人教A版数学选修2-1同步导练作业:第2章 圆锥曲线与方程 作业18

人教A版数学选修2-1同步导练作业:第2章 圆锥曲线与方程 作业18
人教A版数学选修2-1同步导练作业:第2章 圆锥曲线与方程 作业18

课时作业18 抛物线的简单几何性质

基础巩固

1.抛物线y 2=4x 上一点M 到焦点的距离为3,则点M 的横坐标x 等于( )

A .1

B .2

C .3

D .4

解析:x +p

2=3,p =2,∴x =2,选B. 答案:B

2.过定点P (0,2)作直线l ,使l 与曲线y 2=4x 有且仅有1个公共点,这样的直线l 共有( )

A .1条

B .2条

C .3条

D .4条

解析:一条切线,一条y 轴,一条平行于x 轴. 答案:C

3.过抛物线y 2=4x 的焦点作直线交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,若x 1+x 2=6,则|PQ |的值为( )

A .10

B .8

C .5

D .6

解析:如图1,F (1,0)由定义知|PQ |=x 1+x 2+2=8.

图1

答案:B

4.设抛物线y 2=4px 的焦点弦的两端点为(x 1,y 1)、(x 2,y 2),则y 1y 2的值是( )

A .p 2

B .1-p 2

C .4p 2

D .-4p 2

解析:F (p,0)设弦方程?

????

y =k (x -p )y 2=4px 消去x 得

ky 2-4py -4kp 2=0.

由韦达定理y 1y 2=-4kp 2

k =-4p 2. 答案:D

5.若抛物线y 2=2px 的焦点与椭圆x 29+y

25=1的右焦点重合,则

该抛物线的准线方程为________.

解析:由题意椭圆x 29+y 2

5=1, 故它的右焦点坐标是(2,0),

又y 2=2px (p >0)的焦点与椭圆x 29+y

25=1相同,

故p=4∴抛物线的准线方程为x=-2.

答案:x=-2

6.(2017年高考·课标全国卷Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=________.

解析:解法1:依题意,抛物线C:y2=8x的焦点F(2,0),准线x =-2,因为M是C上一点,FM的延长线交y轴于点N,M为FN 的中点,设M(a,b)(b>0),所以a=1,b=22,所以N(0,42),|FN|=4+32=6.

解法2:依题意,抛物线C:y2=8x的焦点F(2,0),准线x=-2,因为M是C上一点,FM的延长线交y轴于点N,M为FN的中点,则点M的横坐标为1,所以|MF|=1-(-2)=3,|FN|=2|MF|=6.

答案:6

7.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是________.解析:由抛物线定义知P到准线l2:x=-1的距离等于它到焦点(1,0)的距离,所以P到直线l1和l2的距离之和最小值等于焦点到l1的距离

d=|4×1-3×0+6|

42+(-3)2

=2.

答案:2

8.斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段AB的长.

解:如图2,由抛物线的标准方程可知,焦点F(1,0),准线方程为x=-1,由题设,直线AB的方程为y=x-1,代入抛物线方程y2=4x,

图2

整理得x2-6x+1=0.

解法1:解上述方程得

x1=3+22,x2=3-22,

分别代入直线方程得

y1=2+22,y2=2-22,

即A、B的坐标分别为

(3+22,2+22)、

(3-22,2-22),

∴|AB|=(42)2+(42)2=8.

解法2:设A(x1,y1)、B(x2,y2),

则x1+x2=6,x1x2=1,

∴|AB|=2|x1-x2|

=2(x1+x2)2-4x1x2=2×62-4=8.

解法3:设A(x1,y1)、B(x2,y2).由抛物线的定义可知,|AF|=|AA′|=x1+1,|BF|=|BB′|=x2+1,

∴|AB|=x1+x2+2=6+2=8.

能力提升

1.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( )

A .2 2

B .2 3

C .4

D .2 5

解析:由题意设抛物线方程为y 2=2px (p >0),则点 M 到焦点的距离为x M +p 2=2+p

2=3, ∴p =2.∴抛物线方程为y 2=4x . ∵点M (2,y 0)在抛物线y 2=4x 上, ∴y 20=4×2.∴y 0=±2 2. ∴|OM |=4+y 20=4+8=2 3. 答案:B

2.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )

A .[-12,1

2] B .[-2,2] C .[-1,1]

D .[-4,4]

解析:设直线方程为y =k (x +2),与抛物线方程联立,得

?

????

y 2=8x ,y =k (x +2),消去x , 得到关于y 的方程ky 2-8y +16k =0.

当k =0时,上述方程有解,所以直线与抛物线有公共点; 当k ≠0时,应有Δ≥0,即64-64k 2≥0, 解得-1≤k ≤1且k ≠0.

综上可知,l 斜率的取值范围是[-1,1]. 答案:C

3.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,P A⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=() A.4 3 B.8

C.8 3 D.16

解析:如图3所示,因为AF的斜率为-3,所以∠AFx=120°,又因为P A∥x轴,所以∠P AF=180°-120°=60°,再加之抛物线的定义得P A=PF,因此△P AF为等边三角形.

此题可通过构造以下三种情境将|PF|解出

情境1:如图4,设准线与x轴相交于M,易得∠AFM=60°,所

以在Rt△AMF中,cos∠AFM=|MF|

|AF|=

1

2,所以|AF|=2|MF|=8,又因

为△APF为等边三角形,故

|PF|=|AF|=8.

情境2:如图5,过F点作AP的垂线,设垂足为N,因为△APF 为等边三角形,所以|P A|=2|AN|=2|MF|=8,故|PF|=|P A|=8.

情境3:如图6,过点P作x轴的垂线,设垂足为Q,因为∠PFQ

=60°,所以在Rt △PFQ 中,|FQ |=|PF |·cos60°=1

2|PF |,又因为|P A |=|PF |=|MQ |=|MF |+|FQ |=4+1

2|PF |,易得|PF |=8.

答案:B

4.抛物线y 2=4x 的焦点弦被焦点分成长是m 和n 的两部分,则m 与n 的关系是( )

A .m +n =mn

B .m +n =4

C .mn =4

D .无法确定

解析:由?

????

y 2=4x

y =k (x -1)消y 得k 2x 2-(2k 2+4)x +k 2=0,则x 1x 2=1,

x 1+x 2=2k 2+4

k 2,

∴?

????

m =x 1+1n =x 2+1,∴m +n =mn . 答案:A

5.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )

A .x =1

B .x =-1

C .x =2

D .x =-2

解析:设A (x 1,y 1),B (x 2,y 2)由题意,x 1≠x 2,y 1+y 2=4且

y 2-y 1x 2-x 1

=1

∵y 22=2px 2,y 21=2px 1,∴y 22-y 2

1=2p (x 2-x 1),∴(y 2-y 1)(y 2+y 1)

=2p (x 2-x 1),∴y 2-y 1

x 2-x 1·(y 2+y 1

)=2p .即4=2p ,∴p =2,∴准线方程

为:x =-p

2=-1,故选B.

答案:B

6.(2018年高考·课标全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.

解析:解法1:由题意知抛物线的焦点为(1,0), 则过C 的焦点且斜率为k 的直线方程为

y =k (x -1)(k ≠0),由?

????y =k (x -1),y 2=4x ,

消去y ,得k 2(x -1)2=4x , 即k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2k 2+4

k 2,x 1x 2=1.

由?????y =k (x -1),y 2=4x ,

消去x ,得y 2=4(1k y +1), 即y 2

-4k y -4=0,则y 1+y 2=4

k ,y 1y 2=-4,

由∠AMB =90°,

得MA →·MB →=(x 1+1,y 1-1)·(x 2+1,y 2-1) =x 1x 2+x 1+x 2+1+y 1y 2-(y 1+y 2)+1=0, 将x 1+x 2=2k 2+4k 2,

x 1x 2=1与y 1+y 2=4

k ,y 1y 2=-4代入,得k =2.

解法2:设抛物线的焦点为F ,A (x 1,y 1),B (x 2,y 2),

则?????y 12=4x 1,y 22=4x 2,

所以y 12-y 22=4(x 1-x 2), 则k =y 1-y 2x 1-x 2=4y 1+y 2,取AB 的中点M ′(x 0,y 0),

分别过点A ,B 作准线x =-1的垂线, 垂足分别为A ′,B ′,又∠AMB =90°, 点M 在准线x =-1上, 所以|MM ′|=12|AB |=1

2(|AF |+|BF |) =1

2(|AA ′|+|BB ′|).又M ′为AB 的中点, 所以MM ′平行于x 轴,且y 0=1, 所以y 1+y 2=2,所以k =2. 答案:2

7.若抛物线y 2=mx 与椭圆x 29+y

25=1有一个共同的焦点,则m

=__________.

解析:椭圆焦点为(±2,0),∴抛物线为y 2=±8x . 答案:±8

8.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则|AF |

|FB |=________.

解析:

图7

解法1:几何法:如图7,令AF =x ,则AA 1=x ;FB =y ,则BB 1

=y

∴HB =2y ,∴HB =2x +x +y =2y ,∴x y =1

3

解法2:特殊值法:令p =2,则???

x 2=4y

y =3

3x +1

,求出A 、B 坐标

即可.

答案:1

3

9.已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.

解:设抛物线上的A 点的坐标为(y 21,y 1),B 点的坐标为(y 22,y 2),

并且关于直线l 对称,则

???

k y 1-y 2

y 21-y 22

=-1,y 1

+y 2

2=k ? ????

y 21

+y 22

2-1+1.

得???

y 1+y 2=-k ,y 1y 2=k 22+1k -12.

∴y 1,y 2是方程t 2

+kt +k 22+1k -12=0的两个不同的实数根,∴Δ=k 2-4? ??

??k 22+1k -12>0,得-20)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.

图8

(1)求抛物线E 的方程;

(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.

解:(1)由抛物线的定义得|AF |=2+p 2. 因为|AF |=3,即2+p

2=3,解得p =2,

图9

所以抛物线E 的方程为y 2=4x .

(2)因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±22,

由抛物线的对称性,不妨设 A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为 y =22(x -1).

由?????

y =22(x -1)y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =1

2,从而B ? ??

??12,-2. 又G (-1,0),

所以k GA =22-02-(-1)=22

3,

k GB =-2-012-(-1)

=-223,

所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,

GB 的距离相等,

故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.

创新拓展

1.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )

A .|FP 1|+|FP 2|=|FP 3|

B .|FP 1|2+|FP 2|2=|FP 3|2

C .2|FP 2|=|FP 1|+|FP 3|

D .|FP 2|2=|FP 1|·|FP 3|

图10

解析:如图10所示,由定义知 |FP 1|=x 1+p 2, |FP 2|=x 2+p

2, |FP 3|=x 3+p

2,

由2x 2=x 1+x 3知,2|FP 2|=|FP 1|+|FP 3|. 答案:C

2.已知双曲线C 1:x 2a 2-y 2

b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )

A .x 2

=833y B .x 2

=1633y

C .x 2=8y

D .x 2=16y

解析:抛物线x 2

=2py (p >0)的焦点为(0,p

2).双曲线的一条渐近

线为y =b a x 即bx -ay =0.由题意:|-a ·p 2|b 2+a

2=2即a

2c ·p =2.

∵c

a =2 ∴p =8 ∴抛物线方程为x 2=16y ∴选D. 答案:D

3.已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点到准线的距离为________.

图11

解析:如图11,分别过A 、B 作准线x =-1的垂线,垂足分别为E 、G ,又过B 作BK ⊥AE 于K 交x 轴于H ,由AF →=3BF →,可设|FB →|=m ,

|AF

→|=3m ,由抛物线的性质得,|AE |=3m , |BG |=m ,|HF |=2-m ; 又由HF ∥AE 有|HF ||AK |=|BF ||BA |=1

4. 2-m 3m -m =14

,m =4

3, 所以弦AB 的中点到准线的距离为12(|BG |+|AE |)=12|AB |=1

2×4m =2×43=83.

答案:83

4.设抛物线?

????

x =2pt 2,

y =2pt (t 为参数,p >0)的焦点为F ,准线为l .

过抛物线上一点A 作l 的垂线,垂足为B .设C ? ??

??

72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.

解析:抛物线的普通方程为y 2

=2px ,(p >0),F (p

2,0),l :x =-

p 2,|CF |=3p ,又|CF |=2|AF |,则|AF |=32p ,由抛物线的定义得|AB |=32p ,所以x A =p ,则|y A |=2p ,由CF ∥AB 得EF EA =CF AB ,即EF EA =CF

AF =2,所以S △CEF =2S △CEA =62,所以S △ACF =S △AEC +S △CFE =92,所以1

2

×3p×2p=92,p= 6.

答案: 6

由Ruize收集整理。感谢您的支持!

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

人教版数学高二选修2-1测试题组 第二章 圆锥曲线B组

(数学选修2-1)第二章 圆锥曲线 [综合训练B 组] 一、选择题 1.如果22 2 =+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 2.以椭圆 116 252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A . 1481622=-y x B .12792 2=-y x C . 1481622=-y x 或127 92 2=-y x D .以上都不对 3.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2 1π = Q PF , 则双曲线的离心率e 等于( ) A .12- B .2 C .12+ D .22+ 4.21,F F 是椭圆17 92 2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( ) A .7 B . 47 C .2 7 D .257 5.以坐标轴为对称轴,以原点为顶点且过圆09622 2 =++-+y x y x 的圆心的抛物线的方程是( ) A .2 3x y =或2 3x y -= B .2 3x y = C .x y 92 -=或2 3x y = D .2 3x y -=或x y 92 = 6.设AB 为过抛物线)0(22 >=p px y 的焦点的弦,则AB 的最小值为( ) A . 2 p B .p C .p 2 D .无法确定 二、填空题

1.椭圆 22189x y k +=+的离心率为1 2 ,则k 的值为______________。 2.双曲线2 2 88kx ky -=的一个焦点为(0,3),则k 的值为______________。 3.若直线2=-y x 与抛物线x y 42 =交于A 、B 两点,则线段AB 的中点坐标是______。 4.对于抛物线2 4y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。 5.若双曲线142 2=-m y x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 6.设AB 是椭圆22 221x y a b +=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点, 则AB OM k k ?=____________。 三、解答题 1.已知定点(A -,F 是椭圆 22 11612 x y +=的右焦点,在椭圆上求一点M , 使2AM MF +取得最小值。 2.k 代表实数,讨论方程2 2 280kx y +-=所表示的曲线 3.双曲线与椭圆 136 272 2=+y x 有相同焦点,且经过点4),求其方程。 4. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。 (数学选修2-1) 第二章 圆锥曲线 [综合训练B 组]

第二章 圆锥曲线与方程(复习)

第二章 圆锥曲线与方程(复习) 校对人:聂格娇 审核人:徐立朝 1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质; 3.能解决直线与圆锥曲线的一些问题. 7881,找出疑惑之处) 复习2: ① 若椭圆221x my +=,则它的长半轴长为__________; ②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ; ③以椭圆22 12516 x y +=的右焦点为焦点的抛物线方程为 .

二、新课导学 ※ 典型例题 例1 当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 变式:若曲线22 11x y k k +=+表示椭圆,则k 的取值范围是 . 小结:掌握好每类标准方程的形式. 例2设1F ,2F 分别为椭圆C :22 22x y a b + =1(0)a b >>的左、右两个焦点. ⑴若椭圆C 上的点A (1,32 )到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; ⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 变式:双曲线与椭圆22 12736 x y +=有相同焦点,且经过点,求双曲线的方程.

※动手试试 练1.已知ABC ?的两个顶点A,B坐标分别是(5,0) -,(5,0),且AC,BC 所在直线的斜率之积等于m(0) m≠,试探求顶点C的轨迹. 练2.斜率为2的直线l与双曲线 22 1 32 x y -=交于A,B两点,且4 AB=, 求直线l的方程. 三、总结提升 ※学习小结 1.椭圆、双曲线、抛物线的定义及标准方程; 2.椭圆、双曲线、抛物线的几何性质; 3.直线与圆锥曲线. ※知识拓展 圆锥曲线具有统一性: ⑴它们都是平面截圆锥得到的截口曲线; ⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线; ⑶它们的方程都是关于x,y的二次方程.

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

高中数学圆锥曲线与方程教案

高中数学圆锥曲线与方 程教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 2.1 求曲线的轨迹方程(新授课) 一、教学目标

知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).

北师大高二数学选修圆锥曲线方程测试题及答案

高二数学选修1-1圆锥曲线方程检测题 斗鸡中学 强彩红 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点 () 10,3F -, () 20,3F ,动点 () ,P x y 满足条件 a PF PF =+21(a >)0,则动点 P 的轨迹是( ). A. 椭圆 B. 线段 C. 不存在 D.椭圆或线段或不存在 2、抛物线 2 1y x m = 的焦点坐标为( ) . A .??? ??0,41m B . 10,4m ?? ??? C . ,04m ?? ??? D .0,4m ?? ??? 3、双曲线 22 1mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14- B .4- C .4 D .1 4 4、设双曲线的焦点在x 轴上,两条渐近线为y=± x 2 1 ,则该双曲线的离心率e 为( ) (A )5 (B )5 (C ) 25 (D )4 5 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2 (C ) 5 (D )5 6、若椭圆13 22 2=++y m x 的焦点在x 轴上,且离心率e=2 1,则m 的值为( ) (A ) 2 (B )2 (C )-2 (D )± 2 7、过原点的直线l 与双曲线42x -32 y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23 ,+∞) C.[-23,23] D.(-∞,-23]∪[23 ,+∞) 8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

(完整)高二文科数学选修圆锥曲线练习题附标准答案

圆锥曲线单元练习(文) 派潭中学 廖翠兰 时间:100分钟 满分100分 一、选择题:(每题4分,共40分) 1.0≠c 是方程 c y ax =+2 2 表示椭圆或双曲线地( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .不充分不必要条件 2.如果抛物线y 2=ax 地准线是直线x =-1,那么它地焦点坐标为 ( ) A .(1, 0) B .(2, 0) C .(3, 0) D .(-1, 0) 3.直线y = x +1被椭圆x 2+2y 2=4所截得地弦地中点坐标是( ) A .( 31, -3 2 ) B .(- 32, 3 1) C.( 21,-31) D .(-31,2 1 ) 4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( ) A .6m B .26m C .4.5m D .9m 5. 已知椭圆15922=+y x 上地一点P 到左焦点地距离是3 4 ,那么点P 到椭圆地右准线地距离是( ) A .2 B .6 C .7 D . 143 6.曲线 2 25 x + 2 9 y =1与曲线 2 25k x -+ 2 9k y -=1(k <9 )地( ) A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等 7.已知椭圆 2 5 x + 2 m y =1地离心率 e= 5 ,则m 地值为( ) A .3 B. 25 3 或 3 D.3 8.已知椭圆C 地中心在原点,左焦点F 1,右焦点F 2均在x 轴上,A 为椭圆地右顶点,B 为 椭圆短轴地端点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆地离心率等于( ) A . 12 B .2 C .1 3 D .5 9 2)0>>n m 地曲线在同一坐标系 10.椭圆 2 25 x + 2 9 y =1上一点M 到左焦点 1 F 地距离为2,N 是M 1 F 地中点,,则2ON

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

(新)高中数学选修1-1圆锥曲线方程单元测试题含答案

选修2-1《圆锥曲线与方程》单元测试题 一、选择题 1.已知方程11 22 2=-+-k y k x 的图象是双曲线,那么k 的取值范围是( ) A.k <1 B.k >2 C.k <1或k >2 D.1<k <2 2、已知21,F F 是椭圆)0(122 22>>=+b a b y a x 的两个焦点,AB 是过1F 的弦,则 2ABF ?的周长是 ( ) A.a 2 B.a 4 C.a 8 D.b a 22+ 3、一动圆与圆221x y +=外切,同时与圆226910x y x +--=内切,则动圆 的圆心在( ) .A 一个椭圆上 .B 一条抛物线上 .C 双曲线的一支上 .D 一个圆上 4、抛物线y 2=4px (p >0)上一点M 到焦点的距离为a ,则M 到y 轴距离为 ( ) A.a -p B.a+p C.a -2 p D.a+2p 5.双曲线22a x -22 b y =1的两条渐近线互相垂直,那么它的离心率为( ) A. 2 B.3 C. 2 D. 2 3 6、.我们把离心率e =的椭圆叫做“优美椭圆”。设椭圆22221x y a b +=为优 美椭圆,F 、A 分别是它的右焦点和左顶点,B 是它短轴的一个端点,则ABF ∠等于( ) A. 60 B.75 C.90 D. 120 二、填空题 7.设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心互为倒数,则该椭圆的方程是

8.直线1y x =-与椭圆22 142 x y + =相交于,A B 两点,则AB = . 9. 已知F P ),1,4(-为抛物线x y 82=的焦点,M 为此抛物线上的点,且使 MF MP +的值最小,则M 点的坐标为 10.过原点的直线l ,如果它与双曲线14 32 2=-x y 相交,则直线l 的斜率k 的取值范围是 . 三.解答题 11.已知抛物线的顶点在原点,它的准线过双曲线122 22=-b y a x 的右焦点,而且 与x 轴垂直.又抛物线与此双曲线交于点)6,23 (-,求抛物线和双曲线的方 程. 12.双曲线122 22=-b y a x (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥5 4 c.求双曲线的 离心率e 的取值范围.

高中二年级数学 第二章 圆锥曲线与方程(A)

第二章 圆锥曲线与方程(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12 ,则此椭圆的方程为( ) A.x 212+y 216=1 B.x 216+y 212 =1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2108=1 B.x 29-y 227 =1 C.x 2108-y 236=1 D.x 227-y 29 =1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b 2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( ) A .1 B .a 2 C .b 2 D .c 2 5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 24 =1 C.y 24-x 28=1 D.x 28-y 24 =1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2 =1的离心率e 的取值范围是( ) A .(2,2) B .(2,5) C .(2,5) D .(2,5) 7. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( ) A .直线 B .圆 C .双曲线 D .抛物线 8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FA +FB +FC =0,则|FA |+|FB |+|FC |等于( )

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

圆锥曲线与方程复习资料

高中数学选修2-1 第二章 圆锥曲线与方程 知识点: 一、曲线的方程 求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系; (),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式; ⑤化简方程,并验证(查漏除杂)。 二、椭圆 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12 F F )的点的轨迹称为椭圆。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。()12222MF MF a a c +=> 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 第一定义 到两定点21F F 、 的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 到一定点的距离和到一定直线的距离之比为常数e ,即 (01)MF e e d =<< 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

3、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则121 2 F F e d d M M ==。 常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标和离心率. 【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。

北师大版高二数学选修圆锥曲线方程测试题及答案

北师大版高二数学选修圆锥曲线方程测试题及 答案 SANY GROUP system office room 【SANYUA16H-

高二数学选修1-1圆锥曲线方程检测题 斗鸡中学 强彩红 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点 () 10,3F -, () 20,3F ,动点 () ,P x y 满足条件 a PF PF =+21(a >)0,则动点 P 的轨迹是( ). A. 椭圆 B. 线段 C. 不存在 D.椭圆或线段或不存在 2、抛物线 2 1y x m = 的焦点坐标为( ) . A .??? ??0,41m B . 10,4m ?? ??? C . ,04m ?? ??? D .0,4m ?? ? ?? 3、双曲线 221mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14- B .4- C .4 D .1 4 4、设双曲线的焦点在x 轴上,两条渐近线为y=±x 21 ,则该双曲线的离心率e 为 ( ) (A )5 (B )5 (C ) 25 (D )4 5 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2 (C ) 5 (D )5 6、若椭圆13 22 2=++y m x 的焦点在x 轴上,且离心率e=2 1,则m 的值为( ) (A ) 2 (B )2 (C )-2 (D )± 2

7、过原点的直线l 与双曲线42x -32 y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23 ,+∞) C.[-23,23] D.(-∞,-23]∪[23 ,+∞) 8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC 与直线C1D1的距离相等,则动点P 的轨迹所在的曲线是( ). A.直线 B. 抛物线 C.双曲线 D. 圆 9、已知椭圆x 2sin α-y 2cos α=1(0<α<2π)的焦点在x 轴上,则α的取值范围是( ) (A )(4 3π,π) (B )(4 π,4 3π ) (C )(2 π,π) (D )(2 π,4 3π ) 10、 F 1、F 2是双曲线116 9 2 2 =- y x 的两个焦点,点P 在双曲线上且满足∣P F 1∣·∣P F 2∣=32, 则∠F 1PF 2是( ) (A ) 钝角 (B )直角 (C )锐角 (D )以上都有可能 11、与椭圆125 16 2 2 =+ y x 共焦点,且过点(-2,10)的双曲线方程为( ) (A ) 14522=-x y (B )14522=-y x (C )13522=-x y (D )13 52 2=-y x 12.若点 到点 的距离比它到直线 的距离小1,则 点的轨迹方程 是( ) A . ?????? B . C . ??????? D . 二、填空题:本大题共4小题,每小题4分,共16分. 13、已知双曲线的渐近线方程为y=±34x ,则此双曲线的离心率为________. B D A 1 B 1 C 1 1 P

高考数学圆锥曲线与方程知识点梳理

高考数学圆锥曲线与方程知识点梳理 一、方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。 点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上?f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上?f(x 0,y 0)≠0。 两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没 有实数解,曲线就没有交点。 二、圆 1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 2、方程: (1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2 圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2 ,2(E D --半径是2 422F E D -+。配方,将方程x 2+y 2 +Dx+Ey+F=0化为 (x+ 2D )2+(y+2 E )2=4 4F -E D 22+ ②当D 2+E 2-4F=0时,方程表示一个点(- 2D ,-2 E ); ③当D 2+E 2-4 F <0时,方程不表示任何图形.

相关文档
最新文档