爆破地震效应及安全(言志信,王后裕著)思维导图

爆破安全距离

一、爆破地震安全距离 爆破地震,是指炸药爆炸的部分能量转化为弹性波,在岩土中传播引起的震动。 爆破地震波,对爆区附近的地层、建筑物、构筑物,以及井巷和露天边坡产生破坏作用。 爆破地震波强度的大小主要取决于使用炸药的性能、炸药量、爆源距离、岩石的性质、爆破方法以及地层地形条件。为了最大程度地减小地震波的危害,应采取如下有效措施: (1)爆破前应调查了解爆破区域范围内建筑物、构筑物的结构,露天边坡稳定状况,井巷围岩稳定及支护等情况。 (2)根据爆区的周边环境,采用减震爆破方法和控制炸药量,如微差爆破、缓冲爆破、预裂爆破等爆破方法。 (3)爆破地震安全距离计算公式如下: 式中 R——爆破安全距离(m); Q——炸药量(kg); U——地震安全速度(cm/s); m——药量指数,取1/3; k、a-——与爆破地点地形、地质等条件有关的系数和衰减指数,可按表8—1选取。

二、空气冲击波安全距离 (一)爆破空气冲击波特性 空气冲击波波阵面上的压力决定于离爆破地点的距离与药包半径的比值、炸药爆炸的比能和周围空气的压力。 对于保护爆区及周围居民区人员的安全,一般以超压作为依据,以允许超压来确定安全距离。不同超压对人体的危害情况如表8—2所示。 注:当ΔΡ为~0.4)X105/m2时,气流速度达60~80m/s,夹杂着碎石加重了对人体的危害。 各国常用动物试验结合爆炸事故中伤亡情况的分析来确定对人的允许超压。一般人员不致受伤的超压△p<×105N/m2。安全规程采用的允许超压,对作业者为0.05×105 N/m2,对居民为0.02×105N/m2。 对建筑物,其易损部分为玻璃窗和顶棚抹灰。一般建筑物窗玻璃发生轻微破坏的超压为(0.01~0.005)×105N/m2;门窗破坏,屋面瓦大部分被掀掉,顶棚部分破坏的超压为(1.15—0.3)×105N/m2;砖木结构完全破坏的超压大于2.0×105NN/m2。安全规程规定建筑物的超压取0.01×105N/m2。 空气冲击波沿地下井巷传播时,比沿地面半无穷空间的传播衰减要慢,故要求的安全距离也更大,如表8—3所示。

水平地震作用计算

上海市工程建设规《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。 3.9.4 在施工中,当需要以强度等级较高的钢筋替代原设计中的纵向受力钢筋时,应按照钢筋受拉承载力设计值相等的原则换算,并应满足最小配筋率要求。

爆破安全距离

5 爆破安全距离 为了保证爆破地点附近人员、机械和建筑物、构筑物的安全,必须根据爆破产生的各种危害作用确定安全距离。 5.1 爆破地震作用安全距离 1)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下: 重要工业厂房0.4cm/s; 土窑洞、土坯房、毛石房屋1.0cm/s; 一般砖房、非抗震的大型砌块建筑物2~3cm/s; 钢筋混凝土框架房屋5cm/s; 水工隧洞10cm/s; 交通隧洞15cm/s; 矿山巷道:围岩不稳定有良好支护10cm/s;围岩中等稳定有良好支护15cm /s;围岩稳定无支护20cm/s。 2)爆破地震安全距离可按下式计算: 在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆破地震效应监测或专门试验,以确定被保护物的安全性。 5.2 爆破冲击波安全距离 露天煤矿应尽量避免裸露爆破,露天裸露爆破

矿山爆破安全距离 爆破时,必然产生爆破地震、空气冲击波、碎石飞散及有害气体,因而危及爆区附近人员、设备、建筑物及井巷等的安全。因此,爆破设计时必须确定爆破危害范围并指定安全距离。主要有以下几个方面: 1.爆破地震安全距离 炸药在岩体中爆炸后,在距爆源一定距离的范围内,岩体产生弹性震动波,即是爆破地震。爆破作业地震强度主要与炸药量、爆源距离、岩石特性、爆破条件和方法以及地质地形条件有关。《爆破安全规程》规定“一般建筑物和构筑物的爆破地震安全性应满足安全振动速度的要求”,并规定了建(构)筑物地面质点振动速度控制标准。 2.爆破空气冲击波的安全距离 空气冲击波的安全距离主要依据以下几个方面来确定:对地面建筑物的安全距离,空气冲击波超压值计算和控制标准,爆破噪声,空气冲击波的方向效应与大气效应。 控制空气冲击波的方法主要有: (1)避免裸露爆破,特别是在居民区更需特别重视,导爆索要掩埋20em或更多,一次爆破孔间延迟不要太长,以免前排带炮使后排变成裸露爆破。 (2)保证堵塞质量,特别是第一排炮孔,如果掌子面出现较大后冲,必须保证足够的堵塞长度。对水孔要防止上部药包在泥浆中浮起。 (3)考虑地质异常,采取措施。例如,断层、张开裂隙处要间隔堵塞,溶洞及大裂隙处要避免过量装药。 (4)在设计中要考虑避免形成波束。 (5)在地下矿山巷道,可利用障碍、阻波墙、扩大室等结构来减轻巷道空气冲击波。 3.个别碎石飞散的安全距离 露天爆破时,有些岩石飞散很远,危及周围人员、牲畜和建(构)筑物。飞石事故超过爆破事故总数的1/4,在设计和施工中必须严格做到: (1)设计合理,测量验收严格,避免单耗失控,是控制飞石危害的基础工作; (2)慎重对待断层、软弱带、张开裂隙、成组发育的节理、溶洞、采空区、覆盖层等地质构造,采取间隔堵塞、调整药量、避免过量装药等措施; (3)保证堵塞质量,不但要保证堵塞长度,而且保证堵塞密实; (4)多排爆破时,要选择合理的延迟时间,防止因前排带炮(后冲),造成后排最小抵抗线大小与方向失控; (5)城市爆破应做好防护。 4.电力起爆的安全距离 电力起爆的安全距离主要考虑爆区与高压线、广播电台和电视台等发射源的安全距离。 5.爆破有害气体扩散安全距离 爆破有害气体主要有CO、NO、NO2、N2O5、SO2、H2S、NH3等,可引起窒息及血液中毒。大量爆破后必须取样监测。有害气体浓度低于容许指标才能下井作业。

爆破安全距离计算76471

爆破安全距离计算 Blasting safety distance calculation. 爆破中产生对人、设备、建筑物的主要危险有:爆破地震、空气冲击波、水中爆破冲击波、飞石、殉爆、有毒气体(炮烟)、噪音等,因此,必须做好安全措施,并保证足够的安全距离;而且,为了防止杂散电流、静电、射频电引起雷管、炸药的早爆事故,亦应做好安全工作。 1、爆破震动安全距离计算 选用GB6722-2003《爆破安全规程》确定公式:R=α/1'3)/(V KK Q ?。 R —爆破震动安全距离 Q —一次所允许起爆的最大装药量或毫秒延期起爆时的单段最大装药量 K 、α—与爆破点地形、地质等条件有关的系数和衰减指数,见表1-1 K '—修正系数(在拆除爆破中引入此系数),K '=0.25~1,近爆源且临空面少时取大值,反之取小值 V —周围房屋安全允许震动速度,见表1-2 表1-1爆区不同岩性的K 、a 值 岩性 K a 坚硬岩石 50~150 1.3~1.5 中硬岩石 150~250 1.5~1.8 软岩石 250~350 1.8~2 表1-2爆破地震安全速度(V )值 建筑(构)物 V (cm/s ) 土窑洞、土坯房、毛石房屋 1 一般砖房、非抗震的大型砖块建筑物 2~3 钢筋混凝土框架房屋 5

水工隧道 10 交通隧道 15 矿山巷道 围岩不稳定有良好支护 10 围岩中等稳定有良好支护 20 围岩稳定无支护 30 2、爆破空气冲击波安全距离计算 R K Q =,m 式中:R —爆破空气冲击波安全距离,m ; Q —装药量,kg ; K —与装药条件和爆破程度有关的系数。如表2-1。 表2-1系数(K )值 破坏程度 安全级别 裸露药包 全埋药包 完全无损 1 50~150 10~50 偶然破坏玻璃 2 10~50 5~10 玻璃全破坏、门窗局部破坏 3 5~10 2~5 隔墙、门、窗、板棚破坏 4 2~ 5 1~2 砖石结构破坏 5 1.5~2 1.5~1 全部破坏 6 1.5 __ 注:炸药库的设置,空气冲击波对建筑物和人员安全距离,也按此式计算。 根据《爆破安全规程》规定:露天裸露爆破时,一次爆破的装药量不得大于20kg ,并应按下式确定爆破空气冲击波对在掩体内避炮作业人员的安全距离。 325R Q =,m 式中:R —空气冲击波对掩体内人员的安全距离,m Q —一次爆破的装药量,kg 。

水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于 M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。

爆破地震高程效应的实验研究

爆破地震高程效应的实验研究 周同岭 杨秀甫 翁家杰 (中国矿业大学建筑工程学院,徐州,221008) 摘 要 通过对正负高差地形爆破地震效应的实验观测,得出正高差使地震效 应增大、负高差使之减小的结论,并对爆破地震波在有高差存在的岩石介质中的传播机理进行了探讨,提出了1个反映高程变化的振速公式。 关键词 爆破地震 波阻抗 高程效应 土岩爆破中,对均匀介质、平坦地形的爆破震动问题已进行了深入研究,并由弹性力学原理推导出了求解质点振速v 的半理论半经验的萨氏公式,即 v =K 〔Q 1 3 R 〕1 Α (1)式中:K 为与介质特性等有关的系数,取K =50~350;Q 为起爆药量,kg ;R 为距爆源中心距离,m ;Α为衰减指数,取Α=1.1~2.2。 对于局部地形对爆破震动的影响,曾有人做过观测,但得到的结果不一,一直存有争议〔1, 2〕。 局部地形不论有多么复杂,均可以由高程的变化来近似表达〔3〕。根据这一观点,对不同地形、不同爆破方式、不同岩性的爆破进行了实验观测,依据实验观测结果对地震波在典型高差地形中的传播机理进行了探讨,提出了1个反映高程效应的爆破振速公式。1 实验条件及结果 实验选择的测试系统是磁电式测振系统,其组成主要包括3部分:CD 21型传感器、GZ 22型测振仪和记录仪(SC 216光线示波 器)。根据经验,上述测试系统各部分工作频带均可满足不同爆破方式的测试需要。整个测试系统在实验前进行了标定。 按爆源与测点相对位置的关系,把实验分为两类:负高差地形(图1)和正高差地形(图2)。 图1 负高差地形示意 图2 正高差地形示意 首先在花岗岩中,对负高差地形进行了实验观测,其实验条件如表1。根据现场条 第1作者简介 张家康,64岁,教授。1960年毕业于北京大学数学力学系,一直从事矿山特殊结构教学与科研工作,现为煤矿提升井塔设计规范编制组负责人。著有《矿山 特殊结构设计》一书,在国内外刊物上发表论文10余篇。 (19970728) 1997年 12月 M I N E CON STRU CT I ON T ECHNOLO GY D ec . 1997 第18卷 增刊 建 井 技 术 V o l .18 Supp lem ent

爆破安全距离及安全措施

仅供参考[整理] 安全管理文书 爆破安全距离及安全措施 日期:__________________ 单位:__________________ 第1 页共6 页

爆破安全距离及安全措施 爆破材料仓库的安全距 离 表一项 目单位炸药库容量(t)0.250.52.08.016.0距有炸药性的工厂距民房、工厂集镇、火车站距铁路线距公路干线 MMMM20020050402502501006030030015080400400200100500450250120雷管仓库到炸药仓库的安全距离 表二仓库内雷管数量(个)到炸药库距离(m)仓库内雷管数量(个)到炸药库距离 (m)1000500010000150002000030000500002.04.56.07.58.510.013.575 00010000015000020000030000040000050000016.519.024.027.033.038 .043.0 运输工具相距最小距离表 表三运输方法单位汽车马车驮运人力在平坦道路上上、下山坡时M M50 30020 10010 505 6 爆破作业的安全距离1.爆破飞石的最小安全距离个别飞石的飞散距离与地形、地质药包参数及气象条件有关,可按以下公式计算:R=20Kn2W 式中R—飞石安全距离(m);K—与岩石性质、地形、地质气象有关的系数,一般取1.0—1.5;对着抛掷方向取大值,背着抛掷方向取小值;n—最大一个药包的爆炸作用指数;W—最大一个药包的最小抵抗线(m)。为保证绝对安全,一般按上式计算结果再乘以系数3—4;当遇大风天气,顺风方向的飞散距离还应增大25%--50%,同时参照现行爆破安全规程,爆破飞石的最小安全距离应不小于表四所列数值。爆破飞石的最小安全距 第 2 页共 6 页

附录H 单层厂房横向平面排架地震作用效应调整

附录H 单层厂房横向平面排架地震作用效应调整 H.1 基本自振周期的调整 H.1.1 按平面排架计算厂房的横向地震作用时,排架的基本自振周期应考虑纵墙及屋架与柱连接的固结作用,可按下列规定进行调整: 1 由钢筋混凝土屋架或钢屋架与钢筋混凝土柱组成的排架,有纵墙时取周期计算值的80%,无纵墙时取90%; 2 由钢筋混凝土屋架或钢屋架与砖柱组成的排架,取周期计算值的90%; 3 由木屋架、钢木屋架或轻钢屋架与砖柱组成排架,取周期计算值。 H.2 排架柱地震剪力和弯矩的调整系数 H.2.1 钢筋混凝土屋盖的单层钢筋混凝柱厂房,按H.1.1确定基本自振周期且按平面排架计算的排架柱地震剪力和弯矩,当符合下列要求时,可考虑空间工作和扭转影响,并按H.2.3的规定调整: 1 7度和8度; 2 厂房单元屋盖长度与总跨度之比小于8或厂房总跨度大于12m; 3 山墙的厚度不小于240mm,开洞所占的水平截面积不超过总面积50%,并与屋盖系统有良好的连接; 4 柱顶高度不大于15m。 注:1.屋盖长度指山墙到山墙的间距,仅一端有山墙时,应取所考虑排架至山墙的距离; 2.高低跨相差较大的不等高厂房,总跨度可不包括低跨。 H.2.2 钢筋混凝土屋盖和密铺望板瓦木屋盖的单层砖柱厂房,按H.1.1确定基本自振周期且按平面排架计算的排架柱地震剪力和弯矩,当符合下列要求时,可考虑空间工作,并按第H.2.3条的规定调整: 1 7度和8度; 2 两端均有承重山墙 3 山墙或承重(抗震)横墙的厚度不小于240mm,开洞所占的水平截面积不超过总面积50%,并与屋盖系统有良好的连接;

4 山墙或承重(抗震)横墙的长度不宜小于其高度; 5 单元屋盖长度与总跨度之比小于8或厂房总跨度大于12m。 注:屋盖长度指山墙到山墙或承重(抗震)横墙的间距。 H.2.3 排架柱的剪力和弯矩应分别乘以相应的调整系数除高低跨度交接处上柱以外的钢筋混凝土柱其值可按表H.2.3-1采用,两端均有山墙的砖柱,其值可按表H.2.3-2采用。 H.2.4 高低跨交接处的钢筋混凝土柱的支承低跨屋盖牛腿以上各截面,按底部剪力法求得的地震剪力和弯矩应乘以增大系数,其值可按下式采用: 式中η-地震剪力和弯矩的增大系数; ζ-不等高厂房低跨交接处的空间工作影响系数,可按表H.2.4采用; nh-高跨的跨数; n0-计算跨数,仅一侧有低跨时应取总跨数,两侧均有低跨时应取总跨数与高跨跨数之和; GEL-集中于交接处一侧各低跨屋盖标高处的总重力荷载代表值;

爆破作业安全规定汇总

爆破作业安全规定

爆破作业安全规定 1爆破作业的基本规定 1.1一般规定 1.1.1露天、地下、水下和其他爆破,必须按审批的爆破设计书或爆破说明书进行。裸露药包爆破和浅眼爆破应编制爆破说明书。爆破说明书应由单位的主要负责人批准。爆破说明书由单位的总工程师或爆破工作领导人批准。 1.1.2爆破作业地点有下列情形之一时,禁止进行爆破工作。 a有冒顶或边坡滑落危险; b支护规格与支护说明书的规定有较大出入或工作面支护损坏; c通道不安全或通道阻塞; d爆破参数或施工质量不符合设计要求; e距工作面20m内风流中沼气含量达到或超过1%,或有沼气突出征兆; f工作面有涌水危险或炮眼温度异常; g危及设备或建筑物安全,无有效防护措施; h危险区边界上未设警戒; i光线不足或无照明; j未严格按本规程要求做好准备工作。 1.1.3禁止爆破器材加工和爆破作业的人员穿化纤衣服。 1.1.4在大雾天、黄昏和夜晚,禁止进行地面和水下爆破。需在夜间进行爆破时,必须采取有效的安全措施,并经主管部门批准。

遇雷雨时应停止爆破作业,并迅速撤离危险区。 1.1.5装药工作必须遵守下列规定: a 装药前应对洞室、药壶和炮孔进行清理和验收; b 大爆破装药量应根据实测资料校核修正,经爆破工作领导人批准; c 使用木质炮棍装药; d 装起爆药包、起爆药柱和硝化甘油炸药时,严禁投掷或冲击; e 深孔装药出现堵塞时,在未装入雷管、起爆药柱等敏感爆破器材前,应采用铜或木制长杆处理; f 禁止烟火; g 禁止用明火照明; 1.1.6堵塞工作必须遵守下列规定: a 装药后必须保证堵塞质量,洞室、深孔或浅眼爆破禁止使用无填塞爆破; b 禁止使用石块和易燃材料填塞炮孔; c填塞要十分小心,不得破坏起爆线路; d 禁止捣固直接接触药包的填塞材料或用填塞材料冲击起爆药包; e 禁止在深孔装入起爆药包后直接用木楔填塞。 1.1.7禁止拔出或硬拉起爆药包或药柱中的导火索、导爆索,导爆管或电雷管脚线。 1.1.8炮响完后,露天爆破不少于5min(不包括洞室爆破),地下爆破不少于15min(经过通风吹散炮烟后),才准爆破工作人员进入爆破作业地点。 1.1.9地下爆破作业点的有毒气体的浓度不得超过表1的标准。爆破工

5.6荷载效应和地震作用组合的效应

〈〈高层建筑混凝土结构技术规程》 5. 6荷载效应和地震作用组合的效应 5. 6荷载效应和地震作用组合的效应 5.6.1 持久设计状况和短暂设计状况下,当荷载与荷载效应按线形关系考虑时,荷载基本组合的效应设计值应按下式确定: S =Y G&k +Y L Q Y Q&k w Y w S wk ( 5.6.1 ) 式中:S――荷载组合的效应设计值;Y G永久荷载分项系数;Y Q――楼面活荷载分项系数; Y w――风荷载的分项系数;Y L――考虑结构设计使用年限的荷载调整系数,设计使用年限为50年时取1.0,设计使 用年限为100年时取1.1 ;S3k 永久荷载效应标准值;S Qk 楼面活荷载效应标准值; S-――风荷载效应标准值;》Q、》w――分别为楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时应分别取0.7和0.0 ;当可变荷载效应起控制作用时应分别取 1.0和0.6或0.7和1.0。 注:对书库、档案室、储藏室、通风机房和电梯机房,本条楼面活荷载组合值系数取0.7的场合应取为0.9。 5.6.2 持久设计状况和短暂设计状况下,荷载基本组合的分项系数应按下列规定采用: 1永久荷载的分项系数Y G当其效应对结构承载力不利时,对由可变荷载效应控制的组合应取 1.2,对由永久荷载控 制的组合应取1.35 ;当其效应对结构有利时,应取 1.0 ; 2楼面活荷载的分项系数Y Q:—般情况下应取1.4 ; 3风荷载的分项系数Y w应取1.4。 2位移计算时,本规程公式(5.6.1 )中个分项系数均应取1.0。 5.6.3 地震设计状况下,当作用与作用效应按线形关系考虑时,荷载和短暂作用基本组合的的效应设计值应按下式确定: S d S=Y °&E + Y Eh Shk + Y Ev Svk +书w Y Sk (5.6.3 ) 式中:S――荷载和地震作用组合的效应设计值;S GE――重力荷载代表值的效应; S Ehk――水平地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; S Evk ――竖向地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; Y G――重力荷载分项系数;Y w――风荷载分项系数;Y Eh――水平地震作用分项系数;Y E ------------- 竖向地震作用分项系数; 屮w――风荷载组合值系数,应取0.2。 5.6.4 地震设计状况下,荷载和地震作用基本组合的分项系数应按表 5.6.4 采用。当重力荷载效应对结构的承载力有利时, 表5.6.4 中Y G不应大于1.0。 2 "―"表示组合中不考虑该项荷载或作用效应。 5.6.5 非抗震设计时,应按本规程第5.6.1 条的规定进行荷载组合的效应计算。抗震设计时,应同时按本规程第 5.6.1条 和5.6.3 条的规定进行荷载和地震作用的效应计算;按本规程第 5.6.3 条计算的组合内力设计值,尚应按本规程的有关规定 进行调整。

爆破安全距离计算

爆破安全距离计算 一、一般规定 各种爆破、爆破器材销毁以及爆破器材仓库意外爆炸时,爆炸源与人员和其他保护对象之间的安全距离,应按各种爆破效应(地震、冲击波、个别飞散物等)分别核定并取最大值。 二、爆破地震安全距离 (一)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下: 1、土窑洞、土坯房、毛石房屋 1.0 cm/s V—地震安全速度,cm/s; m—药量指数,取1/3; K、α—与爆破点地形、地质等条件有关的系数和衰减指数,可按表1选取。或由试验确定。 表1 爆区不同岩性的K、α值 (三)在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆

破地震效应的监测或专门试验,以确定被保护物的安全性。 三、爆破冲击波安全距离 (一)露天裸露爆破时,一次爆破的炸药量不得大于20kg,并应按式(2)确定空气冲击波对掩体内避炮作业人员的安全距离。 —空气冲击波对掩体内人员的最小安全距离,m; 式中:R k Q—一次爆破的炸药量,kg;秒延期爆破时,Q按各延期段中最大药量计算; 3)计算。 式中:R—水中冲击波的最小安全距离,m; Q—一次起爆的炸药量,kg; —系数,按表4选取。 K 表4 K 值 (六)在水深大于30m的水域内进行水下爆破,水中冲击波安全距离,通过实测和试

验研安确定。 (七)在重要水工、港口设施附近或其它复杂环境中进行水下爆破,应进行测试和邀请专家研究确定安全距离。 四、个别飞散物安全距离 爆破(抛掷爆破除外)时,个别飞散物对人员的安全距离不得小于表5的规定; 对设备或建筑物的安全距离,应由设计确定。 表6 ③为防止船舶、木筏驶进危险区。应在上、下游最小安全距离以外设封锁线和信号。 ④当爆破器置于钻井内深度大于50m时,最小安全距离可缩小至20m。 表6 地面爆破器材库或药堆至住宅区或村庄边缘的最小外部距离 注:表中距离适用于平坦地形,当遇到下列几种特定地形时,其数值可适当增减; ① 当危险建筑物紧靠20~30m高的山脚下布置。山的坡度为10~25度时,危险建筑

爆破地震

爆破地震 地震学用震级和烈度来衡量地震的大小。 (1)震级 震级也称地震强度,用以说明某次地震本身的大小。它是直接根据地震释放出来的能量大小确定的。用一种特定类型的、放大率为2800倍的地震仪,在距震中100km处,记录图上量得最大振幅值(以1/1000mm计)的普通对数值,称为震级。例如,最大振幅为0.001mm时,震级为“0”级;最大振幅值为1mm时,震级为“3”级;最大振幅值为1m时,震级为“6”级。 地震震级的能量可用爆炸能量来说明。在坚硬岩石(如花岗岩)中,用2~3×106kg炸药爆炸,相当于一个4级地震。一个8级地震的功率大约相当于100万人口城市的发电厂在20~30年内所发出电力的总和。由此可见,虽然地震仅仅发生于瞬时的变化,但地震释放出来的能量却是巨大的。 (2)烈度 烈度是指某一地震在具体地点引起振动的强度标准,它标志着地震对当地的实际影响,作为工程建筑抗震设计的依据。烈度不是根据地震仪器测定的。判断烈度大小是根据人们的感觉、家具及物品振动情况、房屋及建筑物受破坏的情况,以及地面出现的崩陷、地裂等现象综合考虑后确定的。因此,地震烈度只能是一种定性的相对数量概念,且有一定的空间分布关系。 必须指出:地震震级与地震烈度是两个不同的概念,不可混淆。如把地震比作装药爆炸,那么,装药量就相当于地震震级,而装药在爆炸时的破坏作用则是地震烈度。一个地震只有一个震级,但在不同地区可以有不同的烈度,因为在一个地震区域内,不同部位的破坏程度是不同的。在地底下发生地震的地方,叫震源。地面上与震源相对处,叫震中。显然,震中区的烈度(叫震中烈度)就比其他地方的大。所以震中烈度就是最大烈度,用以表示该次地震的破坏程度。 天然地震烈度表

承载力抗震调整系数的正确应用

承载力抗震调整系数得正确应用 一、有关规范对承载力抗震调整系数γ RE 得规定 旧《建筑抗震设计规范》(QBJ 11—89)中第4.4.2条以及新《建筑抗震设计规范》(GB 50011—2001)中第5.4.2条中规定,结构构件得截面抗震验算应采用表达式S≤R /γ RE ,式中:S为地震作用效应与其她荷载作用效应得基本组合,R为结构构件得承载力设计值。 《混凝土结构设计规范》(QBJ 10—89)第8.1.3条、《钢筋混凝土高层建筑结构与施工规程》(GBJ 13—91)第5.5.1条进一步对钢筋混凝土结构具体规定为:考虑地 震作用组合得钢筋混凝土结构构件,其截面承载力应除以承载力抗震调整系数γ RE 。而偏心受压、受拉构件得正截面承载力在抗震与非抗震两种情况下取值相同。 二、在γ RE 使用中得常见错误 应该说,上述规范得规定已经明确规定了γ RE 得用法,即对非抗震得截面承载力, 通过引入γ RE ,对截面承载力加以提高,用作抗震设计时得截面承载力。然而,在实际 应用中,却常因为对γ RE 得理解不完全或不够重视,出现这样或那样得错误。最典型得一个例子就是《一级注册结构工程师专业考试应试题解》中第5页得[题1—2抗震偏 压柱得配筋计算]中与γ RE ,应用有关得内容有: (1)根据柱轴压比为0.12确定偏压柱γ RE 为0.75。 (2)利用γ RE 对柱内力进行调整:M=γ RE M 1 ,N=γ RE N 1 ,其中M 1 ,N 1 为有地震作用组合得 最不利内力设计值。 (3)求偏心距增大系数时,截面曲率得修正系数为ξ1=0.5fcA/N。 错误就出在第(3)步中ξ1=0.5fcA/N。此处N取为经过γ RE 调整后得轴向力

爆破地震作用的沟槽效应

爆破地震作用的沟槽效应 引言 地震波在传播过程中遇到具有一定深度的沟槽(或预裂缝)时,将受到阻碍作用,沟槽以后的震动强度减小。这种沟槽隔震原理被广泛应用于露天边坡的预裂爆破和基础拆除爆破开挖防震沟等降震设计。然而,除了众所周知的地震波传播到沟槽坡面上因反射而具有隔震作用外,沟槽对地震波的传播还有无其它效应?对此,人们至今尚未作深入研究。本文通过土介质中爆破地震作用的沟槽效应测试,得到爆破地震波经过沟槽时质点振动规律具有分区特性的结论,并对爆破震 动作用的沟槽效应机理进行了深入研究,深化了对沟槽隔震作用机理的认识。2 爆破地震沟槽效应的测试 影响爆破地震的因素很多。为了避免节理、裂隙、岩层等各种地质条件对爆破地震波传播的影响,突出沟槽对爆破地震波传播的动力响应,试验选在均质黄土中进行,孔径40mm,孔深70cm,采用2号岩石铵梯炸药,单孔药量150g,堵塞长度56cm,8号电雷管起爆。 测试系统采用CD-1型磁电式速度传感器拾震,GZ-2型测振仪放大,SC-16型光线示波器记录波形。 为了对比,在同等条件下进行无沟槽和有沟槽的爆破震动测试。测点布置见图1(a)和图1(b)所示。 图1 爆破地震沟槽效应测点布置、R~V 拟合曲线及爆破震动作用分区 (a)无沟槽时的测点布置;

(b)有沟槽时的测点布置及爆破震动作用分区; (c)爆破震动衰减情况的R~V拟合曲线 .—没有沟槽或不受沟槽影响的测量值; ×—受沟槽影响的测量值; -—不受沟槽影响的R~V拟合曲线(实线部分); …—受沟槽影响的R~V拟合曲线(虚线部分) 对于有沟槽的地震效应测试,在爆破前,由人工挖掘沟槽一个。为了较好地反映沟槽的隔震效果,设计沟槽深度为1m(大于爆源深度),沟槽长度7m(使地震波经过55°以上的绕射角才能到达沟槽以后的各测点),沟槽底宽0.8m,沟口宽1m,沟槽与爆破地震波传播方向垂直。 测点相对于爆源布置成测线,测线垂直于沟槽,测点分布于沟槽两边,沟槽近区加密布点,沟槽底部和两壁也布置了测点。实测数据列于表1。 表1 爆破震动沟槽效应测试 3 测试结果分析 由测试结果可见,爆破地震波经过沟槽时具有复杂的动力响应作用。 除了目前人们熟知的沟槽隔震作用以外,还有以下特点: (1)沟槽边缘的质点振动强度具有放大效应。爆破地震波传播到沟槽 边缘时,震动强 度增加。地震波经过沟槽后,沟槽对面的V区的边缘部分地震强度不是 衰减,而是放大。这与目前人们的认识不一致。 (2)沟槽底部的地震波具有体波的特征。当沟槽宽度不大时,沟槽底 部的地震波形具有体波的特征:振幅小,频率高。 (3)爆破地震沟槽效应具有分区特性。由于存在沟槽效应,不同区段 地震波变化规律不同。根据测试结果,拟合出具有沟槽效应的地面质点

隧道爆破安全距离

隧道爆破安全距离 隧道爆破通常采用掏槽爆破,即将开挖断面上的炮眼分区布置和分区顺序起爆,逐步扩大完成一次开挖,分区是按照炮眼的位置、作用的不同有三种炮眼:即掏槽眼、辅助眼、周边眼。这三种炮眼除共同完成一个循环进尺的爆破掘进外,分别各有其作用,因此各有不同的位置、长度、方向、间距的要求。 隧道爆破安全距离相关规定: (1)独头巷道不少于200m; (2)相邻的上下坑道内不少于100m; (3)相邻的平行坑道,横通道及横洞间不少于50m; (4)全断面开挖进行深孔爆破(孔深3-5m)时,不少于500m. 隧道爆破技术规定要求: ①爆破作业必须按现行国家标准《爆破安全规程》要求,编制爆破设计方案,制订并严格执行相应的安全技术措施。 ②洞内爆破作业必须有专人统一指挥,并由经过专业培训且持有爆破作业合格证的专职爆破工担任。严禁作业人员穿着化纤衣服进行爆作业。 ③洞内爆破时,所有人员必须撤离至规定的安全距离以外: A独头巷道内不小于200m; B相邻上下坑道内不小于100 m; ④如采用相向开挖掘进的隧道两个掌子面间距离小于200m时,爆破

时必须提前一个小时通报,以便另一个工作面作业人员撤离。 ⑤下列情况下,严禁装药爆破: A照明不足; B开挖面围岩破碎尚未支护; C出现流沙现象未经处理; D存在大量溶洞水及高压地下水涌出,尚未治理; E未做好安全警戒时。 ⑥爆破后必须通风排烟15min后检查人员方可进入开挖面检查。检查内容包括: A有无瞎炮; B有无残余炸药或雷管; C顶板及两帮有无松动的围岩; D支撑有无损坏或变形,是否需采取加强措施。 ⑦钻眼与装药作业不宜平行作业。如须平行作业,则钻孔与装药顺序应自上而下进行,钻孔与装药孔至少隔开一排,其距离不小于2.5m,作业人员应分区操作。 ⑧两个相向贯通开挖的开挖面之间距离只剩下15m时始,只允许从一个开挖面掘进贯通,另一端应停止作业,并设置安全警示标志。并在放炮作业前提前通知,由对方施工现场负责人负责检查确认人员和设备已撤出后,方可通知放炮作业面实施放炮作业。 ⑨炸药、雷管等爆破器材必须执行爆破器材的采购、搬运、贮存、领

爆破安全距离

爆破安全距离 各种爆破、爆破器材销毁以及爆破器材意外爆炸时,爆破源与人员和其他 保护对象之间的安全距离称为爆破安全距离。 为保证爆破安全,爆破地点与人员或其他应保护对象之间必须保持最短的 相隔长度。爆破有害效应随距离的增加有规律地衰减,用距离作为安全尺度可 限定爆破有害效应在允许限度之内。中国《爆破安全规程》规定了爆破地震安 全距离,个别飞散物安全距离,以及爆炸冲击波的安全距离。 爆破作业安全允许距离的规定 (一)一般规定 1.爆破地点与人员和其他保护对象之间的安全允许距离,应按爆破各种有 害效应(地震波、冲击波、个别飞散物等)分别核定,并取最大值。 2. 确定爆破安全允许距离时,应考虑爆破可能诱发滑坡、滚石、雪崩、涌浪、爆堆滑移等次生有害影响,适当扩大安全允许距离或针对具体情况划定附 加的危险区。 (二)各种爆破危害的安全允许距离 1.爆破震动安全允许距离 (1)评估爆破对不同类型建(构)筑物、设施设备和其他保护对象的振动影响,应采用不同的安全判据和允许标准。 (2) 地面建筑物、电站(厂)中心控制室设备、隧道与巷道、岩石高边坡和 新浇大体积混凝土的爆破震动判据,采用保护对象所在地基础质点峰值振动速 度和主振频率。安全允许标准的具体要求由《爆破安全规程》规定。 (3) 高耸建(构)筑物拆除爆破安全允许距离包括建(构)筑物塌落触地振动 安全距离和爆破震动安全距离。 2. 爆破空气冲击波及水中冲击波与浪涌安全允许距离 (1)露天地表爆破一次爆破炸药量不超过 25kg 时,应按规定计算确定空气冲击波对在掩体内避炮作业人员的安全允许距离。

(2) 水下裸露爆破,当覆盖水厚度小于. 3 倍药包半径时,对水面以上人 员或其他保护对象的空气冲击波安全允许距离计算原则,与地表爆破相同。 (3) 在重要水工、港口设施附近及水产养殖场或其他复杂环境中进行水下 爆破,应通过测试和邀请专家对水中冲击波和浪涌的影响作出评估,确定安全 允许距离。 (4) 水中爆破或大量爆渣落人水中的爆破,应评估爆破涌浪影响,确保不 产生超大坝、水库校核水位涌浪,不淹没岸边需保护物和不造成船舶碰撞受损。 3. 个别飞散物安全允许距离 一般工程爆破时,个别飞散物对人员的安全距离不应小于《爆破安全规程)) GB6722←2014 相应的规定; 硐室爆破个别飞散物安全距离按《爆破安全规程)) GB 6722-2014 规定的 方法计算确定。

爆破地震波特性研究

爆破地震波特性研究3 张义平,吴桂义 (贵州大学矿业学院, 贵州贵阳 550003) 摘 要:结合现场爆破震动信号,从爆破地震波的传播形式、传播方式、波的特征、波的衰减吸收及传播介质的力学模型等方面分析了爆破地震波特性。结果表明:爆破地震波是一种与自然地震波相似但又相区别的非常复杂的随机过程,它是不同幅值、不同频率与不同相位的各种波型叠加而成的复合波。爆破地震波在传播过程中会发生多次反射、折射、绕射、衍射、波型转换甚至波导、层间波等复杂现象,传播过程中波的有关参数和时频特征常与爆源条件、传播介质的物理性质、场地特征及地形等因素紧密相关。地震波在发生几何衰减的同时,还因粘弹性介质的内摩擦和热传导导致能量耗散,使得波能不断衰减。 关键词:爆破地震波;波特性;衰减与吸收 中图分类号:T D235.1 文献标识码:A 文章编号:1005-2763(2007)06-0068-05 Study on Character isti cs of Bl a sti n g-Caused Se is m i c W ave Zhang Y iping,W u Guiyi (College ofM ining,Guizhou University,Guiyang, Guizhou550003,China) Abstract:Combined with the data collected fr om the in-site monit oring of blasting vibrati on,the characteristics of blasting-caused seis m ic wave are analyzed comp rehensively fr om its p r op2 agati on for m,p r opagati on mode,p r operties,attenuati on,ab2 s or p ti on and the mechanics model of p r opagati on mediu m s.The results show that blasting-caused seis m ic wave,which is a very comp lex random p r ocess rese mbling t o be diffence fr om seis m ic wave,is a composite wave composed of kinds of waves with dif2 ferent ranges,frequencies and phases.I n the p r opagati on p r ocesses of blasting-caused seis m ic wave,comp lex phenome2 na such as many ti m es of wave reflecti on,refracti on,diffracti on and wave type diversi on even wave-guide and layer wave will happen,and relati onal para meters and ti m e-frequency charac2 teristics of waves are cl osely related t o the conditi ons of exp l osi on s ource,physical p r operties of p r opagati on mediu m,field charac2 teristics and terrain.The dissi pati on of wave energy caused by the inner fricti on and heat exchange of viscous-elastic mediu m s accompanied with its geometry attenuati on induces the gradual attenuati on of wave energy. Key W ords:B lasting-caused seis m ic wave,Characteristics of wave,A ttenuati on and abs or p ti on 爆破是矿山开采中的一个重要环节。当炸药在岩体中爆炸时,一部分能量使炸药周围的介质引起扰动,并以波的形式向外传播。在爆破近区、中区传播的依次是冲击波、应力波,地震波由应力波在传播远区到达界面产生反射和折射叠加而形成[1],它是一种由爆源附近的应力波转换而来在岩土介质中传播的一种能量逐渐衰减的扰动,尽管只占爆炸所释放能量中的一小部分[2],但爆破地震波的特性对研究爆破地震波的传播机理、衰减规律及危害控制都具有重要意义。为此,人们从不同侧面对爆破地震波特性进行了大量研究[3~10]。 本文结合现场爆破震动监测信号,在查阅大量文献基础上,从爆破地震波的传播形式、传播方式、波的特征、波的衰减吸收及传播介质的力学模型等方面进行分析,探讨爆破地震波的特性。 1 爆破地震波的分类 爆破地震波包括在地层内部传播的体波和在地层表面或介质体表面传播的面波。体波可分为纵波(P波)、横波(S波);面波主要有Rayleigh波(R波)和Love波(L波)。 体波中的纵波指质点的振动方向与波的前进方向一致,使介质产生压缩和膨胀,因此又称为压缩波、疏密波、无旋转波或P(p re m ier)波。体波中的横波指质点振动方向与波的前进方向垂直,使介质被 I SS N1005-2763 CN43-1215/T D 矿业研究与开发第27卷第6期 M I N I N G R&D,Vol.27,No.6 2007年12月 Dec.2007 3收稿日期:2007-04-16 基金项目:国家自然科学基金(50764001);贵州省科技攻关项目(黔科合GY字(2007)3015);教育部“春晖计划”资助项目;贵州省优秀青年科技人才资助项目. 作者简介:张义平(1970-),男,湖南邵东人,博士,副教授,主要从事岩体力学、矿山开采及安全技术教学与科研工作,Email:c me. ypzhang@https://www.360docs.net/doc/0d11363687.html,。

相关文档
最新文档