电力系统频率的二次调节.doc

电力系统频率的二次调节.doc
电力系统频率的二次调节.doc

电力系统频率的二次调节

一、频率的二次调节基本概念

上一节分析了系统频率特性系数Ks的组成和特点。从分析中可知,系统的频率响应系数愈大,系统就能承受愈大的负荷冲击。换句话说,在同样大的负荷冲击下,Ks愈大,所引起的系统频率变化愈小。为了使系统的频率偏差限制在教小的范围内,总是希望有较大的Ks。

Ks由两部分组成,一部分有负荷本身的频率特性所决定,电力系统的运行人员是无法改变的;另一部分有发电机组的频率响应系数决定的,它是发电机调差系数的倒数。运行人员可以调整机组的调差系数和机组的运行方式来改变其大小。但是从机组的稳定运行角度考虑,机组的调差系数δ%不能取得太小,以免影响机组的稳定运行。

系统的频率响应系数Ks是随着系统负荷的变动和运行方式的变化二变动的。这对用户和系统本身都是不希望的。也就是说,仅靠系统的一次频率调整,没有任何形式的二次调节(包括手动和自动),系统的频率不可能恢复到原有的值。为了使系统的频率恢复到原有的额定频率运行,必须采用频率的二次调节。

频率的二次调节就是改变发电机组的频率特性曲线,从而使系统的频率恢复到原来的正常范围。

如图3-15所示,发电与负荷的起始点为a,系统的频率为f1。当系统的负荷发生变化,负荷增大,负荷特性曲线从PLa变化至PLb时,当系统发电特性曲线为PGa时,发电与负荷的交叉点为a移至b点。此时,系统的频率从f1降至f2。当增加系统发电,即改变发电的频率特性曲线从PGa变到PGb,就能使发电与负荷特性的交叉点移至d点,可使系统的频率保持在原来的f1运行。

反之,当系统的负荷降低,在如图3-15中,发电与负荷的起始点为d,此时,系统的频率为f1。当系统的负荷发生变化,负荷特性从从PLb变化至PLa时,当系统发电特性曲线为PGb时,发电与负荷的交叉点为d和c点。此时,系统的频率从f1上升至f3。为了恢复系统的频率,适当减少系统发电,即改变发电的频率特性曲线从PGb变到PGa,就能使发电与负荷特性的交叉点从c点移至a点,

可使系统的频率从f3恢复到原来的f1运行。

以上改变发电机组调速系统的运行点,使发电机组在原有额定频率条件下运行,增加较大的有功功率的方法,就是频率的二次调节。

二、频率二次调节的方法

一般情况下,机组频率调节器有三种类型,即有差调节器、积分调节器和微分调节器。

有差调节器(也称为比例调节)就是按频率偏差的大小控制调频器,并按频率偏差的比例增加机组的有功功率进行调节的方法。

采用这种调节方式的调频机组,其机组有功功率的变化跟随系统频率的变化而变化。因此,比例调节只能减少系统频率的偏差,无法达到消除系统频率偏差的根本目标。

积分调节器是按频率偏差对时间的积分来控制调频器来增减机组功率的调节方法。采用这种方式时,机组功率的增/减量与频率偏差的积分量的大小有关,用公式表示如下:

△PG =∫△f.dt(3.2.1)

积分调节器可达到无差调节,即∫△f.dt=0,最终达到△f=0。

这一调节方式的最大缺点在于在负荷变化的最初阶段,由于∫△fdt的量很小,调频机组的功率变化也很小,导致最初阶段的频率偏差较大。

微分调节器就是按频率偏差对时间的微分来控制调频器来增减机组功率的调节方法。采用这种方式时,机组功率的增/减量与频率偏差的微分量的大小有关,用公式表示如下:

△PG =d△f/dt

微分调节的机组,在负荷变化的最初阶段,由于d△f/dt的量较大,调频机组的功率变化也较大,这限制了系统的频率偏差的近一步扩大。但是随着时间的推移,频率的变化量逐步变小,d△f/dt也愈来愈小,以致于趋向于零。这时,微分调节的作用也逐步减少,直至消失。这和积分调节的作用刚好相反。

电力系统中,系统频率的二次调节的方法,笼统可分为有差调节和无差调节两大类。

(一)有差调节方法

有差调节就是根据频率偏差的大小来控制各调频机组,并按频率偏差的比例增加调频机组的有功功率的进行调节的方法。

单台机组的有差调节的稳定工作特性用公式表示如下:

△f + KG *△PG

=0 (3.

2.2)

其中:

△f 为调节结束后系统频率的偏差量;

△PG为调节结束后调频机组的有功功率变化量;

KG为调频机组有差调节器的调差系数;

当系统中有n台机组,每台机组均配备有差调节器时,全系统的有功调节方程式可用下面的联立方程组来表示:

式中:

△f 为系统频率的偏差量;

△PGi为第i调频机组的有功功率变化量;

KGi为第i调频机组有差调节器的调差系数;

假设当系统中总负荷的增量(计划外负荷)为△PL,则调节结束后,系统发电的增加量为△PG,解联立方程组,得出:

△PG= △PL

=△PG1 +…△PGi +… +△PGn

=-△f * (1/KG1 +… 1/KGi +…+ 1/KGn)

= -△f/KGS

式中:

KGS=1/(1/KG1 +… 1/KGi +…+ 1/KGn)

KGS为系统的等值调差系数

因此,可求得每i台调频机组所承担得计划外有功功率为:

△PGi= △PL *

(KGi/KGS)

(3.2.4)

(i=1,2,……n)

有差调节器有如下特点:

(1)各调频机组同时参加有功调节,无先后之分

当系统频率出现偏差时,各调频机组得平衡工作状态被打破,各调频机组均向同一方向进行有功调节,同时发出改变机组有功功率得命令。因此,所有的调频机组均向减少频率偏差的方向进行有功功率调节,共同承担减少频率偏差的任务,有利于充分利用机组的调频容量。

(2)计划外的负荷在调频机组间按一定的比例进行分配

调频机组所承担的计划外的有功功率的份额,与机组的调差系数KGi成反比。KGi越大,调频机组承担的额外的有功功率增量越小。

机组承担的计划外有功功率的份额的大小可以通过改变机组的调差系数来实现的。

(3)稳定后的频率偏差较大

有差调节不能让系统频率稳定在额定值上。正是由于频率的偏差才有了调频的有功功率增量。没有频率偏差,也就不存在调频的有功功率增量。

系统的负荷增量愈大,导致系统的频差愈大。使用有差调节器时,需要不断地

人工校正调差系数,以减少频率的偏差。这是有差调节器固有的缺点。实际上,这种频率调节方式成为半自动的调频方式。

(二)无差调节方法

无差调节的方法主要是通过系统中调频机组之间设置不同的比例调节器、积分调节器及微分调节器的方法,在系统发生额外的负荷时,通过调节各调频机组的有功功率来实现系统频率恢复到额定值的方法。一般分为主导发电机法、假有差法和积差调节法三种。

a) 主导发电机法

在电力系统中,一台主要的调频机组上使用无差调频器,在其它的调频机组上均只安装有功功率分配器,这样的调频方法叫做主导发电机法。

假设系统有n台发电机组,主导发电机法的调节方程组为:

式中:

△f 为系统频率的偏差量;

PGi为第i调频机组的有功功率量;

аi为第i调频机组功率分配系数;

P1为系统总发电功率;

假设这时系统的负荷有了新的增量△PL。在调频器动作前,系统必然会出现频率偏差△f。此时,△f≠0。这时,调节方程原有的平衡状态被首先打破。

无差调节器按其调节方程,对机组的有功功率进行调节,随之出现了新的

△Pi值。于是其余的n-1台调频机组的功率分配方程式的原有平衡状态均被打破了。它们均会向着满足其功率分配方程的方向,对各自的机组进行有功功率调整。于是,出现了“成组调频”的状态。

这一调频过程一直要持续到不再继续出现新的△P1值时,整个调节过程才告结束。

此时,

而各台调频机组分担的有功功率增量为:

△PGi=△PL * K1 /(1+а2+……+аi

+……+аn) (3.2.7)

=△PL * Ki /Ks

以上说明,各调频机组的有功功率是按照一定的比例进行分配的。

用无差调节器为主导调节器的主要缺点在于各机组在频率调节过程中的作用,有先有后,缺乏同时性。这种调节方法必然导致调频容量不能充分、快速利用,从使整个调节过程变得较为缓慢,调频的动态特性不够理想。

(2)假有差法

假有差法是参加调频的机组都安装反映频率和有功功率变化的调节器。并按以下调频方程进行调整。

其中:

PGi为各调频机组的实际有功功率

KG1为各调频机组的有差调节系数

аi各调频机组的有功功率分配系数

系统的调频方程式为:

n n

n n

△f(Σ1/ KG1 ) = - [ΣPGi -

Σаi(ΣPGi)] (3.2.9)

i=1 i=1 i=1 i=1

由于Σаi =1,因此在调整过程结束时,应能达到△f=0,频率保持恒定。调整过程结束时,各调频机组的实际有功功率为:

n

PGi = аi

(ΣPGi)

(3.2.10)

i=1

调频机组之间的有功功率是按照比例进行分配的,而调差系数只在调整的过程中才体现出来。

由于有功量测表计存在一定的误差,或者调频机组的有功功率受到某些限制及机组跳闸等方面的原因,从而使得

n n

ΣPGi≠ аi(ΣPGi)

i=1 i=1

由此造成在频率调整结束时,△f≠0。为了弥补这一缺点,可以让其中一台调频机组按无差特性来进行调整(有时也称为虚无差法),其调整结果可以确保△f=0。

假设有n台机组参加调频时,其中第n台机组设为无差调节,则这一调频方程组可表示为:

n-1台机组所承担的有功功率为:Σаi*[ΣPGi ]=0。考虑有功量测上的误差,

i=1 i=1

n-1

则n-1台机组所承担的有功功率分配系数为:Σаi±δ

i=1

n-1

第n台机组所承担的有功功率分配系数为:1-(Σаi±δ)

i=1

(3)积差调节法

频率积差调节法是多台机组根据系统频率偏差的累积值进行调频。假设n台机组参与系统调频,则其调频方程组表示如下:

其中:

PGi为各调频机组的实际有功功率

KG1为各调频机组的有差调节系数

△f为系统频率对额定频率的偏差

由于系统中各点频率是一致的,所以各机组的频率积分∫△f.dt也可以认为是

相等的,各机组同时进行频率调整。此时,系统的调频方程式为:

n n

ΣPGi = -∫△f.dt(Σ1/

KGi ) (3.2.13)

i=1 i=1

n n

n

∫△f.dt= - ΣPGi /(Σ1/ KGi )= - KGsΣPGi

i=1 i=1

i=1

式中: n

KGs = 1/(Σ1/ KGi)

i=1

每台机组分担的额外有功功率为:

n

PGi = (ΣPGi)* KGs

/KGi

(3.2.14)

i=1

可以看出,当机组按积差调节法进行调频时,各调频机组之间的有功功率是按照一定的比例进行自动分配的。

积差调节法的优点是能确保系统频率保持恒定,额外的有功功率在所有参加调频的机组之间按一定比例进行自动分配。

积差调节法的缺点是频率的积差信号滞后于频率瞬时值的变化,调节过程较为缓慢。

为了使得频率偏差较大时,机组的有功功率调整量也响应增大;频率偏差较小时,

机组的有功功率调整量也响应减少。在频率积差调节的基础上,增加频率瞬时偏差信号。这就得到了改进的频率积差调节方程式:

△f+ KG1 (PGi -аi∫KGS△f.dt) =

0 (3.2.15)

i=1,2,……n

其中:

PGi为各调频机组的实际有功功率

KG1为各调频机组的有差调节系数

аi各调频机组的有功功率分配系数

△f为系统频率对额定频率的偏差

在该公式中,第一项△f完全是为了加快调节过程的作用。在调节过程结束时,△f必须为零。否则,∫KGS△f.dt就会不断地增加或减少,整个调节过程永远不会结束。

所以在调整过程结束时,仍有:

PGi

=аi∫KGS△f.dt ( 3.2.16)

对整个系统来说,如计划外负荷为Pfh,则调频结束时,

n n

Pfh = ΣPGi =Σаi∫KGS△f.dt

i=1 i=1

n

KGS∫△f.dt= Pfh / Σаi

i=1

则分配到每台机组的有功功率为:

n

PGi = Pfh *аi /

Σаi

(3.2.17)

i=1

因此,计划外的负荷是按一定的比例在在各台调频机组之间进行分配的。

电力系统频率调整

电力系统负荷可分为三种。第一种变动幅度很小,周期又很短,这种负荷变动由很大的 偶然性。第二种变动幅度较大,周期较长,属于这类负荷的主要有电炉、电气机车等带有冲 击性的负荷。第三种负荷变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变 化引起的负荷变动。 电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。一次调整或频 率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。二次 调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调 整。三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事 先给定的发电负荷曲线发电。在潮流计算中除平衡节点外其他节点的注入有功功率之所以可 以给定,就是由于系统中大部分电厂属于这种类型。这类发电厂又称为负荷监视。至于潮流 计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频 任务的发电厂母线。 一:调整频率的必要性 电力系统频率变动时,对用户的影响: 用户使用的电动机的转速与系统频率有关。 系统频率的不稳定将会影响电子设备的工作。 频率变动地发电厂和系统本身也有影响: 火力发电厂的主要厂用机械—风机和泵,在频率降低时,所能供应的风量和水量将迅速减少, 影响锅炉的正常运行。 低频运行还将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命,甚至使叶片 断裂。 低频运行时,发电机的通风量将减少,而为了维持正常电压,又要求增加励磁电流,以致使 发电机定子和转子的温升都将增加。为了不超越温升限额,不得不降低发电机所发功率。 低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流都将增大。也为了不超越 温升限额,不得不降低变压器的负荷。 频率降低时,系统中的无功功率负荷将增大。而无功功率负荷的增大又将促使系统电压水 平的下降。 频率过低时,甚至会使整个系统瓦解,造成大面积停电。 调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统, 特别时其中的调速器和调频器(又称同步器)。 二:发电机原动机有功功率静态频率特性 电源有功功率静态频率特性通常可以理解为就是发电机中原动机机械功率的静态频率特性。 原动机未配置自动调速时,其机械功率与角速度或频率的关系: 221212m P C C C f C f ωω=-=- 式中各变量都是标幺值;通常122C C =。 解释如下:机组转速很小时,即使蒸汽或水在它叶轮上施加很大转矩m M ,它的功率输出m P 仍很小,因功率为转矩和转速的乘积;机组转速很大时,由于进汽或进水速度很难跟上叶轮 速度,它们在叶轮上施加的转矩很小,功率输出仍然很小;只有在额定条件下,转速和转矩 都适中,它们的乘积最大,功率输出最大。 调速系统中调频器的二次调整作用在于:原动机的负荷改变时,手动或自动地操作调频器,

电力系统频率的二次调节.doc

电力系统频率的二次调节 一、频率的二次调节基本概念 上一节分析了系统频率特性系数Ks的组成和特点。从分析中可知,系统的频率响应系数愈大,系统就能承受愈大的负荷冲击。换句话说,在同样大的负荷冲击下,Ks愈大,所引起的系统频率变化愈小。为了使系统的频率偏差限制在教小的范围内,总是希望有较大的Ks。 Ks由两部分组成,一部分有负荷本身的频率特性所决定,电力系统的运行人员是无法改变的;另一部分有发电机组的频率响应系数决定的,它是发电机调差系数的倒数。运行人员可以调整机组的调差系数和机组的运行方式来改变其大小。但是从机组的稳定运行角度考虑,机组的调差系数δ%不能取得太小,以免影响机组的稳定运行。 系统的频率响应系数Ks是随着系统负荷的变动和运行方式的变化二变动的。这对用户和系统本身都是不希望的。也就是说,仅靠系统的一次频率调整,没有任何形式的二次调节(包括手动和自动),系统的频率不可能恢复到原有的值。为了使系统的频率恢复到原有的额定频率运行,必须采用频率的二次调节。 频率的二次调节就是改变发电机组的频率特性曲线,从而使系统的频率恢复到原来的正常范围。 如图3-15所示,发电与负荷的起始点为a,系统的频率为f1。当系统的负荷发生变化,负荷增大,负荷特性曲线从PLa变化至PLb时,当系统发电特性曲线为PGa时,发电与负荷的交叉点为a移至b点。此时,系统的频率从f1降至f2。当增加系统发电,即改变发电的频率特性曲线从PGa变到PGb,就能使发电与负荷特性的交叉点移至d点,可使系统的频率保持在原来的f1运行。 反之,当系统的负荷降低,在如图3-15中,发电与负荷的起始点为d,此时,系统的频率为f1。当系统的负荷发生变化,负荷特性从从PLb变化至PLa时,当系统发电特性曲线为PGb时,发电与负荷的交叉点为d和c点。此时,系统的频率从f1上升至f3。为了恢复系统的频率,适当减少系统发电,即改变发电的频率特性曲线从PGb变到PGa,就能使发电与负荷特性的交叉点从c点移至a点,

电力频率调整及控制

频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫做负荷的频率静态特性。 综合负荷与频率的关系可表示成: 由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。

12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而①和②表示发电机出力分别为PG1和PG2时对应的频率。

等值发电机组(电网中所有发电机组的等效机组)的功率频率静态特性如下图所示,它跟发电机组的功率频率静态特性相似。 12.1.2.3电力系统频率特性 电力系统的频率静态特性取决于发电机组的功率频率特性和负荷的功率频率特性,由发电机组的功率频率特性和负荷的功率频率特性可以经推导得出: 式中――电力系统有功功率变化量的百分值: ――系统频率变化量百分值; ――为备用容量占系统总有功负荷的百分值。 12.1.2.4一次调频 一次调频:由发电机特性和负荷调节效应共同承担系统负荷变化,使系统运行在另一频率的频率调整称为频率的一次调整。

电力系统频率及有功功率的自动调节

电力系统频率及有功功率的自动调节 摘要 在现实中系统功率并不是一个恒定的值,而是随时变化的,在系统中,每时每刻发电功 率和用电功率基本平衡。而功率又是影响频率的主要因素,当发电功率与用电功率平衡时,频率基本稳定,当发电功率大于用电功率时系统频率则上升,反之则下降,所以系统对有功 功率和频率进行调整。本文研究了电力系统频率及有功功率的自动调节进行了详细的研究与论证。 关键词:频率有功功率自动调节 第一章频率和有功功率自动控制的必要性 1电力系统频率控制的必要性A频率对电力用户的影响 (1)电力系统频率变化会引起异步电动机转速变化,这会使得电动机所驱动的加工工业产品的机械的转速发生变化,转速不稳定会影响产品质量”甚至会出现次品和废品。 (2)电力系统频率波动会影响某些测量和控制用的电子设备的准确性和性能,频率过低时有 些设备甚至无法工作。这对一些重要工业和国防是不能允许的。 (3)电力系统频率降低将使电动机的转速和输出功率降低,导致其所带动机械的转速和出力降低,影响电力用户设备的正常运行。 B频率对电力系统的影响 (1)频率下降时,汽轮机叶片的振动会变大,轻则影响使用寿命,重则可能产生裂纹。对于额定频率为50Hz的电力系统,当频率低到45Hz附近时,某些汽轮机的叶片可能因发生共振而断 裂,造成重大事故。(次同步谐振,1970、1971年莫哈维电厂790MV机组的大轴损坏事故) (2)频率下降到47-48HZ时,火电厂由异步电动机驱动的辅机(如送风机、送煤机)的出力随之下降,从而使火电厂发电机发出的有功功率下降。这种趋势如果不能及时制止,就会在短时间内使电力系统频率下降到不能允许的程度。这种现象称为频率雪崩。出现频率雪崩会造 成大面积停电,甚至使整个系统瓦解。 (3)在核电厂中,反应堆冷却介质泵对供电频率有严格要求。当频率降到一定数值时,冷却介质泵即自动跳开,使反应堆停止运行。 (4)电力系统频率下降时,异步电动机和变压器的励磁电流增加,使无功消耗增加,引起系统 电压下降,频率下降还会引起励磁机出力下降,并使发电机电势下降,导致全系统电压水平降

电力系统有功功率平衡与频率调整复习进程

第五章 电力系统有功功率平衡与频率调整 主要内容提示 本章主要讨论电力系统中有功功率负荷的最优分配和频率调整。 §5-1电力系统中有功功率的平衡 一、电力系统负荷变化曲线 在电力系统运行中,负荷作功需要一定的有功功率,同时,传输这些功率也要在网络中造成有功功率损耗。因此,电源发出的有功功率必须满足下列平衡式: ∑?+∑=∑P P P Li Gi 式中Gi P ∑—所有电源发出的有功功率; Li P ∑—所有负荷需要的有功功率; ∑?P —网络中的有功功率损耗。 可见,发电机发出的功率比负荷功率大的多才 行。当系统中负荷增大时,网络损耗也将增大,发电机发出的功率也要增加。在实际电力系统中,负荷随时在变化,所以必须靠调节电源侧,使发电机发出的功率随负荷功率的变化而变化。 负荷曲线的形状往往是无一定规律可循,但可将这种无规则的曲线看成是几种有规律的曲线的迭加。如图5-1所示,将一种负荷曲线分解成三种曲线负荷。 第一种负荷曲线的变化,频率很快,周期很短,变化幅度很小。这是由于想象不到的小负荷经常性变化引起的。 第二种负荷曲线的变化,频率较慢,周期较长,幅度较大。这是由于一些冲击性、间歇性负荷的变动引起的,如大工厂中大电机、电炉、电气机车等一开一停。 第三种负荷曲线的变化,非常缓慢,幅度很大。这是由于生产、生活、气象等引起的。这种负荷是可以预计的。 对于第一种负荷变化引起的频率偏移进行调整,称为频率的“ 一次调整”。调节方法一般是调节发电机组的调速器系统。对于第二种负荷变化引起的频率偏移进行调整,称为频率的“二次调整”,调节方法是调节发电机组的调频器系统。对于第三种负荷的变化,通常是根据预计的负荷曲线,按照一定的优化分配原则,在各发电厂间、发电机间实现功率的经济分配,称为有功功率负荷的优化分配。 二、发电厂的备用容量 电力系统中的有功功率电源是发电厂中的发电机,而系统中装机容量总是大于发电容 t

电力系统频率调整及控制汇总

12.1.1.1频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规 定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定 频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷 推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷 也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫 做负荷的频率静态特性。 综合负荷与频率的关系可表示成:

由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。 12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而 ①和②表示发电机出力分别为PG1和PG2时对应的频率。

电力系统频率异常的控制

电力系统频率异常的控制 【摘要】频率是电力系统重要的运行参数,也是衡量电能质量的重要指标,同时为某些安全稳定装置动作提供判据。现代电力系统中装设了大量的频率量测装置,从而可以记录系统中发生的频率动态过程,然而对实际电网进行频率动态过程研究发现,仿真所得的频率轨迹与实测轨迹存在着较大的差别,这就迫切需要对电力系统中影响动态频率特性的相关因素进行分析。 【关键词】电力系统;频率异常;控制分析 一、频率异常的特点和控制措施 由电力系统事故所引起的频率大幅度变化的动态过程称为频率 异常。它不同于正常运行的频率波动.主要表现在频率变化幅度大、速度快。在电力系统尚未解列时,伴随有振荡的出现。当电力系统解列后,在功率严重缺少的被解列的区域网内,又往往会出现频率的单调衰减,即所谓的频率崩溃。 引起电力系统频率异常的根本原因是系统中出现了功率的不平衡,而导致功率突变的直接原因是:①联络线出现故障开关跳闸,两侧功率出现了不平衡;②电力系统内有大容量发电机组突然投入或切除;③电力系统内有大的负荷突然投入或解除。 针对这些原因,可以采用如下所述的措施和控制手段来减少频率事故的出现: ①合理设计电力网结构。如采用双回路联络线,以减少线路故障

导致电力系统解列的可能性;环形网供电,以减少辐射阀所引起停电的可能性;用电负荷和供电电源应尽可能就地平衡;②适当地控制系统传输功率。在图1中,为了使联络线故障切除后不引起两侧系统频率急剧下降,应该预先将联络线交换功率限制在适当的限额内。在考虑电力系统的电流分析时,应该尽量保证在一些线路故障切除后,在电流转移的情况下,不会造成其他线路或区域过负荷。 ③系统应具备足够的备用容量。在电力系统中为了防止系统因大量功率缺额而造成系统频率下降,一般需要安排一定数量的发电机作为旋转备用(热备用),当频率下降时可以立即使旋转备用机组提供输出功率;④在电力系统内装设控制频率异常的自动控制装置。能够自动投切发电机组和负荷。 二、消除电力系统频率异常的自动控制装置 按照频率异常时频率上升和下降的不同,自动控制装置可分为:①反映电力系统频率下降时动作的自动控制装置;有低频减负荷自动控制装置颁发电机自启动控制装置、低频蓄能改发电自动控制装置等;②反映电力系统频率上升时动作的自动控制装置。有高频切除发电机组自动控制装置、高频率发电机组输出功率自动控制装置、电气制动自动控制装置等。 这些自动控制装置用频率变化作为测量信号,经过一定的逻辑判断后由控制操作指令,它们都属于反事故自动控制装置。按频率自动减负荷装置是一种有着高度选择性的反事故自动控制装置。当电

电力系统频率变化的影响

电力系统频率偏低偏高有哪些危害 电力系统频率的频率变动会对用户、发电厂、电力系统产生不利的影响。1.对用户的影响:频率的变化将引起电动机转速的变化,从而影响产品质量,雷达、电子计算机等会因频率过低而无法运行;2.对发电厂的影响:频率降低时,风机和泵所能提供的风能和水能将迅速减少,影响锅炉的正常运行;频率降低时,将增加汽轮机叶片所受的应力,引起叶片的共振,减短叶片寿命甚至使其断裂。频率降低时,变压器铁耗和励磁电流都将增加,引起升温,为保护变压器而不得不降低其负荷;3.对电力系统的影响:频率降低时,系统中的无功负荷会增加,进而影响系统,使其电压水平下降。 当供电电路的频率偏高时,1、电动机的转速回高(n=60f/p(1-&) ),当电动机转速增大时,其实际功率成倍增加,其结果电动机很容易过载烧毁;2、中国电气设备是按50赫兹设计的,如果大于其允许的频率数,电气原件容易损坏。当供电电路的频率偏低时,电动机转速会过低,会使有的设备不能正常工作,如水泵可能不出水,风机风量、风压过低。 频率变化对电力用户及电力系统的影响包括哪些 对用户: 1、用户使用的电动机的转速与系统频率有关,频率变化将使电动机的转速变化,从而影响产品的质量。例如,纺织工业都会因为频率的变化出现次品。 2、近代工业,国防和科学技术都已经广泛使用的电子设备受到频率影响较大。 系统本身: 1、低频运行,会对发电机的叶片所受到的应力有影响。甚至引起共振,降低叶片寿命。 2、增大励磁电流,提高温升等。 系统频率的变化主要是引起负荷端异步电动机转速的变化。 如果频率降低的过多,将使电动机停止运转,会引起严重的后果。比如,火电厂的给水泵停止运转,将迫使锅炉停炉。另一方面,如楼上所讲,对于汽轮机在低频运行状态下时,会缩短汽轮机叶片的寿命,严重时会使叶片断裂。(这是因为汽轮机转子一般瘦长,转速较快,可达1500r/s,突然频率过低,会使叶片断裂)。 如果频率过高,则会出现失步等问题。 推荐楼主看《电力系统分析(上)》诸俊伟和《电力系统分析(下)》夏道止 电力系统频率变化的原因

电力系统频率调整及控制汇总

12.1.1.1频率与有功功率平衡电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规 定,大容量电力系统的频率偏差不得超过I血7」狂,一些工业发达国家规定 频率偏差不得超过I Q菲& 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平 衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷也将随着频繁 率的的变化而变化。这种负荷随频率的变化而变化的特性叫做负荷的频率静态特 性。 综合负荷与频率的关系可表示成: rzT

由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示 12.122发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性0 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时 ,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而① 和②表示发电机出力分别为PG1和PG2时对应的频率。

对电力系统频率调整的综述

对电力系统频率调整的综述 摘要:频率和电压是电力系统运行的两大质量指标。若频率或电压不稳定,不仅给发电厂(变电站)及电力系统本身带来许多危害,而且更重要的是不能满足广大用户对电能质量的要求, 使用户的产品质量下降甚至报废。因此,当系统频率或电压变化时,各发电厂(变电站)值班人员应按照规定主动调整,使其恢复至规定范围内运行。 Abstract: the frequency and voltage is two quality index for power system operation. If the frequency or the voltage is not stable, not only for power plants (substation) and power system itself bring a lot of harm, but more important is can't satisfy the needs of the users of power quality, the user's product quality declining even scrapped. Therefore, when the system frequency or voltage changes, the power plant (substation) on duty personnel should take the initiative to adjust according to the regulation, make its restore to regulations within the scope of operation. 关键词:1.频率与有功功率平衡 2.频率的调整 3. 调整频率的必要性 正文: 一、频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内 ,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过。 二、频率的调整 电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。一次调整或频率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。二次调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调整。三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事先给定的发电负荷曲线发电。在潮流计算中除平衡节点外其他节点的注入有功功率之所以可以给定,就是由于系统中大部分电厂属于这种类型。这类发电厂又称为负荷监视。至于潮流计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频任务的发电厂母线。 1.频率的一次调整 /G G K P f =-?? 称为发电机的单位调节功率,以MW/Hz 或MW/(0.1Hz )为单位。它的标幺值则是 */G N G G N GN GN P f K K f P P f ?=-=? 发电机的单位调节功率标志了随频率的升降发电机组发出功率较少或增加的多少。这个单位调节功率和机组的调差系数σ互为倒数。

电力系统有功功率与频率调整

电力系统有功功率与频率 调整

郑州电力职业技术学院毕业生论文题目:_浅谈电力系统有功功率与频率调整 系别___电力工程系____ 专业_继电保护及自动化 班级___ 15 继电 3 班____ 学号__ 姓名____张高原____ 论文成绩答辩成绩综合成绩指导教师 主答辩教师 答辩委员会主任 1

浅谈电力系统有功功率与频率调整 摘要 本文首先介绍了电力系统有功功率与频率调整的基本知识,有功功率的应 用、意义及;频率调整的必要性,电压频率特性,频率的一二次调整,以及互联 系统中的频率的一二次调整,调频与调压的关系,以及电力系统频率调整在个类电厂中得作用。 关键词:有功功率频率调整互联系统 2

目录 1 电力系统有功功率与频率调整的意义 ...................................................................... (1) 2 频率调整的必要性........................................................................................ (1) 频率变化的危 害 .................................................................................................... (1) 电力系统负荷变动规律............................................................................. (1) 3 电力系统的频率特性...................................................................................... (2) 负荷的有功功率-频率静态特性电源的有功功率-频率静态特性同步发电机组的调试系统 .................................................................... .. (2) .................................................................... .. (4) ..................................................................... .. (4) 调速系统框 图 ................................................................................................ (4) 同步发电机组的有功功率 -频率静态特 性 (4) 4 电力系统的频率调整...................................................................................... (6) 频率的一次调 整 .................................................................................................... (6) 基本原 理 ................................................................................................ (6) 基本关 系 ................................................................................................ (6) 多机系统的一次调频......................................................................... (7) 频率的二次调 整 .................................................................................................... (9) 基本原 理 ................................................................................................ (9) 基本关 系: .............................................................................................. (10) 基本理 论: .............................................................................................. (10) 互联系统的(二次)频率调整 ...................................................................... (10) 基本关 系 ................................................................................................ (10) 注意要 点: .............................................................................................. (10) 调频与调压的关系 .................................................................................. (11) 频率变化对电压的影响电压变化会频率的影响....................................................................... .. (11) ....................................................................... .. (11)

电力系统频率调整及控制

12.1.1.1频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内 ,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫做负荷的频率静态特性。 综合负荷与频率的关系可表示成: 由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。

12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而①和②表示发电机出力分别为PG1和PG2时对应的频率。

防止电力系统频率崩溃的紧急控制

防止电力系统频率崩溃的紧急控制 摘要 防止电力系统频率崩溃是防止系统大面积停电的一项重要措施。系统频率崩溃往往由于系统频率降低情况超出发电机组承受能力,形成连锁反应所致。本文根据国内外大量研究成果,讨论了机组在频率异常时的运行能力,分析了系统在低频减负荷等紧急控制作用下的频率特性及其与机组特性协调的问题,给出了有关的实用分析计算方法和计算示例。 关健词:系统频率降低;连锁反应;频率调整。 Abstract Prevent frequency collapse of electric power system is an important measure to prevent the system to a large area blackout. System frequency collapse often due to system-frequency reduced circumstances beyond generating units capacity, creating a chain reaction caused by. According to many research achievements at home and abroad, discussed the operation ability in the abnormal frequency when the unit, analyzes the system frequency character is ti c in low frequency burden load emergency control under the action of unit and its coordination with the characteristics of the problem, gives the calculation method and calculation of relevant practical example. Keywords: Reduces the frequency of the system;A chain reaction;Frequency adjustment.

相关文档
最新文档