离子液体

离子液体
离子液体

1.2.4离子液体的合成

(1)直接合成法

通过酸碱中和反应或季铵化反应一步合成离子液体,操作经济简便,没有副产物,产品易纯化。硝基乙胺离子液体可以由乙胺的水溶液与硝酸中和一步合成。

通过季铵化反应也可以一步制备出多种离子液体,如1-丁基-3-甲基咪唑盐[Bmim][CF3SO3],[Bmim]Cl等[11]。

(2)两步合成法

如果直接法难以得到目标离子液体,就必须使用两步合成法。

首先,通过季铵化反应制备出含目标阳离子的卤盐([阳离子]X型离子液体);然后用目标阴离子Y—置换出X—离子或加入Lewis酸MX y来得到目标离子液体。

应特别注意的是,在用目标阴离子Y—交换X—阴离子的过程中,必须尽可能地使反应进行完全,确保没有X—阴离子留在目标离子液体中,因为离子液体的纯度对于其应用和物理化学特性的表征至关重要。高纯度二元离子液体的合成通常是在离子交换器中利用离子交换树脂通过阴离子交换来制备[12]。另外,直接将Lewis酸MX y与卤盐结合,可制备[阳离子][M n X ny+1]型离子液体,如氯铝酸盐离子液体的制备就是利用这个方法[13]。

(3)微波辅助合成法

一般离子液体均在有机溶剂中加热回流制备,反应时间数小时至数十小时不等。而在微波作用下无需有机溶剂,且反应速度快、产率高,产品纯度好。微波是一种强电磁波,在微波照射下能产生热力学方法得不到的高能态原子、分子和离子,可以迅速增加反应体系中自由基或碳正离子的浓度,从能量角度分析,只要能瞬间提高反应物分子的能量,使体系中活化分子增加,就有可能增加反应速率,缩短反应时间。超声波能减小液体中悬浮粒子的尺寸,提高异相反应速率。但微波功率宜采用中低档功率较合适,若采用微波加水浴的方法效果相对较好些。

(4)超声波辅助合成法

超声波能减小液体中悬浮粒子的尺寸,提高异相反应速率。Welton等[14]采用超声波作为能量源,在密闭体系非溶剂条件下合成离子液体。他们发现卤代物

与甲基咪唑的反应活性不同:I—>Br—>C1—。溴和碘的卤代物在室温下0.5~2h 即可完成反应,收率都高于90%,氯化物反应则需要加热和较长时间的超声波作用。卢泽湘等[15]在分析咪唑类离子液体的制备反应机理和合成实验基础上,采用微波辐射的方法以N-甲基咪唑为原料,合成了氯化1-丁基-3-甲基咪唑离子液体。

随着离子液体研究的不断深入,除了以咪唑功能化阳离子,功能化阳离子的队伍也在不断壮大,出现了一些新型功能化阳离子。如胍类、吗啉、己内酰胺、嗯唑、吡唑、噻唑以及手性阳离子、氨基酸阳离子等等。

功能离子液体

功能离子液体的合成及其应用 刘雪琴 (武汉科技大学化学工程与技术学院,湖北武汉,430081) 摘要:离子液体作为一类新型的环境友好的“绿色溶剂”,具有很多独特的性质,在很多领域有着诱人的应用前景。由于离子液体的众多优点,人们越来越多地将离子液体作为一种可设计和修饰的功能型分子,以便从这一新型溶剂中获得更大的应用价值。本文对功能离子液体的合成及应用等方面的研究进展进行了综述。 关键词:离子液体;合成;应用;功能 Synthetic Methods and Applications for the Functionalized Ionic Liquids. Xueqin Liu (College of Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China) Abstract: Ionic liquids, as a class of novel environmental benign “green solvents”that have remarkable new properties and promising applications in many fields, are receiving more and more attentions. Because of the numerous advantages of the ionic liquid, ionic liquid is widely used as a kind of functional molecules which can be designed and modified. In this paper, some recent research developments on the synthetic methods and applications of the functionalized ionic liquids. Key Words: ionic liquids; synthetize; application; function 1离子液体简介 离子液体是在室温以及相邻温度下完全由离子组成的有机液体物质。但也不是说有大量离子的液体就叫离子液体。例如无机盐如NaCl-AlCl3系的低共熔点为115℃,而CsF-2.3HF 熔点为-16.9摄氏度,他们都不是我们现在说的离子液体,因为不是有机物。其中AlCl3型离子液体较为特殊,组成不固定。但至少它的正离子是有机物,或者是有机取代的铵离子。 一般可以将离子液体分为三类:1.AlCl3型离子液。2.非AlCl3型离子液体。3.其他特殊离子液体。前两种主要区别是负离子不同,正离子主要是三类季铵:咪唑离子、砒啶离子、一般季铵离子。最稳定的是烷基取代的咪唑阳离子。 2离子液体的合成 离子液体种类繁多,改变阳离子/阴离子的不同组合,可以设计合成出不同的离子液体。一般阳离子为有机成分,并根据阳离子的不同来分类。离子液体中常见的阳离子类型有烷基铵阳离子、烷基鏻阳离子、N-烷基吡啶阳离子和N,N’-二烷基咪唑阳离子等,其中最常见

离子液体概述及其应用要点

离子液体概述及其应用 前言:离子液体是仅由阴阳两种离子组成的有机液体,也称之为低温下的熔盐。离子液体具有低蒸汽压,良好的离子导电导热性,液体状态温度范围广和可设计性等优点。离子液体所具备的这些其他液体无法比拟的性质,给大部分传统化工反应提供了新的思路,特别是在绿色化学设计中的应用。本文首先阐述了离子液体的基础知识,而后着重讨论了离子液体在催化及有机合成领域,摩擦领域,生物医药领域中的应用。 主题: 一 离子液体概述 1.1离子液体的发展及性质 20世纪时“离子液体”(IL )仅仅是表示熔融盐或溶盐的一个术语,比如高温盐。现在,术语IL 大部分广泛的用在表示在液态或接近室温条件下存在的熔盐。早在1914年,Walden [1]合成出乙基硝酸铵,熔点为12℃,但当时这一发现并未引起关注。20世纪40年代,Hurley 等人报道了第一个氯铝酸盐离子液体系AlCl3-[EPy]Br 。此后对这一氯铝酸盐离子液体系进行了不断的扩充,包括各种基团修饰,如N-烷基吡啶,1,3-二烷基咪唑等,另外研究了此类离子液体系在电化学,有机合成以及催化领域的应用并有很好的效果[2]。但是由于此类离子液体共同的缺点就是遇水反应生成腐蚀性的HCl ,对水和空气敏感,从而限制了他们的应用。所以直到1992年,Wilkes [3]领导的小组合成了一系列由咪唑阳离子与-4BF ,-6PF 阴离子构成的对水和空气

都很稳定的离子液体。此后在全世界范围内形成了研究离子液体的热潮。这是由于ILs 存在很多优异而特殊的性质。(1)液体状态温度范围广,300℃;(2)蒸汽压低,不易挥发;(3)对有机物,无机物都有很好的溶解性,是许多化学反应能够在均相中完成;(4)密度大,与许多溶剂不溶,当用另一溶剂萃取产物时,通过重力作用,可实现溶剂与产物的分离;(5)较大的可调控性;(6)作为电解质具有较大的电化学窗口,良好的导电性,热稳定性。这些特殊的物理化学性质可以产生许多新应用,同时也会提高现有的科技水平。到目前为止,已经合成并报道了大量的ILs ,图1显示了典型的阳离子结构,阴离子结构和侧基链[4]。我们可以通过选择合适的离子组成从而实现ILs 物理化学性质的设计。比如说咪唑阳离子(1-丁基-3-甲基咪唑阳离子)和-4BF 或-4AlCl 组合,生成的离子液体是亲水性的,而同样的阳离子和 -6PF 或-2NTf 产生的是强憎水性的离子液体。 目前研究较多的是咪唑阳离子和吡啶阳离子与含氟阴离子构成的离子液体。

离子液体

收稿:2002年9月,收修改稿:2003年3月 3通讯联系人 e 2m ail :yuankou @pku .edu .cn 不断壮大的离子液体家族 杨雅立 王晓化 寇 元3 闵恩泽 (北京大学化学与分子工程学院 北京100871) 摘 要 本文对近10年来出现的新型离子液体进行了分类综述,并对其发展前景提出了一些见解。关键词 离子液体 任务专一性 中图分类号:O 64514;O 646117 文献标识码:A 文章编号:10052281X (2003)0620471206 The Expand i ng Fam ily of Ion ic L iqu ids Y ang Y a li W ang X iaohua K ou Y uan 3  M in E nz e (Co llege of Chem istry and M o lecu lar Engineering ,Pek ing U n iversity ,B eijing 100871,Ch ina )Abstract N ew i on ic liqu ids w h ich em erged du ring the recen t 10years are review ed .T he au tho rs’ow n op in i on s concern ing the fu tu re developm en t of th is field are p ropo sed . Key words i on ic liqu ids ;task sp ecific 性质上符合目前称之为离子液体的物质,早在 1914年就有所报道。但“离子液体”作为低温熔融盐(熔点低于100℃)普遍接受的统称并得到化学家们的广泛关注,却是近十年来的事。短短的时间,从传统的三氯化铝体系,到水稳定阴离子的引入,到今天涌现出的大量功能化的离子液体,离子液体家族正快速地发展与壮大。同时,更多的研究也已集中于这种环境友好体系在合成、分离、电化学等领域的开发应用上。相关的综述连续不断地出现在权威期刊[1,2] 和各类专业期刊上[3—9],国内近年也有不少综述发 表[10—14]。 对于这样一个快速发展的领域,及时地评述是十分必要的但又是比较困难的。本文试图对近几年出现的新离子液体加以归纳,探讨离子液体研究的未来走向,并就新型离子液体的合成路径提出一些看法。 从时间发展的顺序上说,我们前面已经提到,离子液体家族经历了三氯化铝体系(90年代前),耐水体系(90年代)和功能化体系(本世纪)三个发展阶段。从离子液体在化学过程中所扮演的基本角色看,离子液体可以按照化学惰性物质(溶剂、添加剂、表 面活性剂),催化剂,反应物三方面来分述。 一、化学惰性物质 这里我们使用“化学惰性物质”作为一大基本类型的统称,是因为在不少情况下“溶剂”这个概念并 不能全面地表述出离子液体的功用。 11电解质与常规的分子溶剂如水或有机化合物相比,离子液体的一大优点就是具有良好的电化学性质,如人们熟知的高导电性、宽电化学窗口等。在电化学方面的研究不仅是离子液体早期发展的推动力,也是当前研究的重点与热点。 最早受关注的A lC l 3类离子液体就是在开发高效储能电池的要求下发展起来的。Charles 、H u ssey 等从大量含氮阳离子中精心筛选(图1)出的1,32二烷基咪唑阳离子[3],兼具低熔点及电化学稳定的优点,但由A lC l 3带来的水敏感性也由此成为了离子液体的特征性缺点。 直至1992年,W ilkes 等人合成了第一个水稳定化合物[em i m ][B F 4](m .p .=12℃)[15]。不久, [em i m ][PF 6][16] 也问世了。尽管这些离子液体后来 第15卷第6期2003年11月 化 学 进 展 PRO GR ESS I N CH E M ISTR Y V o l .15N o.6  N ov .,2003

熟悉常用液体的种类

熟悉常用液体的种类、成分及配制 注射用水是禁忌直接由静脉输入的,因其无渗透张力,输入静脉可使RBC膨胀、破裂,引起急性溶血。 (1)非电解质溶液:常用的有5%GS和10%GS,主要供给水分(由呼吸、皮肤所蒸发的(不显性丢失)及排尿丢失的)和供应部分热量,并可纠正体液高渗状态,但不能用其补充体液丢失。5%GS为等渗溶液,10%GS为高渗溶液,但输入体内后不久葡萄糖被氧化成二氧化碳和水,同时供给能量,或转变成糖原储存于肝、肌细胞内,不起到维持血浆渗透压作用。(注:10%GS 比5%GS供给更多热量,虽其渗透压比5%GS高1倍,如由静脉缓慢滴入,Glucose迅速被血液稀释,并被代谢,其效果基本与5%GS类似。Glucose输入速度应保持在0.5-0.85g/kg*h,即8-14mg/kg*min。) (2)电解质溶液:种类较多,主要用于补充损失的液体(体液丢失)、电解质和纠正酸、碱失衡,但不能用其补充不显性丢失及排稀释尿时所需的水。 1)生理盐水(0.9%氯化钠溶液):为等渗溶液,常与其他液体混合后使用,其含钠和氯量各为154mmol/L,很接近于血浆浓度142mmol/L,而氯比血浆浓度(103mmol/L)高。输入过多可使血氯过高,尤其在严重脱水酸中毒或肾功能不佳时,有加重酸中毒的危险,故临床常以2份生理盐水和1份1.4%NaHCO3混合,使其钠与氯之比为3:2,与血浆中钠氯之比相近。(生理盐水主要用于补充电解质,纠正体液中的低渗状态。2:1等张液与生理盐水功用相同,但无NS之弊,临床常用于严重脱水或休克时扩张血容量。) 2)高渗氯化钠溶液:常用的有3%NaCl和10%NaCl,均为高浓度电解质溶液,3%NaCl 主要用以纠正低钠血症,10%NaCl多用以配制各种混合液。 3)碳酸氢钠溶液:可直接增加缓冲碱,纠正酸中毒作用迅速,是治疗代谢性酸中毒的首选药物(但有呼吸功能障碍及CO2潴留倾向者应慎用),1.4%溶液为等渗液,5%溶液为高渗液。在紧急抢救酸中毒时,亦可不稀释而静脉推注。但多次使用后可使细胞外液渗透压增高。4)氯化钾溶液:常用的有10%氯化钾和15%氯化钾溶液两种。均不能直接应用,须稀释成0.2%~0.3%溶液静脉点滴,含钾溶液不可静脉推注,注入速度过快可发生心肌抑制而死亡。 5)林格氏液(等张液):含0.86%NaCl,0.03%KCl,0.03%CaCl2,1.4% NaHCO3。 (3)混合溶液:为适应临床不同情况的需要,将几种溶液按一定比例配成不同的混合液,以互补其不足,常用混合液的组成及配制见以下几种常用混合液的简易配制:几种混合液的

离子液体(综述)

离子液体的现状、应用及其前景 姓名:丁文章专业:轻工技术与工程学号:6140206024摘要:离子液体因为具有如蒸汽压低,电化学窗口宽,物质溶解性好,稳定诸多优点而被极多的化学工作者关注.本文就离子液里的研究进展.离子液体的类型及应用,离子液体的毒性等几个方面做出详细的阐述,并对离子液体的前景做出了初步的预测. 关键词:离子液体;离子液体的类型;应用;毒性; Abstract:Ionic liquid has the following advantages, wide electrochemical window, steam down material good solubility ,This paper is about of the research progress in the ionic liquid, the types and application of ionic liquids and the toxicity of ionic liquid, and made a preliminary forecast to the prospect of the ionic liquid. Keyword:Ionic liquid;the types of Ionic liquid; application of ionic liquids; toxicity of ionic liquid; 1引言 离子液体[1]是指全部由有机阳离子和无机或有机阴离子构成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体,在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体. 离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+HNO3-的合成(熔点12℃) .这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体.1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体.他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) .但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用.直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽.1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃.在这以后,离子液体的应用研究才真正得到广泛的开展. 与传统的有机溶剂相比,离子液体具有如下特点[2]:(1) 液体状态温度范围宽,从低于或接近室温到300℃, 且具有良好的物理和化学稳定性;(2)无色、无臭, 不挥发, 几乎没有蒸气压.(3) 蒸汽压低,不易挥发,消除了VOC(Volatile Organic Compounds)环境污染问题;(4) 对大量的无机和有机物质都表现出良好的溶解能力, 且具有溶剂和催化剂的双重功能,可作为许多化学反应溶剂或催化活性载体;(5) 具有较大的极性可调控性, 粘度低, 密度大, 可以形成二相或多相体系, 适合作分离溶剂或构成反应

非牛顿型流体的分类

4. 非牛顿型流体的分类 非牛顿型流体是一大类实际流体的统称。一般地说,凡流动性能不能用方程(2-2)来描述的流体,统称为非牛顿型流体。 在高分子液体范畴内,可以粗略地把非牛顿型流体分为: 纯粘性流体,但流动中粘度会发生变化,如某些涂料、油漆、食品等。 粘弹性流体,大多数高分子熔体、高分子溶液是典型的粘弹性流体,而且是非线性粘弹性流体。一些生物材料,如细胞液,蛋清等也同属此类。 流动性质有时间依赖性的流体。如触变性流体,震凝性流体。 4. 1 Bingham 塑性体 Bingham 可塑性质。只有当外界施加的应力超过屈服应力y σ,物体才能流动。 流动方程为: ???≥-<=y y y σσησσσσγ/)(0& (2-74) 说明:有些Bingham 塑性体,在外应力超过y σ开始流动后,遵循Newton 粘度定律,流动方程为: γησσ&p y += (2-75) 称为普通Bingham 流体,p η为塑性粘度。 有些Bingham 塑性体,开始流动后,并不遵循Newton 粘度定律,其剪切粘度随剪切速率发生变化,这类材料称为非线性Bingham 流体。 特殊地,若流动规律遵从幂律,方程为

n y K γσσ&+= (2-76) 则称这类材料为Herschel-Bulkley 流体。 图2-16 Bingham 流体的流动曲线 牙膏、油漆是典型Bingham 塑性体。油漆在涂刷过程中,要求涂刷时粘度要小,停止涂刷时要“站得住”,不出现流挂。因此要求其屈服应力大到足以克服重力对流动的影响。润滑油、石油钻探用泥浆,某些高分子填充体系如碳黑混炼橡胶,碳酸钙填充聚乙烯、聚丙烯等也属于或近似属于Bingham 流体。 填充高分子体系出现屈服现象的原因可归结为,当填料份数足够高时,填料在体系内形成某种三维结构。如CaCO 3形成堆砌结构,而碳黑则因与橡 胶大分子链间有强烈物理交换作用,形成类交联网络结构。这些结构具有一定强度,在低外力下是稳定的,外部作用力只有大到能够破坏这些结构时,物料才能流动。 混炼橡胶的这种屈服性对下一步成型工艺及半成品的质量至关重要。如混炼丁基橡胶挤出成型轮胎内胎时,碳黑用量适量,结构性高,则混炼胶屈服强度高,内胎坯的挤出外观好,停放时“挺性”好,不易变形、成摺或拉薄。 4.2 假塑性流体 绝大多数高分子液体属假塑性流体。流动的主要特征是流动很慢时,剪切粘度保持为常数,而随剪切速率增大,粘度反常地减少——剪切变稀。 典型高分子液体的流动曲线见图2-17。曲线大致可分为三个区域: 当剪切速率0→γ&时,γσ&-呈线性关系,液体流动性质与Newton 型流体

有机合成现状及最新发展

有机合成现状及最新发展 唐彬 (吉首大学化学化工学院08化工一班20084064026) 摘要:本文针对有机合成的现状、合成方法和最新发展及应用进行了综述。同时结合各种技术的发展状况及最新进展与突破,对其前景作了简要概述。 关键词:有机合成最新进展波促进生物催化光化学离子液 0引言 在人类多姿多彩的生活中,化学可以说是无处不在的。据统计,在工业发达国家的全部生产中,化学过程的工业占高比例,以美国为例占到35%。有机化学是研究有机化合物的来源、制备、结构、性能、应用以及有关理论和方法的学科[1]。自从1828年合成尿素以来,有机化学的发展是日新月异,其发展速度越来越快,而有机合成则是有机化学的核心,下面就有机合成的方法与应用作一综述: 1绿色有机合成 1.1 高效、无毒的溶剂和助剂 有机溶剂因其对有机物具有良好的溶解性。但有机溶同相合成的剂的较高的挥发性毒性成为有机合成造成污染的主要原因。因此新型绿色反应介质代替有机溶剂成为绿色化学研究的重要方向[2]。目前,水、超临界流体、离子液体、仿酶化学和含氟溶剂作为反应介质的有机合成在不同程度上已取得了一定的进展。用离子液体作有机反应的介质,可获得更高的选择性和反应速率,同时还具有条件温和、环境友好的特点[3]。Vincenzo 等[4]在离子液体中以钯催化烯丙醇的芳基化Heck 反应,可以高选择性地得到芳香族羰基化合物或芳香族共轭醇。Doherty 等[5]在非对称性Diels-Alder 反应中采用离子液体作溶剂,获得了比常规的三氯甲烷溶剂更高的对映选择性和反应速率。 有机合成研究发现,在固态下能够进行的有机反应大多数较溶液中表现出高的反应效率和选择性。无溶剂有机合成具有高选择性、高产率、工艺过程简单和不污染环境、能耗少和无爆炸性等优点。Zhang 等[6]对水介质中1,4-苯醌的芳

离子液体

离子液体在有色金属湿法冶金中的应用 摘要:绿色试剂----离子液体在有色金属的萃取和分离方面已有很重要的应 用。本文从全新的应用观点出发,综述了离子液体对有色金属的萃取和分离的基础研究和应用研究,具体包括:金属和金属氧化物的溶解和腐蚀,黄铜矿和金属氧化物矿的湿法冶金以及金属离子的萃取和分离。 关键词:离子液体;湿法冶金;有色金属;金属氧化物;矿物处理;金属离子的萃取和分离 1.介绍 有色金属是重要的战略资源并有着广泛的工业应用,比如工业设备,医疗,运输业,能源,建造业,汽车,飞机,电子设备以及包装材料。大多数的有色金属是通过湿法冶金工业来获得。比如,酸和碱主要用于溶解金属氧化物,硫化物或硅酸盐。电解和溶剂萃取频繁用于回收金属和富集金属。有限数目的高温熔融盐也被广泛应用于难熔金属的回收。像钛和铝就来自于钛矿和铝矿[1]。近年来,有色金属工业在快速地发展并取得了明显的进步。然而,从天然矿石中得到的有色金属的生产一般来说是耗能高,耗酸多,环境污染大以及腐蚀严重。进一步说,矿石需要从富含量少,档次低或地质复杂地段并正在逐渐开采殆尽的高品质矿体中来。因此,以减少能源消耗,降低投资成本和减少温室气体排放的高效低温环境友好型的金属处理技术的发展是当务之急[2]。近年,由于离子液体的低毒性以及对环境几乎没有影响,因此被认为是最有希望的候选者。离子液体作为溶剂在冶金矿石中的应用可以为环保敏感的媒体提供一种潜在性以及为湿法冶金工艺提供替代方案。 离子液体(ILs)也叫做室温离子液体(RILS)以及常温熔融盐。离子液体在常温下为液态[3],是完全由有机阳离子和无机(或有机)阴离子组成。离子液体有许多有趣的物理性质,这些性质引起了许多化学家的基本兴趣。由于在离子液体中进行的热力学和动力学反应不同于在传统的溶剂分子中进行的这两种反应,就我们现阶段所掌握的化学知识来说,化学是不断变化发展的并且是不可预测的。离子液体已被成功广泛地应用于材料的合成和制备,催化剂,金属的电沉积以及燃料电池[4-6]。离子液体在溶剂和电化学方面的应用[4-6]具有以下几点普性:1)非可燃性并且有非常低(或可忽略)的蒸汽压。非可燃性的离子液体用作放热反应的溶剂特别有价值。忽略不计的蒸汽压意味着溶剂的挥发性可被忽略,并减少了对呼吸防护系统和排气系统的需要。利用蒸汽压低的性质可以用于高真空系统和产物与副产物的蒸馏与升华,而这些用传统的低沸点的有机溶剂是做不到的。2)离子液体可以溶解广泛范围的无机和有机化合物。对于将不同组成的试剂溶解到相同相是重要的应用。3)具有广泛的液体范围和热稳定性,可以使之加宽温度范围并且相对于通过使用传统的分子溶剂和电解质系统达到的化学或电化学过程的动力控制来说,这可以使得动力控制更巨大。并且这个性质也用于依赖于温度的分离技术,比如萃取,沉淀或结晶。4)更低的熔点,空气和水的稳定性也增加了电化学的反应范围。5)宽广的电化学窗口,强的电化学

离子液体

一、离子液体 离子液体就是在温室(或稍高于温室的温度)下呈液态的离子系统,或者说,离子液体是仅由离子所组成的液体[27]。在组成上,它与我们概念中的“盐”相近,而其熔点通长又低于温室,所以,也有人把离子液体叫做温室离子液体、液态有机盐等[28]。 离子液体与传统的有机溶剂、水、相比具有许多优良的性能[29]:良好的溶解性;2具有较高的离子传导性;3较高的热稳定性;4较宽的液态温度范围;5较高的极性、溶剂化性能;6几乎不挥发、不氧化、不燃烧;7对水、对空气均稳定;8易回收,可循环使用等。(材料) 【离子液体( ion ic liqu ids) , 又称室温离子液体( room or amb ient temperature ionic liquids) 或室温熔融盐, 也称非水离子液体, 有机离子液体等。离子液体是指没有电中心分子且100% 由阴离子和阳离子组成, 室温下为液体的物质。它是由一种含氮或磷杂环的有机阳离子和一种无机阴离子组成的盐, 在室温或室温附近温度下呈液态。本身具有优异的化学和热力学稳定性, 有较宽的温度范围, 对有机及无机化合物有很好的溶解性, 室温下几乎没有蒸汽压, 可用于高真空条件下的反应, 具有良好的导电性, 较高的离子迁移和扩散速度, 不燃烧,无味, 是一种强极性、低配位能力的溶剂。与传统的工业有机溶剂相比, 由于其几乎不可测出的蒸汽压、不挥发、无污染, 故也称之为绿色溶剂。目前, 离子液体已引起了世界各国科学家的广泛重视。】(百度) 二、离子液体的结构 离子液体是由有机阳离子和无机阴离子组成的盐离子间的静电引力较弱因而具有较小的晶格能在常温下呈现液态离子液体的种类很多,当前研究的离子液体的正离子有四类:烷基季铵离子、烷基季鏻离子、1,3-二烷取代的咪唑离子、N-烷基取代的吡啶离子[30-31]。(材料) 【当前研究的离子液体的正离子有4类[ 3] : 咪唑离子, 吡啶离子, 烷基季铵离子, 烷基季鏻离子。1, 3二烷基取代的咪唑离子或称从N, N二烷基取代的咪唑离子, 简记为[ R1R3 im ]+, 若2位上还有取代基R2, 则简记为[ R1R2R3 im] + ; N烷基取代的吡啶离子记为[ RPy ]+; 烷基季铵离子,[ NRxH4- x ] + ; 烷基季鏻离子[ PRxH4- x ] + 。 除上述四类常见常用的离子液体外, 还不断有性能、应用、结构特殊或成本较低的离子液体被合成和研究。一些新型阳离子的出现, 如胍类、吗啉、己内酰胺、二吡啶、哌啶、三唑、吡唑、噻42康永离子液体的特性及其应用唑、异喹啉等, 更加丰富了离子液体的种类; 手性离子液体的合成将为离子液体的发展提供新的活力, 也必将在手性合成与分。 离中占有重要的地位。另外还有多聚阳离子的离子液体。】(百度) 三、离子液体的性质 (一)熔点 评价离子液体的一个关键参数就是其熔点, 因此研究离子液体的组成与熔点的关系将非常有意义。在多种离子液体中, 咪唑盐熔点较其它同碳数的铵盐要低。咪唑盐阳离子的大小、对称性及不同碳级数的取代基以及取代基链长的改变都会影响离子液体的熔点。离子液体的熔点与其化学结构间的关系目前还未找到明确的规律, 但已经积累了一些经验[ 1 ] :( 1) 含对称的阳离子如[ mm im] (二甲基咪唑)、[ eeim ] (二乙基咪唑) 的离子液体比不含对称性的阳离子如[ em im] ( 1乙基3甲基咪唑) 的离子液体有相对较高的熔点; ( 2) 负离子为

离子液体——一种新型的绿色溶剂

离子液体——一种新型的绿色溶剂 摘要:离子液体作为“绿色的、可设计性”溶剂越来越受到关注。本文介绍了离子液体种类、特性和制备,综述了离子液体在萃取分离生物制品和生物燃料中、在萃取金属离子和稀土分离中以及在分离过程、电化学、化学反应及材料领域中的应用,展望了离子液体的应用前景。 关键词:离子液体;绿色化学;溶剂 随着科技发展和环保意识的增强,寻找绿色反应溶剂和发现环境友好催化剂是绿色化学的主要研究方向之一。室温离子液体作为一种新型的绿色溶剂正在迅速发展,成为科学研究的热点。室温离子液体是指主要由有机阳离子和无机或有机阴离子构成的在室温或近于温下呈液态的盐类,也称室温熔融盐,但是它不同于我们通常所说的离子化合物。传统意义上的离子化合物在室温下一般都是固体,其强大的离子键使阴、阳离子在晶格上只能作振动,不能转动或平动。他们一般都具有较高的熔点、沸点和硬度。然而对于离子液体,如果把阴、阳离子做得很大且又极不对称,由于空间阻碍,强大的静电力无法使阴、阳离子在微观上作紧密堆积,使得阴、阳离子在室温下不仅可以振动,甚至可以转动、平动,整个有序的晶体结构遭到彻底破坏,离子之间作用力减小,晶格能降低,从而使离子化合物的熔点下降,在室温下成为液态。离子液体具有很多传统的分子溶剂不可比拟的独特性能。 1. 离子液体的分类 (1)根据离子液体发现的先后顺序和年代可以将离子液体划分为第一、第二和第三代离子液体。1948年美国专利报道了主要用于电镀领域的三氯化铝和卤化乙基吡啶离子液体,可称之为第一代离子液体。20世纪90年代,稳定性更好的由二烷基咪唑阳离子和四氟硼酸、六氟磷酸阴离子构成的离子液体产生,此类被称为第二代离子液体。2000年以来,二烷基咪唑阳离子液体的种类和功能被进一步的丰富,制备出功能化离子液体,从而赋予离子液体以某种特殊性质、用途和功能,使其成为“任务专一性离子液体”,这一类成为第三代离子液体。 (2)依据阳离子的不同可以将离子液体分为季铵盐类、季膦盐类、咪唑类、吡啶类、三氮唑类、苯并三氮唑类等。根据阴离子的组成可以将离子液体分为两大类:一类是组成可调的氯铝酸类离子液体;一类是其组成固定,大多数对水和空气稳定的其他负离子型离子液体。 (3)根据离子液体在水中的溶解性不同,大体上可以将其分为亲水性离子液 体(如[Bmim]BF 4、[Emim]C1、[Emim]BF 4 、[BPy]BF。)和憎水性离子液体(如 [Bmim]PF 6、[Omim]PF 6 、[Bmim]SbF 6 、[BPy]PF 6 等)。 (4)根据离子液体的酸碱性还可以把室温离子液体分为Lewis酸性、Lewis碱性、Brqbnsted酸性、Brqbnsted碱性和中性离子液体。Lewis酸性或Lewis碱性离子液体如氯铝酸类离子液体;Brqbnsted酸性离子液体指含有活泼酸性质子的离子液体,如甲基咪唑与氟硼酸直接反应得到的离子液体;Brdpnsted碱性离子液体指阴离子为OH-的离子液体,如[Bmim]OH;中性离子液体则非常多,应用也最 广,如[Bmim]BF 4、[Bmim]PF 6 等。【1】 2. 离子液体的性质 (1) 熔点:离子液体的熔点较低,与室温相近。可以通过调节其阴离子或阳离子的组成改变其熔点。一般地,离子的体积变大,对称性降低,离子对间作用力变弱,电荷分布均匀,则离子液体的熔点较低。

水的分类和区别

自来水、矿泉水、山泉水、纯净水有何区别 水是生命之源,可水污染问题一直令人担忧,除了水源地的江河污染,还有楼房供水“二次加压”造成的二次污染。每当停水再恢复供水时,水龙头里流出的黑红色的“水锈”,令人望而生畏!越来越多的城市居民喝各种各样的水,什么山泉水、矿泉水、纯净水、苏打水、弱碱水、太空水、离子水、富氧水、生态水等等等等,不一而足,简直令人眼花缭乱。 作为消费者,有必要对这些五花八门的水有个基本了解,从而做出理智的选择。据多年从事饮用水的检测专家介绍,目前大家饮用最多的仍然是自来水。自来水直接采自水源地,经过初步加工过滤,符合国家饮用水标准,输入输水管道。但是,其中的杂质和污染物不可能全部过滤掉,残留的杂质和污染物仍存在潜在的威胁,所以人们对它不太放心。 除了自来水以外,饮用水尽管五花八门、种类繁多,最主要不过是两大主流:矿泉水和纯净水。矿泉水不是那种倒入各种矿泉壶加工出来的水,是指自然环境条件下地下涌出的泉水。矿泉水的概念亦即国家标准是:“从地下深处自然涌出的或经人工开发的、未受污染的地下矿水,含有一定量的矿物盐、微量元素或二氧化碳气体,在通常情况下,其化学成分、流量、水温等动态指标相对稳定。”矿泉水中的某些特定元素对人体健康有益,它出现得最早,最受人们欢迎,但毕竟资源有限,难以大众化普及,灌装过程中也还有个二次污染的问题。某些地区的矿泉水也存在一些问题。比如,广州的地下水中含有的

钠离子、氯离子偏高,同时水的硬度也偏高,使矿泉水口感上偏咸,加热煮沸后还会出现沉淀物,水质发浑,令人难以接受。但,这样的矿泉水只是极少数。 矿泉水中有一种非常珍贵的水,就是天然苏打水。据专家介绍,国人大多数处于亚健康状态,主要原因就是饮食不科学,体内循环系统呈酸性——国人的饮食习惯也很难让人体内的酸碱平衡。各种病菌、病毒都很喜欢酸性环境,乘势迅速发展,使人患上包括癌症在内的各种各样的病。据了解,癌症病人几乎都是酸性体质。因此,专家提倡饮用弱碱水,以达到人体内的酸碱平衡。但是,世界上天然的弱碱水——亦称苏打水非常罕见,仅在欧洲、日本、美国等地发现为数不多的几处,因此价格昂贵,天然苏打水的价格远远高于啤酒!我国最近在黑龙江省克东县发现了天然苏打水,黑龙江省政府决定投资3000万元进行系统开发。 由于天然苏打水资源有限、价格昂贵,聪明的商人又开发出人工添加的苏打水,就是在纯净水的基础上,添加小苏打和其他矿物质,制造出人工弱碱水。对消费者来说,这也可以作为一种选择。 山泉水其实也属于矿泉水的一种,亦称天然水。是取自环境清幽、无任何污染,具有稳定的pH值、水温,以及对人有益的矿物质和微量元素的地表水、泉水、自然井水等等,经过深度过滤、消毒加工而成。 继各种矿泉水之后出现的就是各种纯净水。大桶纯净水的定义亦即国家标准是:“符合生活饮用水卫生标准的水为水源,采用蒸馏法、

离子液体——绿色溶剂

绿色溶剂--离子液体 摘要:简单介绍了离子液体的发展历史,分类方法和合成方法;详细介绍了离子液体在萃取分离中的应用,包括固 - 固分离、固 - 液分离、液 - 液萃取分离、离子液体与超临界CO 2 结合的萃取分离等。 前言 人类进入20世纪后半期之后,由于社会的繁荣进步,人口的急剧增长,工业的高度发达,资源的大量消耗,污染的日益严重,环境的迅速恶化,导致20世纪末期的人类面临有史以来最严重的环境危机。严峻的现实迫使人们必须尽快找到一条不破坏人类赖以生存的环境、不危害并有利于人类生存的可持续发展的道路。社会的可持续发展及其所涉及的生态、环境、资源、经济等方面的问题愈来愈成为国际社会关注的焦点,已被提到了发展战略的高度。在这种情况下,绿色化学的出现证实了走可持续发展道路的可能性。离子液体是近年来绿色化学研究的热点之一。离子液体经过近二十年的研究,体系逐渐壮大,离子液体的种类已达到数百种之多。丰富的种类资源为其应用提供了有力的保障。 离子液体(ionic liquids)又称为室温离子液体(room temperature ionic liquid)、室温熔融盐(room temperature molten salts)、有机离子液体等,是一种由有机阳离子和无机阴离子相互结合而成,在室温或低温下呈液态的盐类化合物。 离子液体具有如下特点[1,2]: ①无色、无味、几乎无蒸气压; ②有高的热稳定性和化学稳定性,呈液态的温度范围大; ③无可燃性,无着火点,热容量较大且粘度低; ④离子电导率高,分解电压(也称电化学窗口)一般高达3~5V; ⑤具有很强的Bronsted、Lewis和Franklin酸性以及超酸性质,且酸碱性可 进行调节; ⑥能溶解大多数无机物、金属配合物、有机物和高分子材料(聚乙烯、PTFE 或玻璃除外) , 还能溶解一些气体, 如H 2 ,CO和O 2 等; ⑦弱配位能力;

离子液体在色谱分析中的应用

离子液体在色谱分析中的应用 摘要离子液体作为一种优良溶剂越来越受到人们的关注,它是当前化学研究领域的一个热点,它在化学的各个领域都有研究和应用。本文将对离子液体在气相色谱、液相色谱(高效液相)、毛细管电泳等色谱分析中的应用研究进行综述。并对离子液体在色谱研究应用中的发展进行了展望。 关键词离子液体气相色谱液相色谱毛细管电泳 离子液体,又被称为室温离子液体或室温熔融盐,是当前化学研究的热点之一。离子液体一般是由特定的体积相对较大的、结构不对称的有机阳离子和体积相对较小的无机阴离子构成的在室温或近室温下呈液态的物质。有机阳离子通常为烷基季铵离子、烷基季磷盐、N-烷基吡啶离子及N,N-二烷基咪唑离子,常见的阴离子为卤素离子⑴、AlCl-4和含F、P、S 的多种离子⑵,如BF4-、PF6-、CF3COO-等。离子液体有一些独特的优点:(1)液体状态温度范围广,最高可达300℃;(2)蒸汽压极小,不易挥发、不可燃、毒性小;(3)对有机物和无机物都有良好的溶解性;(4)导电性能好,具有较宽的电化学窗口;(5)合成比较简单,可以通过改变其组成调节其物理化学性质。这些为常规溶剂所无法比拟的优点使得离子液体在有机合成、催化、电化学、新材料及分析化学等方面都有极广泛的应用。随着离子液体在化学领域的研究和应用日益广泛,其在色谱方面的应用研究最近发展的也较快,已成为色谱研究的一个热点。本文将对室温离子液体在气相色谱、液相色谱、毛细管电泳等色谱分析中的应用研究进行综述。 1.离子液体在气相色谱中的应用 离子液体在气相色谱中应用研究做得最出色的是Armstrong研究小组。1999年Armstrong 与其合作者⑶开始着手研究离子液体作为固定相应用于气相色谱,考查了两种典型离子液体(1-丁基-3-甲基咪唑六氟磷酸盐和氯化1-丁基-3-甲基咪唑)作为涂渍在融熔石英毛细管的固定液膜的性能,发现离子液体的润湿能力和粘度可使其成为多种气相色谱理想的固定液。同时,他们认为离子液体固定相具有两象性,比如:如果它们作为极性固定相能够很好地分离极性化合物;如果它们作为非极性固定相亦能够很好地分离非极性化合物。在反相色谱中,比较了上述离子液体作为常用商业聚硅氧烷柱固定液的性能,发现极性较弱的离子液体对非极性化合物有着较好的分离能力,然而更有趣的是,含强给质子基团的溶质却能够被有效地保留下来。通过线性吉布斯自由能法能够给出合理的解释⑷:氯化1-丁基-3-甲基咪唑总是能够更有效地与给质子型分子和受质子型分子相互作用;1-丁基-3-甲基眯唑六氟磷酸盐更倾向于与非极性分子相互作用。此外,离子液体阴离子部分的不同也会影响室温离子液体作为固定相的选择性和增溶能力。 Armstrong研究组也进行了相关研究:使用完全甲基化的β-环糊精和2,6-二甲基取代的β-环糊精溶解于离子液体氯化1-丁基-3-甲基咪唑中,制备成可涂渍在毛细管柱上的多元溶剂型固定液,应用于气相色谱的手性分离。研究者比较了其与传统商业环糊精柱的性能,发现前者的手性分离效率远差于后者。对于这个观察结果,其原因很可能是在1-丁基-3-甲基咪唑离子与环糊精空穴之间形成包合配合物,因而阻碍了手性辨认过程。此外,为解决传统离子液体固定相存在着较低的最高使用温度和峰值效率等问题,Anderson 和Armstrong成功合成了两种新的含较大相对分子质量咪唑阳离子的离子液体——1-苯甲基-3-甲基咪唑三氟甲磺酰盐和1-(4-甲氧苯基)-3-甲基咪唑三氟甲磺酰盐,它们作为固定相在高达260℃的条件下仍表现出良好的热稳定性。 最近,Ding,Welton和Armstrong⑸首次在气相色谱中采用手性离子液体为固定液进行对映体分离,能够有效分离多种溶质,包括醇类、二醇类、亚砜、双氧化物和乙酰胺。 2.离子液体在液相色谱中的应用 以离子液体为载体辅之微波分散的液液萃取和衍生的被优先应用于六种磺胺类化合物的鉴定和检测 方法通过高性能的色谱分离法。通过增加甲醇,荧光磺胺类溶液(衍生化溶剂和离子液体(萃取)溶剂到样品中,可以很好地不断进行萃取,衍生,预浓缩。分析物的回收可以在以下情况可以获得。(95.0–110.8, 95.4–106.3, 95.0–108.3, and 95.7–107.7)普遍使用的硅胶型化学键合固定相,其残余硅烷醇基团表面酸度易引起许多意想不到的亲硅烷醇相互作用,导致拖尾峰,冗长的保留时间,并且重现性差,特别是在分离碱性化合物时产生严重的拖尾现象。大量研究表明:离子液体作为流动相改性剂或洗脱液能够显著

离子液体论文

题目:离子液体 学院:化学与材料工程学院 专业:无机功能材料 班级:无机121 学号:1510612130 姓名:张鹏程 时间:2014.4.13 摘要: 离子液体是近10年来在绿色化学的框架下发展起来的全新功能材料,具有不挥发、不可燃、液态范围宽、热稳定性好、溶解性好、物化性质可调等优点,已被作为催化剂、反应介质成功地应用于有机合成、电化学、分离提取及材料科学等领域。研究开发新型离子液体并扩展其应用范围,具有重要意义。近年来其应用领域不断扩大并迅猛发展,目前已从化学制备扩展到材料科学、环境科学、工程技术、分析测试等诸多领域,并迅速在各领域形成研究热点。 一:离子液体简介 1.离子液体的定义 离子液体是指全部由离子组成的液体,如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐(室温离子液体常伴有氢键的存在,定义为室温熔融盐有点勉强)、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。 2.离子液体的发展历史 离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+ HNO3-的合成(熔点12℃) 。这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体。

1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体。他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) 。但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用。 直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽。1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃。在这以后,离子液体的应用研究才真正得到广泛的开展。 3.离子液体的分类 正离子:烷基季铵离子、烷基季瞵离子、1, 3 -二烷基取代的咪唑离子、N - 烷基取代的吡啶离子; 负离子的不同可将离子液体分为两大类:一类是卤化盐。其制备方法是将固体的卤化盐与AlCl3混合即可得液态的离子液体,但因放热量大,通常可交替将2种固体一点一点地加入已制好的同种离子液体中以利于散热。此类离子液体被研究得较早,对以其为溶剂的化学反应研究也较多。此类离子液体具有离子液体的许多优点,其缺点是对水极其敏感,要完全在真空或惰性气氛下进行处理和应用,质子和氧化物杂质的存在对在该类离子液体中进行的化学反应有决定性的影响。 另一类离子液体,也被称为新离子液体,是在1992年发现BF4的熔点为 12 ℃以来发展起来的。这类离子液体不同于AlCl3离子液体,其组成是固定 的,而且其中许多品种对水、对空气稳定,因此近几年取得惊人进展。其正离子多为烷基取代的咪唑离子 + ,如 + ,负离子多用BF4- 、PF6- ,也有CF3 SO3- 、(CF3 SO2 ) 2N- 、C3 F7 COO- 、C4 F9 SO3、CF3 COO- 、(CF3 SO2 ) 3 C- 、(C2 F5 SO2 ) 3 C- 、(C2 F5 SO2 ) 2N- 、SbF6- 、AsF6、为负离子的离子液体要注意防止爆炸(特别是干燥时)。 二:离子液体研究现状与前景

核磁共振波谱技术在室温离子液体研究中的应用

收稿:2008年5月,收修改稿:2008年10月 3国家自然科学基金项目(N o.20573034)资助33通讯联系人 e 2mail :Jwang @https://www.360docs.net/doc/0d12624451.html, 核磁共振波谱技术在室温离子液体 研究中的应用 3 翟翠萍1  刘学军1  王键吉 233 (1.河南大学化学化工学院 开封475001;2.河南师范大学化学与环境科学学院 新乡453007) 摘 要 室温离子液体作为一种绿色溶剂和功能材料,越来越引起人们的重视,其研究手段也越来越 多。本文着重概述了核磁共振方法在测定离子液体的结构、纯度及性质,研究离子液体阴阳离子间的相互作用、离子液体与其他化合物的相互作用、离子液体及其在混合体系中的动力学特征、离子液体在溶液中的聚集行为,以及测定离子液体的热力学参数中的应用。 关键词 核磁共振 室温离子液体中图分类号:O64514;O657139 文献标识码:A 文章编号:10052281X (2009)0521040212 Applications of NMR Techniques in the R esearch of R oom Temperature Ionic Liquids Zhai Cuiping 1  Liu Xuejun 1  Wang Jianji 233 (1.C ollege of Chemistry and Chemical Engineering ,Henan University ,K aifeng 475001,China ;2.C ollege of Chemistry and Environmental Science ,Henan N ormal University ,X inxiang 453007,China )Abstract As new green s olvents and functional materials ,room tem perature ionic liquids (I Ls )have attracted great attention.The present paper reviews the applications of NMR techniques in the research of structure ,properties ,and interactions of cations with anions of I Ls ,interactions between I Ls and the other com pounds ,the dynamic characteristics of I Ls and their mixtures ,the aggregation behavior of I Ls in s olutions ,and the determination of therm odynamic parameters of I Ls. K ey w ords NMR ;room tem perature ionic liquids Contents 1 Determination of the structure ,purity and properties of ionic liquids 2 Study on the interactions of cations with anions of ionic liquids 3 Study on the interactions of ionic liquids with the other com pounds 4 Study on the dynamic characteristics of ionic liquids and their mixtures 411 Measurements of the spin 2lattice relaxation time and the m olecular rotation correlation time of ionic liquids 412 Measurements of the self 2diffusion coefficients of ionic liquids 5 Study on the aggregation behavior of ionic liquids in s olutions 6 Determination of the therm odynamics parameters of ionic liquids 第21卷第5期2009年5月 化 学 进 展 PROG RESS I N CHE MISTRY V ol.21N o.5  May ,2009

相关文档
最新文档