陶瓷隔焰窑炉还原气氛烧成方法及烧成装置

陶瓷隔焰窑炉还原气氛烧成方法及烧成装置

陶瓷隔焰窑炉还原气氛烧成方法及烧成装置

本发明属于窑炉技术领域,涉及一种陶瓷隔焰窑炉还原气氛烧成方法及烧成装置。该陶瓷隔焰窑炉还原气氛烧成方法,是在使用廉价劣质燃料为主加热能源、连续烧成陶瓷产品的隔焰窑上,在其烧成段安装使用清洁燃料的气氛发生装置和分段隔离装置,与马弗窑道相连通,使纯氧化气氛的马弗窑道内在烧成段形成陶瓷产品烧成所需的、与温度曲线相吻合的、能够易于控制、相对稳定的气氛曲线,从而准确控制实现所需还原气氛烧成。

陶瓷隔焰窑炉还原气氛烧成装置,是在隔焰窑的烧成段安装使用清洁燃料的多对燃烧喷嘴用作气氛发生装置,在烧成段前的临界温度点安装气氛转换烧嘴作为分段隔离装置,使气氛转换烧嘴之前为氧化气氛,之后为还原气氛,每个烧嘴的燃烧室与马弗窑道相连通。

窑炉烧成工安全操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 窑炉烧成工安全操作规程(标准 版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

窑炉烧成工安全操作规程(标准版) 1,工作时,必须穿戴劳动保护用品,严禁穿短裤、拖鞋、凉鞋,防止高温烫伤。 2,送气、点火必须提前开启排烟风机3-5分钟,再进行,防止窑内煤气浓度过高,产生炸窑。 3,定期对煤气分支管道和煤气阀门检查是否泄漏,如发生泄漏应及时处理或更换。 4,处理煤气泄漏时,必须保持环境通风,禁止使用明火。 5,运行中的风机、传动电机、电线、电缆若有异常,严禁乱动乱拆、应马上找维修电工、班长解决。 6、经常检查炉内喷枪燃烧情况,及时调整配比,保证炉内煤气充分燃烧。 7、窑炉喷枪的调整要及时准确,以免气温、气压不稳造成事故,

随时观察仪表的工作情况,每隔1小时观察窑炉内是否有堵塞现象,并做好记录。 8、烧成工每小时对窑炉温度和负压、干燥器温度进行记录,窑炉温度和设定温度不同时,及时对助燃风机、火枪煤气软管进行检查处理。 温度设定:窑炉以设定温度为准上下浮动30度;干燥塔以设定温度为准上下浮动50℃ 9、每小时一次目测砖的平直度,测量磨边后砖的平直度,基平直度超标(弯曲不超过1.4㎜;上翘0.8㎜),砖的弯曲,上翘呈自然状态时,及时调节高温带四块仪表的温度。基出现不规则变形时,立即汇报,以便尽早处理。 10、每半小时一次测量砖的尺寸,大时,高温带上下温度各加一度;小时,各减一度。若一片砖的尺寸相差5㎜时调整上下烧咀的火焰长度,每次调节不得超过两节窑炉。并做好标记,出砖后测量。 11、空窑时及时通知煤气站,然后检查棍棒的粘结情况,并将

陶瓷窑炉的分类

陶瓷窑炉的分类及特点 一、陶瓷窑炉分类 1、按构造型式分:梭式窑、隧道窑、辊道窑、推板窑、圆型(转盘窑)、钟罩窑 2、按供热方式分:煤窑、柴窑、电窑、燃气窑。煤窑、柴窑已被淘汰,清洁能源窑炉(电、燃气)已走向成熟阶段。 3、按烧成温度分:高温窑、中温窑、低温窑。 二、陶瓷窑炉介绍 1、梭式窑:是间歇烧成的窑,跟火柴盒的结构类似,窑车推进窑内烧成,烧完了再拉出来,卸下烧好的陶瓷。窑车如同梭子,故而称为梭式窑。 2、隧道窑:一般是一条长的直线形隧道,其两侧及顶部有固定的墙壁及拱顶,底部铺设的轨道上运行着窑车。燃烧设备设在隧道窑的中部两侧,构成了固定的高温带,烧成带,燃烧产生的高温烟气在隧道窑前端烟囱或引风机的作用下,沿着隧道向窑头方向流动,同时逐步地预热进入窑内的制品,这一段构成了隧道窑的预热带。在隧道窑的窑尾鼓入冷风,冷却隧道窑内后一段的制品,鼓入的冷风流经制品而被加热后,再抽出送入干燥器作为干燥生坯的热源,这一段便构成了隧道窑的冷却带。 3、辊道窑:辊道窑是连续烧成的窑,以转动的辊子作为坯体运载工具的隧道窑。陶瓷产品放置在许多条间隔很密的水平耐火辊上,靠辊子的转动使陶瓷从窑头传送到窑尾,故而称为辊道窑。 4、倒焰窑:燃烧所产生的火焰都从燃烧室的喷火口上行至窑顶,由于窑顶是密封的,火焰不能继续上行,在走投无路的情况下,就被烟囱的抽力拉向下行,经过匣钵柱的间隙,自窑底吸火孔进支烟道,主烟道,最后由烟囱排出。 5、推板窑:又称推板式隧道窑,是一种连续式加热烧结设备,按照烧结产品的工艺要求,布置所需的温区及功率,组成设备的热工部分,满足产品对热量的需求。把烧结产品直接或间接放在耐高温、耐磨擦的推板上,由推进系统按照产品的工艺要求对放置在推板上产品进行移动,在炉膛中完成产品的烧结过程。 三、陶瓷窑炉选择 1、对于日产量在20M3以下,且产品种类较多,烧成温度各异,由于其本身产量难以满足隧道窑的生产量,推荐采用快速烧成梭式窑。 2、对于日产量等于或大于20M3,但其釉色复杂,如窑变结晶釉需一定的恒温及冷却时间,可采用传统梭式窑或电热梭式窑;如果窑变釉或结晶釉只是部分,可以选用快速窑,快速窑不是只快,也可以放慢。慢,温差可控制很小。但慢的节能效果差。 3、对产量较大、高度较高、重量较重、温度较高、釉色单一,可选用台车式隧道窑。如高温日用陶瓷,卫浴陶瓷。 4、对温度在1300℃以内,产量较大的艺术陶瓷、日用陶瓷、卫浴陶瓷,建议采用辊道窑,或大型快速梭式窑。

低温共烧陶瓷学习资料

低温共烧陶瓷(LTCC)材料简介及其应用 电子科技大学微电子与固体电子学院 张一鸣2012033040022 一、简介 所谓低温共烧陶瓷(Low-temperature cofired ceramics, LTCC )技术,就是将低温烧结陶瓷粉制成厚度精确且致密的生瓷带,作为电路基板材料,在生瓷带上利用激光打孔、微孔注浆、精密导体浆料印刷等工艺制出所需要的电路图形,并将多个无源元件埋入其中,然后叠压在 一起,在900C烧结,制成三维电路网络的无源集成组件,也可制成内置无源元件的三维电路基板,在其表面可以贴装IC和有源器件,制成无源/有源集成的功能模块。总之,利用这 种技术可以成功制造出各种高技术LTCC产品。多个不同类型、不同性能的无源元件集成在 一个封装内有多种办法,主要有低温共烧陶瓷(LTCC )技术、薄膜技术、硅半导体技术、 多层电路板技术等。目前LTCC技术是无源集成的主流技术。LTCC整合型组件包括各种基 板承载或内埋式主动或被动组件产品,整合型组件产品项目包含零组件、基板与模块。 、LTCC技术特点 LTCC与其他多层基板技术相比较,具有以下特点: 1?易于实现更多布线层数,提高组装密度; 2?易于内埋置元器件,提高组装密度,实现多功能; 3?便于基板烧成前对每一层布线和互联通孔进行质量检查,有利于提高多层基板的成品率和 质量,缩短生产周期,降低成本; 4?具有良好的高频特性和高速传输特性; 5?易于形成多种结构的空腔,从而可实现性能优良的多功能微波MCM ; 6?与薄膜多层布线技术具有良好的兼容性,二者结合可实现更高组装密度和更好性能的混合 多层基板和混合型多芯片组件;

陶瓷隧道窑微机温度控制系统

陶瓷隧道窑微机温度控制系统 摘要 目前我国陶瓷隧道窑炉大多采用人工或简单仪表控制,要想使窑炉长期达到最佳工作状态是不可能的,造成产品合格率、一级品率一直处于较低的水平。陶瓷隧道窑炉是由预热带、烧成带和冷却带三个部分组成,瓷件烧成温度在1320℃左右,窑内温度场主要由烧成带12对喷嘴燃冷煤气产生,窑炉系统用8组风机来调节窑内的压力场。排烟风、助燃风将直接影响烧成带的温度场,急冷风会影响最终产品的质量。 温度控制系统将采集的各点温度值,经A/D转换后与设定值进行比较,控制器输出经由D/A变换,变成 4~20mA形式模拟量输出给电动执行器,驱动蝶形阀调节喷嘴的煤气进给量,从而控制烧成带的温度。12只温度传感器与12个喷嘴一一对应。 关键词:MSP430F149单片机、热电偶,变送器、大林算法、 I2C总线、多路开关

一.总体方案设计 1.对象的工艺过程 陶瓷隧道窑炉是由预热带、烧成带和冷却带三个部分组成,瓷件烧成温度在1320℃左右,窑内温度场主要由烧成带12对喷嘴燃冷煤气产生,窑炉系统用8组风机来调节窑内的压力场。排烟风、助燃风将直接影响烧成带的温度场,急冷风会影响最终产品的质量。 温度控制系统将采集的各点温度值,经A/D转换后与设定值进行比较,控制器输出经由D/A变换,变成 4~20mA形式模拟量输出给电动执行器,驱动蝶形阀调节喷嘴的煤气进给量,从而控制烧成带的温度。12只温度传感器与12个喷嘴一一对应。

窑温控制示意图 2.对象分析 被控过程传递函数s e s s G 403 o ) 251(25.2)(-+= 是一个大的延迟环节,而且温度的控制对系统的输出超调量有严格的限制,用最少拍无纹波数字控制器的设计,和PID 算法效果欠佳,所以本设计采用大林算法设计数字控制器。 3.控制系统设计要求 窑温控制在1320±10℃范围内。微机自动调节:正常工况下,系统投入自动。模拟手动操作:当系统发生异常,投入手动控制。 微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。 二、硬件的设计和实现 1.选择计算机机型和系统总线 本系统控制的回路12个,所以只需要一片微控制器即可实现,本设计采用TI 公司的MSP430系列单片机,MSP430 系列是一个 16 位的、具有精简指令集的、超低功耗的混合型单片机,有较高的处理速度,在 8MHz 晶体驱动下指

低温共烧陶瓷

低温共烧陶瓷(LTCC)材料简介及其应用 电子科技大学微电子与固体电子学院 张一鸣 22 一、简介 所谓低温共烧陶瓷(Low-temperature cofired ceramics, LTCC)技术,就是将低温烧结陶瓷粉制成厚度精确且致密的生瓷带,作为电路基板材料,在生瓷带上利用激光打孔、微孔注浆、精密导体浆料印刷等工艺制出所需要的电路图形,并将多个无源元件埋入其中,然后叠压在一起,在900℃烧结,制成三维电路网络的无源集成组件,也可制成内置无源元件的三维电路基板,在其表面可以贴装IC和有源器件,制成无源/有源集成的功能模块。总之,利用这种技术可以成功制造出各种高技术LTCC产品。多个不同类型、不同性能的无源元件集成在一个封装内有多种办法,主要有低温共烧陶瓷(LTCC)技术、薄膜技术、硅半导体技术、多层电路板技术等。目前LTCC技术是无源集成的主流技术。LTCC整合型组件包括各种基板承载或内埋式主动或被动组件产品,整合型组件产品项目包含零组件、基板与模块。 二、LTCC技术特点 LTCC与其他多层基板技术相比较,具有以下特点: 1.易于实现更多布线层数,提高组装密度; 2.易于内埋置元器件,提高组装密度,实现多功能; 3.便于基板烧成前对每一层布线和互联通孔进行质量检查,有利于提高多层基板的成品率和质量,缩短生产周期,降低成本; 4.具有良好的高频特性和高速传输特性; 5.易于形成多种结构的空腔,从而可实现性能优良的多功能微波MCM; 6.与薄膜多层布线技术具有良好的兼容性,二者结合可实现更高组装密度和更好性能的混合多层基板和混合型多芯片组件; 7.易于实现多层布线与封装一体化结构,进一步减小体积和重量,提高可靠性;

低温共烧陶瓷技术介绍

低温共烧陶瓷技术介绍 陶瓷的多层LTCC技术是被广泛认可的制造微电子、传感器(如压力传感器、pH值检测、导电性及电阻测量)和执行机构(如压电致动器)的生产技术。此项技术能制造三维的、大功率的电子电路,可被用于汽车和电信行业。 未烧结材料中的柔性箔片是LTCC技术的基础。这些单个箔片能通过机械加工或激光烧蚀生成几何图形。例如每个单箔表面上的电器元件能通过丝网印刷生成。接下来,预制箔片在900℃的温度下被叠放、压平、烧结。低温共烧陶瓷技术的一个缺点就是不够透明,导致很难用光学手段进行流程监控。 药学和生物学界的科学家正利用传感系统尝试光学监控加工流程。通过安装透明的聚合物窗口,陶瓷感应系统将能通过光学监测内部加工过程。复杂的微流体系统通常都不是通过LTCC技术制造的。材料和制造技术使这种陶瓷元器件比同等级的聚合物元器件得到更广泛的应用。 尖端的技术 工业制造通常采用不同的连接技术来接合聚合物和陶瓷部件,比如,粘接或机械连接技术。在工业生产中常常会用到粘合剂,来粘合不同的物体,最后能对缝合口起到很好的密合作用。这项技术的缺点之一就是它额外采用了化学物质用作粘合材料,对最终系统的功能带来了不必要的影响,比如生物医学反应。使用单芯片实验系统或生物医学系统的科学家对利用光学方式从外部监控内部状况很感兴趣,他们通常会用粘合剂在陶瓷体上安装一个透明窗口,以便观察内部情况。长期来看,许多这样的粘合接口不够稳定和牢固,经常会发生窗体剥落或泄漏的情况。 机械连接一般用到螺丝钉、夹钳或类似的工具,为连接陶瓷和聚合物提供了另一种选择。在这种情况下,像孔或卡口之类的地方需要同时考虑两个被连接部件,增加了工作量。此外还需要配备密封垫圈,用来完成聚合物和陶瓷部件之间不漏液、不漏气的无缝装配。 激光焊接是另一种被业内认可的聚合物部件焊接工艺,需要熔接的两部分由相似的热塑性聚合物组成。激光束能量穿越首个熔接部件后被第二个吸收,加之外在的压力,能让两个部件紧紧连在一起,形成有力的接点。被吸收的激光能量使接触区域内的部件熔化并结合。在连接区域固化之后,表现出和基底材料同样的属性。 新颖的熔接技术 由德国弗劳恩霍夫材料和光束技术研究所开发的新技术,能直接、牢固的焊接陶瓷和聚合物。乍看起来,直接熔接两种截然不同熔点的物体似乎是很困难的。普通的热塑性聚合物熔点在250 ℃以下,热分解的话需要超过400 ℃的高温。相比之下,陶瓷的熔点却在1000 ℃以上。这两种材料大相径庭的受热及物理表现对这种熔接技术构成了挑战。

窑炉简答题

一、填空题 1. 辊道窑预热带设置搅拌风孔的作用是喷入低温空气,降低窑头温度 2. 窑墙耐火材料结构形式有传统、组合、全耐火纤维。 3. 陶瓷窑炉冷却带分为急冷段、缓冷段和低温冷却段三段。 4. 规定压力制度是为了保证温度制度和气氛制度的实现。 5. 隧道窑内烧成带的温度控制主要控制实际燃烧温度和最高温度点。 6. 辊道窑中辊子之间留有空隙的目的是利于气流通过。 7. 材料的热膨胀系数会影响其耐热震性能。 8. 陶瓷烧成制度包括温度制度、压力制度、气氛制度。 9. 回转窑内火焰过长会使烧成带的最高温度降低,液相出现过早,易引起结圈。 10. 水泥生料的预热效果用表观分辨率和真是分辨率来辨别。 11. 回转窑的支撑结构包括轮带、托轮组、对挡轮。 12. 回转窑内烧成带长度用主窑皮的长度来判定。 13. 气流进入旋风筒的方式有直入式、涡壳式。 14. 在分解炉内,分解是前提,换热是基础,燃烧是关键,分解是目的。 15. 气固悬浮预热效果在很大程度上与生料早气流中分散状况有关。 17. 耳池是指布置在平板玻璃池窑两侧,与窑相通、向外凸出的长方形或正方形小池。 18. 按结构将陶瓷窑炉窑顶耐火材料结构分为拱顶型和平顶型两种。 19. 陶瓷辊子的材质有高铝质、耐热合金、重结晶SiC 等。 20. 搅动气幕是指将一定的热气体以较大的气流速度和一定的角度自窑顶一排的小孔喷出迫使窑内的热气体向下运动,产生搅动,使窑内的温度均匀。 21. 马蹄焰玻璃池窑有滴料法和吸料法两种机械成型方法。 22. 倒焰窑上的吸火孔的作是烟气进入烟道。 23. 湿法生产的回转窑内链条有垂挂和花环两种挂法。 24. NSP是Newsuspension Preheater Kiln 的缩写。 25. 蓄热室内格子体结构是否合理对使用寿命和格子体蓄热效能有影响。 26. 锡槽内调节闸板是指有效调节锡槽生产能力的装置。 27. 悬浮预热器内结皮矿物的组成是硅钙石和硫硅钙石。 28. 分解炉内燃料的燃烧是分解的基础,比分解反应速度慢,是控制因素。 29. 水泥煅烧系统中一次风是指通过喷煤管输送煤粉的空气,二次风是指供燃料燃烧的空气。 30. 回转窑上密封装置的类型有迷宫式和接触式两大类。 31.窑炉(热工设备)即这样一些结构空间,在这些结构空间内,能够用加热的方法,按照工艺要求的烧成制度,使原料(生料)经过一系列的物理化学变化变为产品(熟料)。 32.影响窑炉使用寿命的有关耐火材料的性能指标主要有两个:一是重燃烧变化,二是耐热震性。 33.所谓泡界线,简单来说就是未熔化好的、有许多泡沫的、不透明的玻璃液与熔化好的、透明的玻璃液之间的分界线。辊道窑的工作系统是指燃烧系统、排烟系统和冷却系统。 34.能源技术的进步、耐火材料工艺的进步和烧成技术的进步等方面的进步使陶瓷窑炉技术迅速改观。 35.封闭气幕是指在隧道窑横截面上,自窑顶及两侧窑墙上喷射多股气流进入窑内,成为一道气帘,由于气体的动压转变为静压,使窑头形成1-2Pa的正压,而避免了漏入窑内。

窑炉烧成工序安全操作规程

窑炉烧成工序安全操作规程 1 目的 确保烧成工艺的合理性及稳定性,从而保证产品质量稳定。 2 职责 2.1 工艺部负责下达烧成工艺卡。 2.2 窑炉主管、班长负责窑炉烧成曲线、压力制度和气氛制度的设定和调节。 2.3 司炉工负责烧成工序的操作和当班产品质量改善。 2.4 保养工负责窑炉的保养。 3 主要生产设备及工具 辊道窑窑体、进出砖平台、燃料供应和燃料系统、传动系统、排烟系统和冷却系统、自动控制系统;压力计、铁杆、铁钩、水平尺(管)、柴油小桶、直尺、肥皂水等。 4 操作规范 4.1 窑炉常规检查内容 4.1.1 做好上班前的准备工作,开好班前会,进行5分钟6S检查。 4.1.2 交接班时,要检查上一班工作记录、质检报表、温度记录表,了解上一班砖坯质量情况,如:砖 坯的尺码、砖形、平整度、针孔状况、色号、是否对板、主要烧成缺陷等。4.1.3 监视煤气压力、供电电压、传动变频和各风机变频频率(责任人;炉工) 4.1.4 进砖时要注意干燥与窑炉速度一致,进砖保持整齐,产品无碰撞现象(责任人:保养)

4.1.5 严格控制好各区温度,特别是烧成带温度,将其稳定在烧成曲线要求的±2度范围内(责任人: 炉工)。随时观察表温,如果发现温度无论是超过设定温度并持续上升,还是低于设定温度并持续下降, 如果不是疏砖引起,应着手检查控制电路、热电偶和执行器。 4.1.6 检查各喷枪的燃烧情况,使所有喷枪无火星、无突突声,火焰无歪斜、火焰颜色呈淡蓝色透明状、 无灰色烟雾。 4.1.7 经常检查,定期添加石棉和更换孔砖周围的石棉保证隔热效果,无漏光、漏火、渗风现象,又不 影响辊棒的灵活运转。 4.1.8 经常检查煤气管道的密封性,如感觉有煤气泄露的味道,可用肥皂水进行检查,此项工作必须有 两人在场,以防煤气中毒。 4.1.9 保证辊棒运转连续平稳,输送顺畅,无叠砖,传动机构润滑良好。窑炉转速(各段传动电机变频) 未经窑炉主管同意不得随意调节。 4.1.10 检查窑炉各个风机冷却水,确认风机运行平稳,无异常杂音,润滑良好,冷却系统顺畅无泄漏。 4.1.11 定期检查窑体上的耐火砖、挡火板等是否完好,定期清理窑内烂砖,以免堵塞窑炉气流通道, 造成温度不均衡,产品变形。 4.1.12 定期检查窑炉的压力制度,零压位是否有移动现象(每班)。 4.1.13 保持窑炉弱氧化气氛,排烟废气含氧在5-8%之间,投产稳定后2天或窑炉调节稳定后2天后进 行检测。 4.1.14 疏砖空窑操作: 4.1.14.1 短时间疏砖空窑时,可将急冷温度升高5-10℃。 4.1.14.2时间稍长的疏砖空窑时,可将急冷温度升高5-10℃,同时适当将排烟和抽热风机变频分别降

陶瓷窑炉烟气处理技术

陶瓷窑炉烟气处理技术 随着国民经济的不断发展,我国陶瓷工业也得到了迅猛发展。2005年我国陶瓷产量:日用陶瓷175亿件,建筑陶瓷35 m2,卫生陶瓷约9 000万件,产量均居世界第一,约占世界的2/3,形势一片大好。但其带来的负面影响——窑炉烟气污染也越来越突出。 我国大气中90%的SO x、85%的CO2、80%的RO x(粉尘)和50%的NO x污染均来自陶瓷窑炉、蒸汽锅炉以及其他各种工业窑炉[1]。据资料统计,目前仅在日用陶瓷、建筑陶瓷生产领域中就有3 000余座燃煤窑炉,达到窑炉总数的70%,因此处理陶瓷窑炉烟气污染就成为了目前应该研究的方向。 笔者结合陶瓷窑炉烟气的污染物形成机制,对目前窑炉烟气的处理技术和发展方向进行了综述。 1 陶瓷窑炉烟气污染产生的机制 陶瓷窑炉烟气中有害物质可分为两类:一类是气相化学物质,另一类是固相的烟尘,都是造成大气污染的主要物质。 1.1 气相化学物质的产生 燃煤产生的气相化学物质主要有SO X和NO X。 (1) SO X是由煤、粘土中的硫化物杂质在800 ℃左右被氧化所致。 在陶瓷生产中不仅燃烧的燃料中含有硫化物杂质,而且原料也有一些含硫的杂质,如:黄铁矿(FeS2)、Fe2(SO4)3、CaSO4、Na2SO4等。这些杂质存在于陶瓷坯体中,在烧成的过程中,要进行一系列氧化还原反应。 (2) NO X的产生类型有3种: a、热力型NO X,燃烧时的空气中带进来的氮在高温下与氧发生反应生成NO X被称为热力型NO X(T -NO X)。 b、燃料型NO X,因为煤中含有许多氮的有机化合物如芳香杂环氮化物、吡咯及衍生物,在高温作用下易产生NH3或HCN氧化生成NO X。 c、快速型NO X,指在燃烧过程中,燃料中的碳氢化合物发生分解,其分解的中间产物和N2反应生成的氮氧化物。快速型NO X生成量很少,可不予考虑。 1.2 固相烟尘的产生 煤被加热350~600 ℃时,大量释放出以碳氢化合物为主的挥发分,进入炉膛空间。但是在低温缺氧条件下,挥发分不可能正常燃烧,发生裂化、脱氢、叠合、环化而生成含碳量多的苯环物质——碳黑;不完全燃烧生成环烃物质——烟炱;还可能因还原反应而分解出游离的碳粒;由烟气带出的飞灰和未燃尽的煤炭颗粒微尘;这些物质总称烟尘。全世界每年约有1亿t烟尘排放到空气中,如不及时处理,不仅会污染环境,而且会损害人类的健康。 2 烟气脱硫(FGD)

低温共烧陶瓷复习整理资料

湖北大学《多层低温共烧陶瓷技术》期末考试复习资料————————————————第一章————————————————————1给出LTCC的全称和简要定义 全称:低温共烧陶瓷(Low-Temperature Co-fired Ceramics) 定义:LTCC技术是将低温烧结陶瓷粉制成厚度精确而且致密的生瓷带,在生瓷带上利用激光打孔、微孔注浆、精密导体浆料印刷等工艺制出所需要的电路图形,并将多个被动组件(如低容值电容、电阻、滤波器、阻抗转换器、耦合器等)埋入多层陶瓷基板中,然后叠压在一起,内外电极可分别使用银、铜、金等金属,在900℃下烧结,制成三维空间互不干扰的高密度电路,也可制成内置无源元件的三维电路基板,在其表面可以贴装IC和有源器件,制成无源/有源集成的功能模块。 2LTCC的技术优势(高频特性、热稳定性和电容量) (1)陶瓷材料具有优良的高频高Q特性,使用频率可高达几十GHz; (2)具有较好的温度特性,如较小的热膨胀系数、较小的介电常数温度系数; (3)可以制作层数很多的电路基板,并可将多个无源元件埋入其中,除L、R、C 外,还可以将敏感元件、EMI 抑制元件、电路保护元件等集成在一起,有利于提高电路的组装密度; (4)能集成的元件种类多、参量范围大,可以在层数很多的三维电路基板上,用多种方式键连IC 和各种有源器件,实现无源/有源集成; (5)可靠性高,耐高温、高湿、冲振,可应用于恶劣环境。 3热稳定性能的测试方法和测试条件 测试方法: 名称内容

温度循环试验(气体)-60 ℃,20min 150 ℃,20min,1000次循环压力蒸煮试验110 ℃,85%相对湿度,1.2atm,500h 热暴露试验150 ℃,2000h ————————————————第二章————————————————————1在LTCC中所用陶瓷材料的要求是什么 陶瓷材料性能要求:(1)温度低于1000℃;(2)介电损耗要小;(3)介电常数与电路功能匹配;(4)热膨胀小,热导高;(5)强度大。 2列出10种LTCC所用陶瓷材料典型添加物 BaSnB2O6、BaZrB2O6、Ba(Cu1/2W1/2)O3、Bi2O3-CuO 型、Pb(Cu1/2W1/2)O3、Bi2O3-Fe2O3 型、PbO-Sb2O3 型、PbO-V2O3 型、Pb5Ge2.4Si0.6O11、Pb5Ge2O11、LiF、B2O3、Bi2O3、Pb2SiO4、Li2Bi2O5(15种,任选10种) 3玻璃起泡的原因 原因:(1)烧结时样品表面首先烧结,并在样品表面形成一烧结良好的烧结膜,当在高温时,材料中气体释放或残余的有机胶排出时,就会形成气孔;(2)溶解于低温共烧陶瓷用的玻璃料粉中的气体在高温时释放而产生气孔。 4介电损耗的机理有哪几种 机理4种:(1)通过电气传导的传导损耗;(2)在电场的作用下,当碱离子OH-等离子进行相邻位置之间的互换时所产生的偶极子弛豫损耗;(3)在电场作用下,偶极子立即发生转向,玻璃的网络结构产生畸变的畸变损耗;(4)当在由大量结构离子和周围的化学键强度所决定的固有振荡频率下而存在谐振时产生的离子振动损耗。 5影响玻璃/陶瓷复合材料的机械强度有哪3个因素

影响低温快烧玻化砖性能的因素

龙源期刊网 https://www.360docs.net/doc/0d13190059.html, 影响低温快烧玻化砖性能的因素 作者:廖花妹范新晖 来源:《佛山陶瓷》2013年第06期 摘要:本文主要探讨了在低温快烧玻化砖生产技术中,添加剂对生坯强度的影响,以及 配方组成与低温快烧玻化砖性能之间的关系。通过三点弯曲法测生坯强度,其它对应仪器测玻化砖的理化性能。结果表明,添加剂CMC、改性淀粉均能提高生坯强度,且当CMC与改性 淀粉质量比为2:1时,组成的复合添加剂增强效果最显著。同时,获得最佳的配方组成为:陶瓷泥17%、水洗砂24.5%、定石粉40%、硅灰石12%、彭润土1.5%、透辉石3%、硼钙石2%。 关键词:低温快烧;添加剂;生坯强度;理化性能 1 前言 目前,国内外大量生产和使用的日用瓷、建筑陶瓷,其传统陶的煅烧温度都在1200℃以上,因此,能耗较大。随着能源供需矛盾的突出,以及燃料价格的大幅度上涨,节能成为陶瓷生产与科技工作者的首要问题。 在陶瓷生产中,烧成温度越高,烧成时间越长,能耗越高。据热平衡计算,若烧成温度降低100℃,则单位产品热耗可降低10%以上;烧成时间缩短10%,则产量增加10%,热耗降低4%。因此,在陶瓷行业中采用低温快烧技术,可以显著增加产量、节约能耗。此外,降低烧成温度也有利延长窑炉和窑具的使用寿命。 本文是在节能减排的趋势下,研究一种烧成温度在1100℃左右,烧成时间为60min左右的低温快烧玻化砖。 2 实验内容 2.1 实验原料 本实验所使用的原料主要有陶瓷泥、水洗砂、定石粉、膨润土、硼钙石、硅灰石、透辉石、烧滑石等。它们的化学组成如表1所示。 2.2 实验过程 (1)首先称取适量的原料,然后在内衬镶嵌的球磨机中湿法研磨; (2)泥浆过筛,要求250目筛余小于0.5%;

陶瓷窑炉干燥技术

谈谈干燥技术在陶瓷生产中的应用 摘要:陶瓷干燥技术一般采用热风烘干技术,能源来源方式有天然气燃烧,煤炭燃烧及电炉等三种方式,但是其干燥周期长而致资金周转慢,均匀性稍差,并且干燥窑炉占地面积大,能耗较大。 关键词:干燥技术、陶瓷胚体、生产应用 前言 一、干燥技术的原理及特点 干燥技术是采用加热、降温、减压或其他能量传递的方式使物料的湿分产生挥发、冷凝、升华等相变过程与物料分离已达到去湿目的的。干燥过程包括传热和传质两个相互的过程:传热过程中热空气将热量传递给物料,用于汽化其中的水分并加热物料;传质过程物料中的水分蒸发并迁移到热空气中,使物料中水分逐渐降低,得到干燥。 二、干燥过程可分为三个阶段 第一阶段是干燥过程中最主要的阶段,此阶段排出大量水分,在整个阶段中,排出速度始终是恒定的,故称等速干燥阶段。在此阶段中,水分的蒸发仅发生在坯体表面上,干燥速度等于自由水面的蒸发速度,故凡足以影响表面蒸发速度的因素都可以影响干燥速度。因此,在等速干燥阶段中,干燥速度与坯体的厚度(或粒度)及最初含水量无关。而与干燥介质(空气)的温度、湿度及运动速度有关。 第二阶段是降速干燥阶段,随着干燥时间的延长,或坯体含水量

的减少,坯体表面的有效蒸发面积逐渐减少,干燥速度逐渐降低。此时,水分从表面蒸发的速度超过自坯体内部向表面扩散的速度,因此干燥速度受空气的温度、湿度及运动速度的影响较小。水分向表面扩散速度取决于含水量、坯体内部结构(毛细管状况)、水的粘度和物料性质等。通常非塑性和弱塑性料水分的内扩散作用较强。粗颗粒比细颗粒的强,水的温度越高,扩散也越容易。 第三阶段干燥速度逐渐接近零,最终坯体水分不再减少。当空气中干球温度小于100℃时,此时保留在坯体中的水分称为平衡水分。这部分水分被固体颗粒牢固地吸附着。平衡水分的多少,取决于物料性质、颗粒大小和干燥介质的温度与相对湿度。 三、干燥技术分类 按干燥制度是否进行控制可分为,自然干燥和人工干燥,由于人工干燥是人为控制干燥过程,所以又称为强制干燥。 按干燥方法不同进行分类,可分为: ①对流干燥,其特点是利用气体作为干燥介质,以一定的速度吹拂坯体表面,使坯体得以干燥。 ②辐射干燥,其特点是利用红外线、微波等电磁波的辐射能,照射被干燥的坯体使其得以干燥。 ③真空干燥,这是一种在真空(负压)下干燥坯体的方法。坯体不需要升温,但需利用抽气设备产生一定的负压,因此系统需要密闭,难以连续生产。 ④联合干燥,其特点是综合利用两种以上干燥方法发挥它们各自

低温共烧陶瓷(LTCC)项目计划书

低温共烧陶瓷(LTCC)项目 计划书 投资分析/实施方案

摘要说明— 低温共烧陶瓷(LTCC)是以低温烧结的陶瓷为电路基板材料,以精密 印刷技术印制出电路图形,并将电极材料、无源元件等埋入其中叠压烧结,制成的一种无源集成组件。低温共烧陶瓷技术是无源集成的主流技术,可 以实现小型化、高密度化、高集成度电子电路制造,能够满足高频段通讯 需求。在电子信息技术不断进步的情况下,低温共烧陶瓷市场规模持续扩大。 该低温共烧陶瓷(LTCC)项目计划总投资13128.52万元,其中:固定 资产投资9456.18万元,占项目总投资的72.03%;流动资金3672.34万元,占项目总投资的27.97%。 达产年营业收入25658.00万元,总成本费用19244.72万元,税金及 附加263.62万元,利润总额6413.28万元,利税总额7561.49万元,税后 净利润4809.96万元,达产年纳税总额2751.53万元;达产年投资利润率48.85%,投资利税率57.60%,投资回报率36.64%,全部投资回收期4.23年,提供就业职位492个。 报告内容:项目概论、项目建设及必要性、市场调研、建设规模、项 目选址分析、土建工程方案、项目工艺说明、环境保护说明、安全规范管理、项目风险、节能可行性分析、实施计划、投资情况说明、经济效益、 综合评价结论等。

规划设计/投资分析/产业运营

低温共烧陶瓷(LTCC)项目计划书目录 第一章项目概论 第二章项目建设及必要性 第三章建设规模 第四章项目选址分析 第五章土建工程方案 第六章项目工艺说明 第七章环境保护说明 第八章安全规范管理 第九章项目风险 第十章节能可行性分析 第十一章实施计划 第十二章投资情况说明 第十三章经济效益 第十四章招标方案 第十五章综合评价结论

低温共烧陶瓷(LTCC)项目可行性分析报告

低温共烧陶瓷(LTCC)项目可行性分析报告 规划设计/投资分析/产业运营

摘要 低温共烧陶瓷(LTCC)是以低温烧结的陶瓷为电路基板材料,以精密 印刷技术印制出电路图形,并将电极材料、无源元件等埋入其中叠压烧结,制成的一种无源集成组件。低温共烧陶瓷技术是无源集成的主流技术,可 以实现小型化、高密度化、高集成度电子电路制造,能够满足高频段通讯 需求。在电子信息技术不断进步的情况下,低温共烧陶瓷市场规模持续扩大。 该低温共烧陶瓷(LTCC)项目计划总投资8608.73万元,其中: 固定资产投资6397.66万元,占项目总投资的74.32%;流动资金2211.07万元,占项目总投资的25.68%。 本期项目达产年营业收入17195.00万元,总成本费用13166.22 万元,税金及附加168.95万元,利润总额4028.78万元,利税总额4753.42万元,税后净利润3021.59万元,达产年纳税总额1731.84万元;达产年投资利润率46.80%,投资利税率55.22%,投资回报率 35.10%,全部投资回收期4.35年,提供就业职位320个。

低温共烧陶瓷(LTCC)项目可行性分析报告目录 第一章基本情况 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目背景、必要性 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章项目规划分析 一、产品规划 二、建设规模 第四章项目选址可行性分析 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

耐火材料烧成窑炉

耐 2009.03.19 随着钢铁工业和其他工业生产技术的发展,作为高温工业生产设备的基础的耐火材料,其质量和产量都得到了显著的提高和发展。 作为生产核心的成型砖坯的烧成设备应满足上述要求,并有所改进。从要求设备节省能量,节省劳动力和不造成公害等几方面来看,耐火材料烧成窑方面发生了巨大的变化。 由于直接结合砖的出现,建成了烧成温度为1750-1900的超高温烧成窑。其次,由于白云石砖采用特殊结合剂,要在烧成时采取措施防止排出废气引起公害,为了满足提高品位的要求,在各烧成温度范围内,要使温度和气氛便于控制并且均匀,具有合理性的燃烧和加热机制,以节省能源和节省劳动力等。在窑的大型化,自动化和连续化方面都取得了极为显著的变化。 耐火材料烧成窑历史悠久,过去采用过的单独的间歇式的倒焰窑,如方窑,圆窑及环窑。这些窑在其他窑业中也得到应用,目前在耐火材料烧成方面用的少了。 由于耐火材料的用户遍布钢铁工业,有色冶金工业,化学工业,窑业等许多部门,所以为适应上述各种不同用途,要求制造不同性能和形状的硅质,黏土质等制品,并按这些制品要求的制造条件来烧成。 一.耐火材料烧成窑的分类 耐火材料的烧成窑大致可分为两大类。 (一)连续式窑(隧道窑) 隧道窑是一种可以连续生产的,自动化程度较高的,环境保护较好的,现代化的先进窑炉。其构造,操作和控制将在后面叙述。 (二)间歇式窑 1.方型倒焰窑简称方窑。是一种古老的耐火材料烧成窑。一般用煤做燃料,烧成的火焰经窑顶反往砖坯行列下降到窑底空径烟道排出废气,操作方法虽然落后鞋,但也有其优点,就是工艺过程比较灵活,可以一窑一变,不象隧道窑固定了一种工艺就只能烧成一种品种。 2.圆形倒焰窑其操作原理优缺点都与方窑相同。两者对比,圆窑烧成的均匀性忧于方窑。 3.梭式窑顾名思义该窑就是象梭子一样,能来回装进抽出。它是介于隧道窑和倒焰窑之间的一种间歇式窑型。它采用了如隧道窑式的窑车进行装出窑,可以在窑外进行便于机械化,采用了隧道窑肢的加热方式便于机械化自动化,由于间歇式生产,还可以避免由于工艺固定产品单一的弊病,所以说它是一种比较灵活的窑型,但它也有确定,就是由于它的间歇式生产方式限制产量的提高,对于产量大的品种是不合适的。 4.钟罩式高温烧成窑钟罩式高温烧成窑,是一种专门烧制有特殊性能要求或特殊形状的高级产品烧成窑,它基本上与梭式窑类似,但其窑上部结构可以上下升降,故曰钟罩式窑。这种窑式在我国较为少见。 二.耐火材料烧成窑的结构及工作环境 由于耐火材料的烧成窑品种很多,需要分别叙述其结构及操作原理和工作环境。 (一)隧道窑 在耐火材料烧成方面,隧道窑已经成为连续式烧成窑的代名词,它是最经济和效率最高的窑。 1.隧道窑的基本条件与功能隧道窑由预热带,烧成带和冷却带构成。窑车装好车后通过上述

(完整版)陶瓷窑炉的发展趋势

陶瓷窑炉的发展趋势 当今陶瓷窑炉的发展趋势是由我们过去说的辊道化、煤气化、轻型化、自动化、大型化向绿色(环保节能型)窑炉方向发展。 所谓绿色窑炉,即环保节能型窑炉的标准主要包括:1)低消耗(节能型)。包括低燃料消耗、低电能消耗、低水消耗、低耐火材料及其他资源消耗。2)低污染(环保型)。其中包括低废气(CO2)排放,低SO2及NOx气体排放,低烟尘排放,无黑烟,低污水排放,燃料完全燃烧,低噪音及振动,工作环境舒适。3)低成本。包括初投资成本低,投资回收期短,运行费用低,劳动成本低。4)高效率。窑炉内温度分布均匀,优等品率高,热效率高,操作控制灵活方便,自动化水平高,生产过程适应性强,劳动生产率高,竞争性强,经济效益高。 实现绿色窑炉需要从以下几个方面努力: 1)窑炉风机降低电耗和噪音的研究 目前国外先进风机噪音在50~70分贝,国产风机噪音在80~90分贝,有的甚至超过100分贝,国外一条窑炉风机使用功率为50~70KW,而国产窑炉为90~130KW(以产量相同的建筑卫生陶瓷窑炉计算)。如每条窑炉节电50KW,年节电40万KW.h,以全国陶瓷行业2万条窑炉计算,每年可节电40亿KW·h左右。并大大改善窑炉烧成车间的工作环境,显著减少风机材料消耗和运输费用。 2)研究先进的窑炉燃烧器 我国是世界上CO2排放量较多的国家之一,陶瓷行业又是耗能大户。燃烧释放出的SO2跟水形成亚硫酸,NOx形成酸雨和光雾,对人畜、植物、建筑物都有较大危害。要以辊道窑为对象研究适用于窑炉使用的低NOX燃烧器(如脉冲式燃烧器等),既要保证窑内温度均匀,断面温差小,又要使燃料完全燃烧,避免局部高温以减少NOx的生成。 3)使用新型的耐火材料和涂料 对于陶瓷窑炉,采用耐高温的陶瓷纤维作内衬,可以有效提高陶瓷窑炉的热效率。为减少陶瓷纤维粉化脱落,利用多功能涂层材料(如远红外线涂料)来保护陶瓷纤维,达到既提高纤维抗粉化能力,又可增加窑炉内传热效率,节能降耗。由于陶瓷纤维导热系数比较小,增强了窑炉的保温,减少了热散失,改善了烧成环境。 4 )研究新的窑炉自动控制方式和方法 利用人工神经网络技术进行模拟,以新的控制方式和方法来控制窑炉同一断面,同一水平面上的温差以及突破还原气氛控制的难点,并设计相应的控制系统和控制软件。使温度、气氛控制更精确和稳定,窑炉自动控制程度更高。 5 )建立陶瓷窑炉废气净化研究检测中心。 逐步建立陶瓷窑炉废气排放数据库系统,以指导或提供陶瓷窑炉废气净化的研究及改进,

浅谈现代陶瓷窑炉的烧成制度

陶瓷窑炉的烧成制度分为温度制度、压力制度和气氛制度。其中温度制度和气氛制度直接影响产品的产量的质量,而压力制度保证温度和气氛制度的实现。它们之间既相互影响又相互辅助,在现代陶瓷窑炉中,由于在结构上与传统窑炉相比有了较为明显的变化,一些新方法,新技术已应用于现代陶瓷窑炉中,故而烧成制度,尤其压力制度呈现出了新的特点。从而要求温度和气氛制度与之相适应。一、现代陶瓷窑炉烧成制度最近几年,随着陶瓷窑炉的引进、消化吸收和对传统窑炉的改造,现代陶瓷窑炉已经在陶瓷工业中占到统治地位。比传统窑炉,无论是在预热带、烧成带和冷却带,现代陶瓷窑炉都应用了新方法、新技术。比如:在预热带,现代窑炉都较为普遍地使用了顶吹和侧吹气幕风。这对于调节预热带上下温差,升温速率的缓急和窑头温度有关至关重要的作用,气幕风的使用,使得在预热带上部的一段区域内呈现一定程度的正压,而不象传统窑炉预热带全呈匀压的状态。由于大部分窑炉都使用洁净化的燃料,如城市煤气、液化石油气和天然气,故而现代陶瓷窑炉自动控制水平提高,最高温度点能够控制到±1℃的范围内,并且能长期保持稳定,在冷却带,急冷风由狭缝式改为排管式冷却,冷却效果均匀稳定,在传统窑炉中,由于急冷风比较集中并且量大,急冷温度一般都在750℃以上,而在现代窑炉中,急冷温度甚至可以降到600℃左右,在烧瓷片和日用瓷的辊道窑中,急冷温度甚至可以降到550℃以下而不会出现风惊缺隐。在压力制度方面,一般来讲,窑炉的最大压点是在急冷和烧成带尾部之间,在传统窑炉中一般在1.5-1.8mm水柱;即15-18Pa,而在现代陶瓷窑炉中,压力在5-8Pa左右,在缓冷带,美国SD和意大利西蒂等公司的窑炉中还采用了顶吹和侧吹结构。此外,现代陶瓷窑炉的新型保温砌体和低蓄热窑车的应用,都使得现代陶瓷窑炉无论是在产品产量、质量,以及产品能耗方面与传统窑炉相比呈现出巨大优势。在产品质量上,现代窑炉的烧成缺陷非常低,合格率、优级品率很高。在产量方面,一般都在50万件以上,在我们调试过的美国SD公司的窑炉,断面3.8米年产量在100万件。窑炉适应能力强,高、中、低档产品在同一窑炉中都能有非常好的烧成质量。产品能耗低、周期短,并且如果压力制度调节合适,产品出窑温度也很低,能够达到60℃以下。由于新方法、新技术的应用,现代陶瓷窑炉的调试极为方便,和传统窑炉相比,更加有规律可循。故而现代窑炉产量高、缺陷低,并且能够长期保持稳定。但现代陶瓷窑炉在结构上,设备上与传统窑炉相比,毕竟有所不同,沿有过去的传统思想和方式,会产生一系列的偏差,这一点主要体现在烧成制度中温度制度和压力制度相互适应上。在现代陶瓷窑炉中,要掌握其调试方法,必须认清和掌握现代陶瓷窑炉中各种布置的特点和作用,只有这样,才能充分地利用这些新技术、新方法。二、现代陶瓷窑炉中烧成制度的制定1、在现代陶瓷窑炉中,温度制度和压力制度的配合尤为重要,总体来讲,现代窑炉,由于使用的是保温砌体,低蓄热窑车,燃料是洁净化气体燃料,以及自动化控制。产品能耗是很低的(和传统窑炉相比)。反映在窑炉上,就是整体窑炉的烟气量的降低,所以无论是预热带、烧成带和冷却带的压力普遍下降,这就要求整个窑炉的送风和排烟抽热要有良好的配合。一般来讲,在整个窑炉内部应掌握三个平衡,一是预热带和烧成带之间的平衡,二是冷却带中、急冷风和窑尾送风与抽热之间的平衡。三是窑内压力和窑下压力之间的平衡。这三个平衡哪一个平衡做得不好,都会对产品质量窑炉使用寿命造成影响。在此方面,一些教料书和技术资料中有详尽论述,在本文不再重复。需要注意的是,窑头的气幕风机和窑尾风机、缓冷带的顶吹、侧风机都地对整个窑炉的温度和整窑的压力产生影响,调试时一定要综合考虑。2、在现代陶瓷窑炉中,预热带和冷却带的温度压力制度的调节是很方便的。技术人员可综合升温速度,上下温差、晶型转换等工艺因素,再结合排烟和气幕风机以及各分类闸板的开度可以实现升(降)温的缓急。需注意的是在调节气幕风机时,不要频繁并且动作幅度不宜过大,否则会出现窑脏等缺陷。在冷却带,冷风的鼓入应尽量由上部鼓入,抽热由上部抽出。急冷的温度在保证不出风惊的情况下,尽量降低一些,以缓解缓冷段的压力。3、在烧成带,制定温度曲线一定要与压力制度有效地结合起来,

TLCC低温共烧陶瓷技术

1 LTCC产业概况 随着微电子信息技术的迅猛发展,电子整机在小型化、便携式、多功能、数字化及高可靠性、高性能方面的需求,对元器件的小型化、集成化以至模块化要求愈来愈迫切。有人曾夸张地预言,以后的电子工业将简化为装配工业——把各种功能模块组装在一起即可。低温共烧陶瓷技术(low temperature cofired ceramic LTCC)是近年来兴起的一种相当令人瞩目的多学科交叉的整合组件技术,以其优异的电子、机械、热力特性已成为未来电子元件集成化、模组化的首选方式,广泛用于基板、封装及微波器件等领域。TEK的调查资料显示,2004~2007年间全球LTCC市场产值呈现快速成长趋势。表1给出过去几年全球LTCC市场产值增长情况。 表1 过去几年全球LTCC市场产值增长情况 LTCC技术最早由美国开始发展,初期应用于军用产品,后来欧洲厂商将其引入车用市场,而后再由日本厂商将其应用于资讯产品中。目前,LTCC材料在日本、美国等发达国家已进入产业化、系列化和可进行材料设计的阶段[1]。在全球LTCC市场占有率九大厂商之中,日商有Murata,Kyocera,TDK和Taiyo Yuden;美商有CTS,欧洲商有Bosch, CMAC,Epcos及Sorep-Erulec等。国外厂商由于投入已久,在产品质量,专利技术、材料掌控及规格主导权等均占有领先优势。图1给出全球LTCC厂商市场占有情况。而国内LTCC产品的开发比国外发达国家至少落后五年,拥有自主知识产权的材料体系和器件几乎是空白。国内目前LTCC陶瓷材料基本有两个来源:一是购买国外陶瓷生带;二是LTCC生产厂从陶瓷材料到生带自己开发。随着未来LTCC制品市场中运用LTCC制作的组件数目逐渐被LTCC模块与基板所取代,终端产品产能过剩,价格和成本竞争日趋激烈,元器件的国产化必将提上议事日程,这为国内LTCC产品的发展提供了良好的市场契机。中国在LTCC市场占据一定份额的是叠层式电感器和电容器生磁带。目前,清华大学材料系、上海硅酸盐研究所等单位正在实验室开发LTCC用陶瓷粉料,但还尚未到批量生产的程度。南玻电子公司正在用进口粉料,开发出介电常数为9.1、18.0和37.4的三种生带,厚度从10μm到

相关文档
最新文档