳耐火砖的膨胀,使热风炉底部承受到很大的压力,为防止底板向上抬起,热风炉炉壳用地脚螺栓固定在基础上,同时炉底封板与基础之间进行压力灌浆,保证板下密实,也可以把地脚螺栓改成锚固板,并在底封板上灌上混泥土。将炉壳固定使其不变形,或把平底封板加工成蝶形底,使热风炉成为一个手内压的气罐,减弱操作应力的影响。在施工过程中对焊接必须进行X 光探伤检验,要求炉壳椭圆度不大于直径的千分之二,整个中心线的倾斜(炉顶中心与炉底中心差)不大于30mm 。为了保证炉壳和炉内砌砖的密封性,在砌砖前后要试漏、试压,检查砌砖前试验压力为0.3~1.5kg/2cm ,砌砖后工作压力的1.5倍试压,每小时压力降<=1.5%.蓄热室、燃烧室的拱顶和连接管处采用(韧性耐龟 v 有效 100 250 620 1036 1200 1513 1800 2050 2516 4063 H 21068 28840 33500 37000 42000 44450 44470 54000 49660 54050 D 上 4346 5400 7300 8000 8500 9000 9330 99600 9000 10100 下 5200 6780 9000 9500 H/D 4.80 5.57 4.80 4.70 4.95 4.93 4.93 5.70 5.57 5.35

标书合同-合同与协议-热风炉技术协议

江苏淮龙新型建材有限公司淮龙一期工程热风发生炉合同技术协议江魏淮尢新璽殛材有K公司二期工程 技术怫议 编号:HLn?18附 合同买方:江苏淮龙新型建材有限公司合同卖方:江苏 恒丰冶金电炉有限公司合同签约地:江苏省淮安市 合同签订时间:二OO八年八月一日

买方:江苏淮龙新型建材有限公司 地址:江苏淮安市工业新区金象路12号 电话:** 传真:** 联系人:曾庆国刘登云 卖方:江苏恒丰冶金电炉有限公司 地址:宜兴市环科园南岳村 开户行:江苏宜兴农村合作银行城东支行 1.买方环境条件 **年最高/最低/平均气温:37. 6°C/-9? 1/C/14°C 全年最多风向/静风频率:C45ENE10/15% 平均风速J 2?3m/s 年降雨量J 885-1015mm 年均无霜期/最长/最短:201天/219天/187天 **年平均气压/最高/最低:1014.7百帕/1042,9百帕/989?7百帕 ** 能力:正常:57, 400, OOOKJ/h 最大J 66 , 000, OOOKJ/h 林热风炉出口温 度:6009 ★★出口热风压力:+0KPa 林热风炉出口通径:DN2200 (出口后热风管道外径<1>2500X10),与热风管道采用法兰连接。 ★★高炉煤气热值:740Kcal/Nm3 ★痒煤气温度:<5or ^^凭点火介质:液化气(瓶装气?50kg/瓶),不作为长明灯使用 *^*液化气瓶接口: 6个 账号: XXXX 税号: XX7296 电话: ** *+ 传魚 联系人:洪国荣 ** 全年主导风向:东北风/东南风/西北风 ** 年平均相对湿度/最小J 73%/9% ** 2. 工艺参数(买方提供)

高炉热风炉设计说明书

} 目录 第一章热风炉热工计算 (2) 热风炉燃烧计算 (2) 热风炉热平衡计算 (4) 热风炉设计参数确定 (5) 第二章热风炉结构设计 (6) 设计原则 (6) 工程设计内容及技术特点 (6) ; 设计内容 (6) 技术特点 (6) 结构性能参数确定 (7) 蓄热室格子砖选择 (7) 热风炉管道系统及烟囱 (8) 顶燃式热风炉煤气主管包括: (8) 顶燃式热风炉空气主管包括: (9) 顶燃式热风炉烟气主管包括: (9) 《 顶燃式热风炉冷风主管道包括: (9) 顶燃式热风炉热风主管道包括: (10) 热风炉附属设备和设施 (10)

热风炉基础设计 (11) 热风炉炉壳 (11) 热风炉区框架及平台(包括吊车梁) (11) 第三章热风炉用耐火材料的选择 (12) 耐火材料的定义与性能 (12) < 热风炉耐火材料的选择 (12) 参考文献 (14) 第一章热风炉热工计算 热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表。 表煤气成分表 热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=,送风期Tf=,燃烧期Tr=,换炉时间ΔT=,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下:《 CO: , H2:, CH4:, C2H4:。则煤气低发热量: QDW=×+×+×+×= KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=。燃烧计算见表。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=21=1.23 m3。

600热风技术协议DOC

技术协议 唐山东海钢铁集团有限公司(简称甲方)就6oom高炉热风炉用耐火材料制作事宜与郑州豫兴耐火材料有限公司(简称乙方)经充分协商,一致达成以下技术协议,共同遵照执行。 —、总则 1、本技术协议经甲、乙双方共同确认和签字后作为订货合同的附 件,与合同具有同等的法律效力。 2、本技术协议与投标书中的技术标书的内容相互补充,本技术协 议中没有的内容,应以相关的国家标准和技术标书中承诺的内容为准。 二、设计及供货范围 1?设计要求:遵照甲方意愿,热风炉在煤气热值达3200KJ/Nm3煤气预热到120-160C(如果预热就应该达到150度以上,否则就不叫预热,)、空气预热到160-180 C的条件下保证平均风温1220C;热风炉耐材的结构及材质要满足1250C?1300C风温范围进行设计, 以便于在煤气热值提高后热风炉能适应1250C以上的高风温要求。 热风炉炉龄保20年(操作规范、粉尘含量小于10毫克条件下)2?设计范围:乙方负责热风炉本体的设计工作,含:炉内耐材结构、炉壳、及炉算子,负责提出炉壳各部位的连接管道的标高、管直径、到阀门的管道长度等数据。为此,必须与福海设计院进行详细沟 3、供货范围: 乙方承担热风炉耐材的供货,包括热风炉内本体耐材、热风管、竖管、三岔口及围管等部位的耐材,各种规格的耐材按双方认可与核实后的设计图按合同要求组织生产。

4、热风炉结构设计的细节说明如下: ⑴拱顶燃烧室结构由于处于热风炉高温区域,从结构稳定型出发采用硅质(RSI-95)带有子母扣砖砌筑,使其能承受1400度以上的温度; ⑵ 燃烧器结构由于在燃烧过程与送风规程处在不同的温度之下,存在200--400度不等的温度变化,这个部位必须保证热震和荷软两个指标,尤其是接近燃烧室的喷嘴部位,因而采用抗热震(HRK)砖砌 筑,使其在交变温度作用下保持结构稳定; ⑶蓄热室分温度不同的三段,分别配置硅质格子砖、高铝质格子砖、及粘土质砖;上部高温区配置硅质格子砖是基于防粘附、防渣化的目的;蓄热室大墙与硅质砖材料配置保持一致; ⑷热风出口、三岔口部位采用组合砖砌筑的结构形式。采用含红柱石的低蠕变高铝砖(DRL-65)两环带有子母扣重质砖外加设组合砖的结构模式,且一直采用重质砖承托热风管的内层转至炉壳处(采用这种结构,热风口稳定,但炉壳该部位有局部温度在200度以下),以避免燃烧室内层砖与炉壳间的轻质砖因承受不住热风出口管段而使其塌陷,引起热风出口环砖破坏; ⑸热风管的安全与稳定特别重要,采用低蠕变高铝砖(DRL-65), 其砖型结构为“ Z”字形,且沿周向有子母扣; 三、热风炉的结构与技术要求 1.技术参数 东海钢铁600m3高炉热风炉结构与性能参数汇总如下:

高炉热风炉安全操作规程

高炉热风炉安全操作规程 1、上班时必须规范穿戴好劳保用品,按章作业。 2、进入煤气区域必须二人同行,并带好煤气检测仪。设备检修时必须通知煤防人员到现场监护。如需动火时,应办好动火证方可进行。 3、进入布袋箱体内工作时,必须待箱体内温度降到60℃以下,并用仪器测得箱体确无煤气、氮气方可入内;同时箱体内设专人监护。关闭箱体入孔前必须清点人员和工具。 4、热风炉煤1#、2#插板阀之间,送风与烧炉前必须严格按要求进行氮气吹扫,没有吹扫不得进行送风;送风与烧炉前确认氮气压力不低于0.3MPa,如遇停氮气或氮气压力低于0.3MPa,禁止换炉操作,氮气压力正常后,方可进行换炉操作。 5、热风炉烧炉时,煤气压力波动较大,应及时调节煤气与空气流量,煤气压力低于3Kpa,应立即停止烧炉并与上级联系。 6、煤气1#、2#插板放散伐因故障打不开的情况下,临时手动打开进行煤气放散,严禁在不进行煤气放散的情况下由烧炉转送风。 7、助燃风机故障突然停风,按停烧程序操作,但关闭助空阀与烟道阀前要利用烟窗抽气10分钟以上,打开风机放散阀,重新启动风机前必须放散10分钟时间以上,在确保安全的前提下方可启动风机。 8、煤气系统应保持密封性,发现有煤气泄漏应临时采取防范措施,并通知相关上级部门。 9、高炉休风前必须关闭混风阀,严禁同时用热风炉与倒流阀倒流

休风,高炉复风严禁用休风时倒流过的炉子送风。 10、高炉煤气的安全着火为800℃,过低应用引火棒或木柴点燃,并站在侧面上风方向。 11、在热风炉布袋高空作业时,应注意风向,不允许单人作业;严禁空投工具、材料及其他杂物。 12、阀门断水时,应间断缓慢给水冷却,并站在侧面方向,以免烫伤人员及损坏设备。 13、修理工在所管辖设备维修时,操作工与修理工应实施挂牌维修与安全确认制度,两方配合好,确保安全。送风炉不得进行检修,如需处理必须停炉进行。 14、进行煤气含粉检测时,必须二人同行,并注意风向,不允许站在防爆孔正面方向。 15、煤气区域内非操作人员不允许在此停留,严禁在煤气区域内休息。 16、认真落实公司、铁厂及车间各项班组安全生产及安全教育制度;认真落实新工人与转岗人员的班组安全教育。 1280高炉 2008年3月29日

高炉热风炉的控制

高炉热风炉的控制

1. 概述 钢铁行业的激烈竞争,也是技术进步的竞争。高炉炼铁是钢铁生产的重要工序,高炉炼铁自动化水平的高低是钢铁生产技术进步的关键环节之一。 炉生产过程是,炉料(铁矿石,燃料,熔剂)从高炉顶部加入,向下运动。热风从高炉下部鼓入,燃烧燃料,产生高温还原气体,向上运动。炉料经过一系列物理化学过程:加热、还原、熔化、造渣、渗碳、脱硫,最后生成液态生铁。 高炉系统组成: 1)高炉本体系统 2)上料系统 3)装料系统 4)送风系统 5)煤气回收及净化系统 6)循环水系统 7)除尘系统 8)动力系统 9)自动化系统 高炉三电一体化自动控制系统架构: 组成:控制站和操作站二级系统 控制内容: 仪表、电气传动、计算机控制自动化 包括数据采集及显示和记录、顺序控制、连续控制、监控操作、人机对话和数据通信

2.热风炉系统 (1) 热风炉系统温度检测 (2) 热风炉煤气、空气流量、压力检测 (3) 热风炉燃烧控制 (4) 热风炉燃烧送风换炉控制 (5) 煤气稳压控制 (6) 换热器入口烟气量控制 (7) 空气主管压力控制 热风炉燃烧用燃料为高炉煤气,采用过剩空气法进行燃烧控制,在规定的燃烧时间内,保持最佳燃烧状态燃烧;在保证热风炉蓄热量的同时,尽量提高热效率并保护热风炉设备。 热风炉燃烧分三个阶段:加热初期、拱顶温度管理期和废气温度管理期。 ⑴加热初期: 设定高炉煤气流量和空燃比,燃烧至拱顶温度达到拱顶管理温度后,转入拱顶温度管理期。在加热初期内,高炉煤气流量和助燃空气流量均为定值进行燃烧。 ⑵拱顶温度管理期: 保持高炉煤气流量不变,以拱顶温度控制空燃比,增大助燃空气流量,将拱顶温度保持在拱顶目标温度附近,燃烧至废气温度达到废气管理温度后,转入废气温度管理期。在拱顶温度管理期内,高炉煤气流量为定值进行燃烧,助燃空气流量进行变化以控制拱顶温度。 ⑶废气温度管理期: 依据废气温度逐渐减小煤气流量,同时以拱顶温度调节控制助燃空气流量,将拱顶温度保持在拱顶目标温度附近,至废气温度达到废气目

烘干机技术协议样本

天津荣程联合钢铁集团有限公司 回转窑消石灰生产线高效回转式烘干机 技术协议 买方:天津荣程联合钢铁集团有限公司 卖方:唐山华威水泥装备有限公司 签订日期:2010年1月20日

技术协议 发包人:天津荣程联合钢铁集团有限公司 承包人:唐山华威水泥装备有限公司 天津荣程联合钢铁集团有限公司(甲方)与唐山华威水泥装备有限公司(乙方)就回转窑消石灰生产线高效回转式烘干机(HW2014.00)的供货事宜达成如下技术协议: 一、供货范围及数量: 主体部分:筒体1件、支撑2套; 内部装置:组合式扬料板1套材质(16Mn)、热交换装置1套; 传动部分:减速机(天津一减)(NGW82—B 速比25)1台、电机(上海贝德)(YCT250—4B 22Kw)1台;大齿轮装置:大齿轮1套、弹簧板1套及连接螺栓1套;进料装置:罩体1件、进料螺旋绞刀1套、密封1套; 出料装置:罩体1件、下料锁风翻板阀1件; 电控开关柜整套设备。 一、设备用途及技术要求:

该设备用于回转窑消石灰生产线中的消石灰进行烘干作业,热风和物料顺流进行热交换,前面配有热风炉,后面配有旋风收尘器等,其出料水份在小于5%时,经过倒料仓进入系统雷蒙磨机进行研磨以达到所要求的细度。 1、工艺条件:进料水分:小于32% 出料水分小于5% 产量10—12吨/小时。 2、技术规格:φ2.0x14m 斜度3% 连续运转,设备运转率95%以上。 3、技术要求及结构概述 它由筒体﹑支承装置、传动装置、密封装置、进出料装置组成。 筒体是由Q235B优质碳素结构钢焊接而成,其内部配有弧型、组合式扬料及热交换装置,与水平成3—5%斜度(根据物料粒径和初始水分含量选取),内径φ2.0米,长度14米,筒体上活套两个轮带以满足有足够的支撑力。 支撑装置共有两组,其中一组带有挡轮装置,以控制筒体运行中位移现象,托轮轴部位装有自动调心滚子轴承,并配有托轮中心调整螺栓,可根据运行情况进行有效的调整,使托轮与轮带之间接触良好。 传动装置是开式齿轮传动形式,大齿轮是由弹簧板与筒体连接,以克服筒体径向位移对传动的影响,小齿轮与减速机连接,并通过调速电机来调整筒体的转速。 密封装置是采用叠加组合型弹簧片密封,其密封效果好,易于维护。

相关文档
最新文档