三种不同平滑滤波器对比

三种不同平滑滤波器对比
三种不同平滑滤波器对比

燕山大学

课程设计说明书

题目:几种平滑滤波器的作用与对比试验设计

学院(系):电气工程学院

年级专业:

学号:

学生姓名:

指导教师:

教师职称:

目录

第一章平滑滤波器 (1)

第二章处理程序和处理结果 (3)

第三章比较差异 (7)

第四章总结 (9)

参考文献 (9)

第一章平滑滤波器

滤波的本义是指信号有各种频率的成分,滤掉不想要的成分,即为滤掉常说

的噪声,留下想要的成分,这即是滤波的过程。 所谓目的:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声。

各类图像处理系统在图像的采集、获取、传送和转换(如成像、复制扫描、传输以及显示等)过程中,均处在复杂的环境中,光照、电磁多变,所有的图像均不同程度地被可见或不可见的噪声干扰。噪声源包括电子噪声、光子噪声、斑点噪声和量化噪声。如果信噪比低于一定的水平,噪声逐渐变成可见的颗粒形状,导致图像质量的下降。除了视觉上质量下降,噪声同样可能掩盖重要的图像细节,在对采集到的原始图像做进一步的分割处理时,我们发现有一些分布不规律的椒盐噪声,为此采取相应的对策就是对图像进行必要的滤波降噪处理。图像的噪声滤波器有很多种,常用的有线性滤波器,非线性滤波器。采用线性滤波如邻域平滑滤波,对受到噪声污染而退化的图像复原,在很多情况下是有效的。但大多数线性滤波器具有低通特性,去除噪声的同时也使图像的边缘变模糊了。而另一种非线性滤波器如中值滤波,在一定程度上可以克服线性滤波器所带来的图像模糊问题,在滤除噪声的同时,较好地保留了图像的边缘信息。这些滤波都是通过平滑滤波器来实现的。

平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。所谓平滑滤波是指对一些不平滑的信号做处理,使它变平滑。那什么是不平滑呢,就是在示波器上看起伏不平的信号,最典型的就是交流整流后的脉动信号。这些随时间起伏不平变化的信号成分在频率上代表一些高频率的成分,上升下降越快,则表示频率越高。平滑滤波就是要把它们弄平,把它们弄得不再随时间变化,或者是变化很小,这种不随时间再变化,或者随时间变化很小的信号就是频率非常低的信号,使它们成为低频信号,在整流滤波上,就基本上直流信号,其中只含有非常少的成分随时间变化。所以平滑滤波与低通滤波说法差别不大,平滑滤波大多用在整流滤波上,一般可以理解成一个概念的不同描述方法。

图像在传递过程中,由于噪声主要集中在高频部分,为去除噪声改善图像质量,滤波器采用低通滤波器H(u ,v)来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的

根据任务要求在此选择研究理想低通滤波器、Butterworth 低通滤波器、高斯低通滤波器三种滤波器来实现要求。 1.理想低通滤波器

设傅立叶平面上理想低通滤波器离开原点的截止频率为D0,则理想低通滤波器的传递函数:

1

(,)(,)0

(,)D u v D H u v D u v D ≤?=?>?

式中,D(u,v)=(u 2

+v 2)1/2

表示点(u,v)到原点的距离,D 0 表示截止频率点到原点的距离。

2. Butterworth 低通滤波器

n 阶Butterworth 滤波器的传递函数为:

它的特性是连续性衰减,而不像理想滤波器那样陡峭变化。 3.高斯低通滤波器 高斯低通器传递函数:

2

22/),(),(σv u D e

v u H -=

20

1

(,)(,)1n

H u v D u v D =

??

+?

??

?

第二章处理程序和处理结果

1.理想低通滤波器

I=imread('C:\Users\Administrator\Desktop\Miss256G.bmp'); subplot(221),imshow(I);

xlabel('a原图像');

s=fftshift(fft2(I));

subplot(222),imshow(log(abs(s)),[]);

xlabel('b图像傅里叶变换取对数所得频谱');

[a,b]=size(s);

a0=round(a/2);

b0=round(b/2);

d=10;

for i=1:a

for j=1:b

distance=sqrt((i-a0)^2+(j-b0)^2);

if distance<=d

h=1;

else

h=0;

end;

s(i,j)=h*s(i,j);

end;

end;

F3=log(abs(s)); %对傅里叶变换结果取绝对值,然后取对数? subplot(223),imshow(F3,'InitialMagnification','fit'); xlabel('c滤波后的傅里叶变换图像')

s=uint8(real(ifft2(ifftshift(s))));

subplot(224),imshow(s);

xlabel('d理想低通滤波图像');

图1 理想低通滤波器处理结果

2. Butterworth低通滤波器

I1=imread('C:\Users\Administrator\Desktop\Miss256G.bmp');

subplot(221),imshow(I1);

xlabel('a原始图像');

f=double(I1);%强制数据类型转换转换为double型

g=fft2(f);%图像傅里叶转换?

g=fftshift(g);%傅里叶变换平移

F2=log(abs(g));%对傅里叶变换结果取绝对值,然后取对数?

subplot(222),imshow(F2,[],'InitialMagnification','fit');%将计算后的矩阵用图像表示

xlabel('b原始图像的傅里叶变换对数图像');

[N1,N2]=size(g);%傅里叶变换图像尺寸

n=2;%参数赋初始值

d0=10;

n1=fix(N1/2);%数据圆整?

n2=fix(N2/2);%数据圆整?

for i=1:N1%遍历图像像素?

for j=1:N2

d=sqrt((i-n1)^2+(j-n2)^2);

if d==0

h=0;

else

h=1/(1+(d/d0)^(2*n));

end

result(i,j)=h*g(i,j);%图像矩阵计算处理?

end

end

F3=log(abs(result));%对傅里叶变换结果取绝对值,然后取对数?

subplot(223),imshow(F3,'InitialMagnification','fit');

xlabel('c滤波后的傅里叶变换图像')

result=ifftshift(result);

X2=ifft2(result);

X3=uint8(real(X2));%把double型矩阵变换为uint8型

subplot(224),imshow(X3)

xlabel('dButterworth低通滤波图像');

图2 Butterworth低通滤波器处理结果

3.高斯低通滤波器

I=imread('C:\Users\Administrator\Desktop\Miss256G.bmp');%读取图像

subplot(221),imshow(I);

xlabel('原始图像');

s=fftshift(fft2(I));

F2=log(abs(s)); %对傅里叶变换结果取绝对值,然后取对数?

subplot(222),imshow(F2,[],'InitialMagnification','fit');

xlabel('b原始图像的傅里叶变换对数图像');

[M,N]=size(s); %分别返回s的行数到M中,列数到N中d0=10; %初始化d0

n1=floor(M/2); %对M/2进行取整

n2=floor(N/2); %对N/2进行取整

for i=1:M

for j=1:N

d=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离

h=1*exp(-1/2*(d^2/d0^2)); %高斯低通滤波函数

s(i,j)=h*s(i,j); %高斯低通滤波后的频域表示

end

end

F3=log(abs(s)); %对傅里叶变换结果取绝对值,然后取对数subplot(223),imshow(F3,'InitialMagnification','fit');

xlabel('c滤波后的傅里叶变换图像')

s=ifftshift(s); %对s进行反FFT移动

s=uint8(real(ifft2(s))); %创建图形图像对象

subplot(224),imshow(s); %显示GLPF滤波处理后的图像

xlabel('d高斯低通滤波图像'); %为经GLPF滤波后的图像添加标题

图3 高斯低通滤波器处理结果

第三章比较差异

图4 相同条件下三种滤波器的图像

由图中可以得到,在相同的参数条件下,三种不同的平滑滤波器滤波后所得到的图像是不一样的,在这三种平滑滤波器中Butterworth低通滤波器滤波后的傅里叶变换图像最大,其次是高斯低通滤波器,最小的即为理想低通滤波器,而对于滤波图像而言,高斯低通滤波器所得到图像在三个图像里面最清晰,其次是Butterworth低通滤波器,最模糊的是理想低通滤波器。

对于平滑效果来说,图像越模糊,平滑效果越好,所以由图中可以得到理想低通滤波器的平滑效果最好,其次是Butterworth低通滤波器,高斯低通滤波器的平滑效果最差。

图5 选定的滤波器不同参数的图像

对于选定的高斯低通滤波器改变d的值会改变图像处理的效果,d的值越大滤波后的傅里叶变换图像越大,所得到的高斯低通滤波图像就越清晰。此结论对于Butterworth低通滤波器和理想低通滤波器同样适用。

第四章总结

这次课程设计老师给的时间特别短暂,在教室只有两天的时间给你去做,明显是不够的,这就要求我们自己去加班做了,这个感觉还是挺充实的,这次课程设计让我对滤波器有了更深一步的认知,通过上网查资料学习到了很多课本没有的知识。我们必须认真、谨慎、踏实、一步一步的完成设计。认真的去学习和研究,自己独立的完成一个项目,我相信无论是谁看到自己做出的成果时心里一定会很兴奋。感谢老师给我们这次课程设计的机会!

参考文献

[1] 章毓晋《计算机视觉教程》人民邮电出版社

[2] 张汗灵《MATLAB在图像处理中的应用》清华大学出版社

[3] 周建兴《MATLAB从入门到精通》人民邮电出版社

燕山大学课程设计评审意见表

高斯平滑滤波器(含matlab代码)(数据参考)

Gaussian Smoothing Filter 高斯平滑滤波器 一、图像滤波的基本概念 图像常常被强度随机信号(也称为噪声)所污染.一些常见的噪声有椒盐(Salt & Pepper)噪声、脉冲噪声、高斯噪声等.椒盐噪声含有随机出现的黑白强度值.而脉冲噪声则只含有随机的白强度值(正脉冲噪声)或黑强度值(负脉冲噪声).与前两者不同,高斯噪声含有强度服从高斯或正态分布的噪声.研究滤波就是为了消除噪声干扰。 图像滤波总体上讲包括空域滤波和频域滤波。频率滤波需要先进行傅立叶变换至频域处理然后再反变换回空间域还原图像,空域滤波是直接对图像的数据做空间变换达到滤波的目的。它是一种邻域运算,即输出图像中任何像素的值都是通过采用一定的算法,根据输入图像中对用像素周围一定邻域内像素的值得来的。如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。 线性平滑滤波器去除高斯噪声的效果很好,且在大多数情况下,对其它类型的噪声也有很好的效果。线性滤波器使用连续窗函数内像素加权和来实现滤波。特别典型的是,同一模式的权重因子可以作用在每一个窗口内,也就意味着线性滤波器是空间不变的,这样就可以使用卷积模板来实现滤波。如果图像的不同部分使用不同的滤波权重因子,且仍然可以用滤波器完成加权运算,那么线性滤波器就是空间可变的。任何不是像素加权运算的滤波器都属于非线性滤波器.非线性滤波器也可以是空间不变的,也就是说,在图像的任何位置上可以进行相同的运算而不考虑图像位置或空间的变化。 二、图像滤波的计算过程分析 滤波通常是用卷积或者相关来描述,而线性滤波一般是通过卷积来描述的。他们非常类似,但是还是会有不同。下面我们来根据相关和卷积计算过程来体会一下他们的具体区别: 卷积的计算步骤: (1)卷积核绕自己的核心元素顺时针旋转180度 (2)移动卷积核的中心元素,使它位于输入图像待处理像素的正上方 (3)在旋转后的卷积核中,将输入图像的像素值作为权重相乘 (4)第三步各结果的和做为该输入像素对应的输出像素 相关的计算步骤: (1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方 (2)将输入图像的像素值作为权重,乘以相关核 (3)将上面各步得到的结果相加做为输出 可以看出他们的主要区别在于计算卷积的时候,卷积核要先做旋转。而计算相关过程中不需要旋转相关核。 例如:magic(3) =[8 1 6;3 5 7;4 9 2],旋转180度后就成了[2 9 4;7 5 3;6 1 8] 三、高斯(核)函数 所谓径向基函数(Radial Basis Function 简称RBF), 就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数, 可记作k(||x-xc||), 其作用往往是局部的, 即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数, 控制了函数的径向作用范围。

带通滤波器的噪声分析

如题所述,本文主要针对二阶带通滤波器进行噪声分析。关键词:二阶高通滤波器热噪声低频噪声散粒噪声宽带噪声一、二阶带通有源滤波器电路简介 已知,有源滤波器一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 如下图示为一二阶带通滤波器电路图 图1 基本电路原理图如上图所示。放大器选择OPA363。图中R、C组成低通网络,C1、R3组成高通网络。 下图为带通滤波器的幅频特性

图2 二阶压控电源带通滤波器就是将低通与高通电路相串联,而构成的带通滤波电路。条件是低通滤波电路的截止脚频率wH大于高通滤波电路的截止角频率wL。因此,上图并不难理解。 设R2=R,R3=2R,则可得带通滤波器的中心角频率W0=1/(RC)。 电路的优点是改变Rf和R1的比例就可改变频宽而不影响中心频率。二、电路噪声分析电路噪声可分为内部噪声与外部噪声。 内部噪声是由电路内部电路元器件其本身固有物理性质所产生的噪声。造成内部噪声的元器件主要有电阻、运算放大器等。 外部噪声是由外界因素对电路中各部分的影响所造成的。一般来说,主要是外界电磁场、接地线不合理和电源等原因造成的。 (一)内部噪声分析 1.热噪声(主要是电阻造成的噪声):在导体中由于带电粒子热骚动而产生的随机噪声。它存在于所有电子器件和传输介质中。它是温度变化的结果,但不受频率变化的影响。热噪声是在所有频谱中以相同的形态分布,它是不能够消除的。 热噪声是杂乱无章的变化电压。一般来说,热噪声决定了电路的噪声基底。实际电阻器一般被等效为一理想无噪声电阻与噪声电压源相串联的电路,或者一理想无噪声电导和噪声电流源相并联。(见下图)

数字降噪耳机中自适应滤波器的设计实现

数字降噪耳机中自适应滤波器的设计实现 1 引言 降噪耳机是降噪技术的一个重要应用。我国的降噪技术研究始于 80 年代初期,采用的手段主要有三种,其中的动态降噪技术(DNR)又可以分为模拟动态降噪技术和数字动态降噪技术。目前国内外解决噪声问题最普遍的方法是采用模拟动态降噪技术,数字降噪技术的研究尚处于初期阶段。数字降噪技术比模拟降噪技术具有更大的优点。模拟降噪技术全采用硬件实施,修改和调试十分困难,对元器件参数的变化也很敏感,技术指标受元器件的误差影响较大,降噪效果不稳定,不利于产品的批量生产。而数字降噪技术由于采用计算机技术实现自适应滤波,通过修改软件算法就可以达到不同的降噪效果,不用更改硬件结构,调试和维修都非常方便;数字降噪技术采用自适应滤波技术,可以实时跟踪噪声的变化进一步进行处理,因此降噪效果较好。另外,数字降噪技术抗干扰能力强,本身具有自恢复能力,并且在整个音频带内降噪比较均衡,而模拟降噪技术偏重于低频段,高频段效果较差。因此降噪技术未来的发展方向是数字降噪技术,以数字信号处理(DSP)及其相关算法为技术支撑的数字降噪技术代表着当今降噪技术的发展。 目前市场上的降噪耳机产品主要是模拟降噪耳机,数字降噪耳机只有日本 SONY 公司开发的一款产品,因此数字降噪耳机的设计在国内属于领先技术。数字降噪耳机的系统原理是通过数字降噪耳机中的麦克风装置直接检测出噪声信号和音频信号的混合信号,然后将混合信号通过DSP 数字降噪模块进行噪声分离并产生降噪信号来抵消噪声,因此人耳就可以只听到较纯净的音频信号而不受环境噪声的干扰。本文采用最小均方误差(LMS)算法,实现了数字降噪DSP 中消除噪声的模块自适应滤波器的设计,介绍了其在MATLAB 中Simulink建模及仿真输出,并通过程序实现了设计。 2 自适应滤波器设计原理和结构 数字降噪耳机中 DSP 数字降噪模块是通过自适应滤波器来实现的,自适应滤波器具有跟踪信号和噪声变化的能力,滤波器的特性也随信号和噪声的变化而变化,以达到最优滤波效果。自适应滤波器可以利用前一时刻获得的滤波器系数,自动地调节滤波器参数,以适应信号和噪声位置的统计特性,从而实现最优滤波。自适应滤波器的研究始于20 世纪50 年代末,是关于信号处理方法和技术的滤波器。自适应滤波器能够得到比较好的滤波性能,当输入信号的统计特性变化时,自适应滤波器能够自动的迭代调节自身的滤波器参数,以满足某种准则的要求,从而实现最优滤波。自适应滤波器的特性变化是由自适应算法通过调整滤波器的系数实现的。所以,自适应滤波器一般都由两部分组成:一是参数可调的数字滤波器结构,它是为完成期望的处理功能而设计;二是自适应算法,它调节滤波器系数以改进性能。自适应滤波器结构图。 图1:自适应滤波器结构图一般形式 图 1 中,噪声信号通过参数可调的滤波器后产生输出信号y(n),d (n)表示期望信号,由音频信号和噪声混合组成,y(n)与期望信号d (n)进行比较,得到误差信号e(n)。e(n) 和噪声通过自适应算法对滤波器的参数进行调整,使自适应滤波器输出效果达到最好。重复上面过程,滤波器逐渐了解到关于输入信号和噪声的统计规律,并以此为根据自动调整自己的参数,从而达到最佳的滤波效果。一旦输入信号的统计规律发生了变化,滤波器能够自动跟踪输入信号的变化,自动调整滤波器的参数,最终达到滤波效果,实现自适应过程。当噪声信号和混有噪声的音频信号通过自适应滤波器之后,可以将环境中的噪声分离出来,并且自适应跟踪环境噪声变化,进而产生降噪信号从而实现噪声消除。 3 自适应算法

最新自适应滤波器的设计开题报告

长江大学 毕业设计开题报告 题目名称自适应滤波器的设计与应用学院电信学院 专业班级信工10702班 学生姓名李雪利 指导教师王圆妹老师 辅导教师王圆妹老师 开题报告日期 2010年3月19日

自适应滤波器的设计与应用 学生:李雪利,长江大学电子信息学院 指导教师:王圆妹,长江大学电子信息学院 一、题目来源 来源于其他 二、研究目的和意义 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过。而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。 在数字信号处理中,数字滤波是语音和图像处理、模式识别、频谱分析等应用中的一个基本处理算法。在许多应用场合,由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用 FIR 和 IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。 自适应滤波器是利用前一时刻已获得的滤波器参数,自动地调节、更新现时刻的滤波器参数,以适应信号和噪声未知的统计特性,从而实现最优滤波。当在未知统计特性的环境下处理观测信号时,利用自适应滤波器可以获得令人满意的效果,其性能远超过通用方法所设计的固定参数滤波器。

三、阅读的主要参考文献及资料名称 1、《数字信号处理》刘益成(第二版)西安电子科技出版社 2、《数字信号处理》张小虹(第二版)机械工业出版社 3、自适应信号处理[M].西安:西安电子科技大学出版社,2001. 4.邹理和,数字信号处理, 国防工业出版社,1985 5.丁玉美等, 数字信号处理,西安电子科技大学出版社,1999 6.程佩青, 数字信号处理,清华大学出版社,2001 7. The MathWorks Inc, Signal Processing Toolbox For Use with MATLAB, Sept. 2000 8. vinay K.Ingle, John G.Proakis,数字信号处理及MATLAB实现,陈怀琛等译,电子工业出版社,1998.9 9、《MATLAB编程参考手册》 10、中国期刊网的相关文献 11、赫金,自适应滤波器原理第四版,西安工业出版社,2010-5-1 四、国内外现状和发展趋势与主攻方向 自适应滤波器的理论与技术是50年代末和60年代初发展起来的。它是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能。自适应滤波器在数字滤波器中试属于随机数字信号处理的范畴。对于随机数字信号的滤波处理,通常有维纳滤波,卡尔曼滤波和自适应滤波,维纳滤波的权系数是固定的,适用于平稳随机信号;卡尔曼滤波器的权系数是可变的,适用于非平稳随机信号中。但是,只有在对信号和噪声的统计特性先验

噪声滤波器

电源噪声滤波器的基本原理与应用方法 随着现代科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行中产生的高密度、宽频谱的电磁信号充满整个空间,形成复杂的电磁环境。复杂的电磁环境要求电子设备及电源具有更高的电磁兼容性。于是抑制电磁干扰的技术也越来越受到重视。接地、屏蔽和滤波是抑制电磁干扰的三大措施,下面主要介绍在电源中使用的EMI滤波器及其基本原理和正确应用方法。 2电源设备中噪声滤波器的作用 电子设备的供电电源,如220V/50Hz交流电网或115V/400Hz交流发电机,都存在各式各样的EMI噪声,其中人为的EMI干扰源,如各种雷达、导航、通信等设备的无线电发射信号,会在电源线上和电子设备的连接电缆上感应出电磁干扰信号,电动旋转机械和点火系统,会在感性负载电路内产生瞬态过程和辐射噪声干扰;还有自然干扰源,比如雷电放电现象和宇宙中天电干扰噪声,前者的持续时间短但能量很大,后者的频率范围很宽。另外电子电路元器件本身工作时也会产生热噪声等。 这些电磁干扰噪声,通过辐射和传导耦合的方式,会影响在此环境中运行的各种电子设备的正常工作。另一方面,电子设备在工作时也会产生各种各样的电磁干扰噪声。比如数字电路是采用脉冲信号(方波)来表示逻辑关系的,对其脉冲波形进行付里叶分析可知,其谐波频谱范围很宽。另外在数字电路中还有多种重复频率的脉冲串,这些脉冲串包含的谐波更丰富,频谱更宽,产生的电磁干扰噪声也更复杂。 各类稳压电源本身也是一种电磁干扰源。在线性稳压电源中,因整流而形成的单向脉动电流也会引起电磁干扰;开关电源具有体积小,效率高的优点,在现代电子设备中应用越来越广泛,但是因为它在功率变换时处于开关状态,本身就是很强的EMI噪声源,其产生的EMI噪声既有很宽的频率范围,又有很高的强度。这些电磁干扰噪声也同样通过辐射和传导的方式污染电磁环境,从而影响其它电子设备的正常工作。 对电子设备来说,当EMI噪声影响到模拟电路时,会使信号传输的信噪比变坏,严重时会使要传输的信号被EMI噪声所淹没,而无法进行处理。当EMI噪声影响到数字电路时,会引起逻辑关系出错,导致错误的结果。 对于电源设备来说,其内部除了功率变换电路以外,还有驱动电路、控制电路、保护电路、输入输出电平检测电路等,电路相当复杂。这些电路主要由通用或专用集成电路构成,当受电磁干扰

自适应滤波器介绍及原理

关于自适应滤波的问题: 自适应滤波器有4种基本应用类型: 1) 系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2) 逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。 3) 预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤波器的输入端。取决于感兴趣的应用,自适应滤波器的输出或估计误差均可作为系统的输出。在第一种情况下,系统作为一个预测器;而在后一种情况下,系统作为预测误差滤波器。 4) 干扰消除:在一类应用中,自适应滤波器以某种意义上的最优化方式消除包含在基本信号中的未知干扰。基本信号用作自适应滤波器的期望响应,参考信号用作滤波器的输入。参考信号来自定位的某一传感器或一组传感器,并以承载新息的信号是微弱的或基本不可预测的方式,供给基本信号上。 这也就是说,得到期望输出往往不是引入自适应滤波器的目的,引入它的目的是得到未知系统模型、得到未知信道的传递函数的倒数、得到未来信号或误差和得到消除干扰的原信号。 1 关于SANC (自适应消噪)技术的问题 自适应噪声消除是利用winer 自适应滤波器,以输入信号的时延信号作为参考信号来进行滤波的,其自适应消噪的原理说明如下: 信号()x n 可分解为确定性信号分量()D x n 和随机信号分量()R x n ,即: ()()()D R x n x n x n =+ (1.1) 对于旋转机械而言,确定性信号分量()D x n 通常可表示为周期或准周期信号分量()P x n ,即: ()()()P R x n x n x n =+ 1.2 对信号()x n 两个分量()P x n 和()R x n ,有两个基本假设: (1) ()P x n 和()R x n 互不相关; (2) ()P x n 和()R x n 的自相关函数具有下述特性:()0P P x x R m ≈, N m M ≥;()0R R x x R m ≈,B m M ≥;

数字滤波器的基本概念及一些特殊滤波器

第五章数字滤波器的基本概念及一些特殊滤波器 5.1 数字滤波器的基本概念 1.数字滤波器与数字滤波 滤波的涵义: 将输入信号的某些频率成分或某个频带进行压缩、放大; 对信号进行检测; 对参数估计; 数字滤波器: 通过对输入信号的进行数值运算的方法来实现滤波 模拟滤波器: 用电阻、电容、电感及有源器件等构成滤波器对信号进行滤波 2.数字滤波器的实现方法 用软件在计算机上实现 用专用的数字信号处理芯片 用硬件 3.数字滤波器的可实现性 ?要求系统因果稳定设计的系统极点全部集中 在单位圆内。 ?要求系统的差分方程的系数或者系统函数的系数为实数系统的零极点必须共轭成对出现,或者是实数。 4.数字滤波器的种类 现代滤波器 经典滤波器 ?滤波特性?a?a数字高通、数字低通、数字带 通、数字带阻; ?实现方法 ?a?a无限脉冲响应滤波器,简称IIR (Infinite Impulse Response),它的单位脉冲响应为无限长,网络中有反馈回路。其系统函数为: ?a?a有限脉冲响应滤波器,简称FIR (Finite Impulse Response)它的单位脉冲响应为有限长,网络中没有反馈回路。其系统函数为:5.2 理想数字滤波器

理想滤波器是一类很重要的滤波器,对信号进行滤波能够达到理想的效果,但是他只能近似实现。设计的时候可以把理想滤波器作为逼近标准用。 本节主要讲述: 理想滤波器的特点: 在滤波器的通带内幅度为常数(非零),在阻带中幅度为零; 具有线性相位; 单位脉冲响应是非因果无限长序列。 理想滤波器的传输函数: ?幅度特性为: 相位特性为: 群时延为: ?则信号通过滤波器输出的频率响应为: 其时域表达式: ?输入信号输出信号, 表示输出信号相对输入信号没有发生失真。 假设低通滤波器的频率响应为 式中,是一个正整数,称为通带截止频率。 其幅度特性和相位特性图形如下: 滤波器的单位脉冲响应为: 举例:假设

(完整word版)高斯滤波器理解

高斯滤波器理解 先给出高斯函数的图形。 高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为: g(x)=exp( -x^2/(2 sigma^2) 其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器。 高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边

缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号. (4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷. (5)由于高斯函数的可分离性,较大尺寸的高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长. ========================== 高斯函数在图像滤波中的应用 1函数的基本概念 所谓径向基函数(Radial Basis Function 简称RBF), 就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数, 可记作k(||x-xc||), 其作用往往是局部的, 即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数, 控制了函数的径向作用范围。 2函数的表达式和图形 matlab绘图的代码 alf=3; n=7;%定义模板大小 n1=floor((n+1)/2);%确定中心 for i=1:n a(i)= exp(-((i-n1).^2)/(2*alf^2)); for j=1:n b(i,j) =exp(-((i-n1)^2+(j-n1)^2)/(4*alf))/(4*pi*alf); end end subplot(121),plot(a),title('一维高斯函数' ) subplot(122),surf(b),title('二维高斯函数' )

EMI滤波器原理

EMI 滤波器原理 插入损耗,共模干扰,差模干扰 在测试传导干扰时候,应用的频段为 150KHz~ 30MHz ,当电子设备干扰 噪声频率小于30MHz 时,主要干扰音频频段,电子设备的电源线对于这类波长的 电磁波来说,一般还不足一个波的波长(30MHz 波长为10米),向空中辐射效率 很低。噪声主要是通过导线传播,若能测得电源线上感应的噪声电压,就能衡量 这一频段的电磁噪声干扰程度,这类噪声也就是传导噪声,在测试传导干扰时候, 应用的频段为150KHz~ 30MHz 。 传导噪声由差模噪声和共模噪声构成。 差模噪声存在于相线 L 和中线N 之 间(也可视为存在于L 与地线(PE ), N 与地线(PE )之间,大小相等,相位差 180° );共模干扰噪声存在于L 与PE ,N 与PE 之间,大小相等,相位相同。 1插入损耗 为了更好的设计滤波器,我们应用插入损耗这个概念,其定义为在未加入和 加入滤波器干扰源对负载的电压的比,然后取对数,定义如下图: 信号

由上图可以看出,随着滤波器阶数的上升,其插入损耗也跟着增加,实际上, 每增加一阶,插入损耗相应会增加 6 dB/倍频 2、共模噪声( common mode interference) A、电路等效:功率噪声是电源中影响最大的一种噪声,其等效图如下: 图加共模干扰等救电路討 其等效电路为一个有并联电容C P和并联电阻R P的电流源,呈高阻抗容性。在反激电源中,如图4,当开关管V i由导通变为截止时,其集电极电压升高,向开关管与散热器的分布电容(可达几千pF)C P1充电,形成共模电流(I cml+|cm2),在LISN中被检测出来。等效电路中的C P包括C PI及C P2,C P2与变压器的绕制工艺及结构有关,C PI 与开关管体积大小,及散热器的绝缘厚度有关,一般C P在几百至几千P F之间。 B、抑制原理:下面以下图中的电源滤波器为例进行说明 — Cxi OUTPUT Cy PE

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

平滑滤波方法研究

平滑滤波方法研究 平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。并且具有一定的处理要求,一是不能损坏图像的轮廓及边缘等重要信息;二是使图像清晰视觉效果好。平滑滤波的方法有邻域平滑滤波,就是求邻近像元点的平均亮度值,双边滤波,中值滤波,以及非局部均值滤波等。 1、双边滤波法 双边滤波是一种非线性滤波器,它可以达到保持边缘、降噪平滑的效果。双边滤波的边缘保持特性主要是通过在卷积的过程中组合空域函数和值域核函数来实现的,典型的核函数为高斯分布函数,如下所示: 其中: 为归一化作用。σs为空域高斯函数的标准差,σr为值域高斯函数的标准差,Ω表示卷积的定义域。 编写代码测试,当添加的噪声为0.05时,结果如下

滤波后图像 添加噪声为0.3时,结果如下 滤波后图像

由此可知,双边滤波具有去除噪音的作用 2、邻域平均法 邻域平滑滤波原理:邻域平均法就是对含噪声的原始图像f(x,y)的每一个像素点取一个邻域,计算S中所有像素灰度级的平均值,作为邻域平均处理后的图像g(x, y)的像素值。即 式中:x,y=0,1,…,N-1;S是以(x,y)为中心的邻域的集合,M是S 内的点数。 邻域平均法的思想是通过一点和邻域内像素点求平均来去除突变的像素点,从而滤掉一定噪声,其优点是算法简单,计算速度快,其代价会造成图像在一定程度上的模糊。 3、中值滤波法 中值滤波就是用一个奇数点的移动窗口,将窗口的中心点的值用窗口内的各点中值代替。假设窗口内有五点,其值为80、90、200、110和120,那么此窗口内各点的中值及为110。

设有一个一维序列f1,f2,…,fn,取窗口长度(点数)为m(m为奇数),对其进行中值滤波,就是从输入序列中相继抽出m个数fi-v,…,fi-1,fi,fi+1,…,fi+v(其中fi为窗口中心值,v=(m-1)/2),再将这m个点按其数值大小顺序排序,取其序号的中心点的那个数作为滤波输出。数学公式表示为: Yi=Med{fi-v,…,fi-1,fi,fi+1,…,fi+v} i∈N v=(m-1)/2 (式1-2)Yi称为序列fi-v,…,fi-1,fi,fi+1,…,fi+v的中值 例如,有一序列{0,3,4,0,7},重新排序后为{0,0,3,4,7}则Med{0,0,3,4,7}=3。此列若用平滑滤波,窗口也取5,那么平滑滤波输出为(0+3+4+0+7)/5=2.8。 把一个点的特定长度或形状的邻域称作窗口。在一维情况下,中值滤波器是一个含有奇数个像素的滑动窗口。中值滤波很容易推广到二维,此时可以利用二维形式的窗口。 对于平面图像采用的二维中值滤波可以由下式表示: 式中:A为窗口,{Xij}为二维数据序列,即数字图像各点的灰度值。 在对图像进行中值滤波时,如果窗口是关于中心点对称的,并且包含中心点在内,则中值滤波能保持任意方向的跳变边缘。图像中的跳变边缘指图像中不同灰度区域之间的灰度突变边缘。 在实际使用窗口时,窗口的尺寸一般先取3,再取5,依次增大,直到滤波效果满意为止,对于有缓变的较长轮廓线物体的图像,采用方形或圆形窗口较合适,对于包含尖顶角物体的图像,采用十字形窗口较合适。使用二维中值滤波值得注意的是要保持图像中有效线状体。 通过实验可得出中值滤波具有以下特性: (1)对于某些输入信号中值滤波具有不变性。 (2)中值滤波可以用来减弱随机干扰的脉冲干扰,具有较好的去噪声性能。

中值滤波器设计及椒盐噪声滤除

题目四:中值滤波器设计及椒盐噪声滤除 一、实验背景 在数字图像的生成与采集过程中,由于受工作环境,器件等性能的影响,使得一幅未经处理的原始图像,都存在着一定的噪声干扰。这种噪声具有以下性质: 1、图像上的噪声出现处呈现不规则分布; 2、噪声的大小也是不规则的。 这些噪声恶化了图像质量,使图像模糊甚至淹没目标特征,给后续的处理分析带来了困难。因此需要对图像应该进行滤除噪声处理。 二、 实验目的 1. 通过利用c 程序实现数字信号处理的相关功能,巩固对信号处理原理知识的理解,培养快速解决实际问题的能力提高实际编程和处理数据的综合能力,初步培养在解决信号处理实际应用问题中所应具备的基本素质和要求。 2. 培养独立思考的能力与研发能力,通过设计实现不同的信号处理问题,初步掌握在给定条件和功能的情况下,实现合理设计算法结构的能力。 3. 提高资料查询和整理的能力。能够在短时间内找到适合自己的方法。并在文献整理的过程中学会科技文献的写作,提高语言表达能力。 三、 实验内容 1. 理解什么是椒盐噪声,中值滤波的原理及其特性。 2. 设计一种中值滤波,对椒噪声滤波有效,并分析滤波器的适用范围。 3、(扩展训练)对设计的滤波器针对椒、盐噪声滤除分别进行测试,并进行性能比较分析,并讨论椒、盐噪声频度(噪声数目占图像实际像素的百分比)对滤波器实际效果的影响。 四、实验原理 1.椒盐噪声 椒盐噪声又称脉冲噪声,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起。 椒盐噪声的PDF 是: 如果b>a ,灰度值b 在图像中将显示为一个亮点,a 的值将显示为一个暗点。若 或 为零,则脉冲噪声称为单级脉冲。如果 和 均不为零,尤其是他们近似相等时,脉冲噪声值将类似于随机分布在图像上的胡椒和盐粉微粒。 ()?? ? ??===其他0b z P a z P z p b a a P b P a P b P

高斯滤波

高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为: g(x)=exp( -x^2/(2 sigma^2) 其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器。 高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷. (5)由于高斯函数的可分离性,较大尺寸的高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长. ========================== 高斯函数在图像滤波中的应用 1函数的基本概念 所谓径向基函数(Radial Basis Function 简称RBF), 就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数, 可记作k(||x-xc||), 其作用往往是局部的, 即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数, 控制了函数的径向作用范围。 2函数的表达式和图形 matlab绘图的代码 alf=3; n=7;%定义模板大小 n1=floor((n+1)/2);%确定中心 for i=1:n a(i)= exp(-((i-n1).^2)/(2*alf^2));

自适应滤波器的dsp实现

学号: 课程设计 学院 专业 年级 姓名 论文题目 指导教师职称 成绩 2013年 1 月 10 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 自适应滤波器原理 (2) 2 自适应滤波器算法 (3) 3 自适应滤波算法的理论仿真与DSP实现 (5) 3.1 MATLAB仿真 (5) 3.2 DSP的理论基础 (7) 3.3 自适应滤波算法的DSP实现 (9) 4 结论 ............................................... 错误!未定义书签。致谢 ................................................. 错误!未定义书签。参考文献 ............................................. 错误!未定义书签。

自适应滤波器算法的DSP实现 学生姓名:学号: 学院:专业: 指导教师:职称: 摘要:本文从自适应滤波器的基本原理、算法及设计方法入手。本设计最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP 实现了自适应滤波器。 关键词:DSP(数字信号处理器);自适应滤波器;LMS算法;FIR结构滤波器 DSP implementation of the adaptive filter algorithm Abstract:In this article, starting from the basic principles of adaptive filter and algorithms and design methods. Eventually the design use improved the LMS algorithm for FIR adaptive filter,and use MATLAB simulation, adaptive filter using DSP. Key words:DSP;adaptive filter algorithm;LMS algorithm;FIR structure adaptive filter 引言 滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发[1]。近年来,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信

自适应滤波器的设计与实现毕业论文

自适应滤波器的设计与实现毕业论文 目录 第一章前言 (1) 1.1 自适应滤波器简介 (1) 1.2 选题背景及研究意义 (1) 1.3 国外研究发展现状 (2) 第二章自适应滤波器的基础理论 (4) 2.1 滤波器概述 (4) 2.1.1 滤波器简介 (4) 2.1.2 滤波器分类 (4) 2.1.3 数字滤波器概述 (4) 2.2 自适应滤波器基本理论 (7) 2.3 自适应滤波器的结构 (9) 第三章自适应滤波器递归最小二乘算法 (11) 3.1 递归最小二乘算法 (11) 3.1.1 递归最小二乘算法简介 (11) 3.1.2 正则方程 (11) 3.1.3 加权因子和正则化 (16) 3.1.4 递归计算 (18) 3.2递归最小二乘(RLS)算法的性能分析 (22) 第四章基于MATLAB自适应滤波器仿真 (23) 4.1 正弦波去噪实验 (23) 4.2 滤波器正则化参数的确定 (28) 4.2.1 高信噪比 (28) 4.2.2 低信噪比 (31) 4.2.3 结论 (33) 4.3 输入信号不同对滤波效果的影响 (33)

4.3.1 输入信号为周期信号 (33) 4.3.2 输入信号为非周期信号 (38) 第五章结论与展望 (44) 5.1 结论 (44) 5.2 对进一步研究的展望 (44) 参考文献 (45) 致谢 (46) 附录 (46) 声明 (58)

第一章前言 1.1自适应滤波器简介 自适应滤波器属于现代滤波的畴,它是40年代发展起来的自适应信号处理领域的一个重要应用,自适应信号处理主要是研究结构可变或可调整的系统,可以通过自身与外界的接触来改善自身对信号处理的性能,通常这类系统是时变的非线性系统,可以自动适应信号传输的环境和要求,无须详细的知道信号的结构和实际知识,无须精确设计处理系统本身。 自适应系统的非线性特性主要是由系统对不同的信号环境实现自身参数的调整来确定的。自适应系统的时变特性主要是由其自适应响应或自适应学习过程来确定的,当自适应过程结束和系统不再进行时,有一类自适应系统可成为线性系统,并称为线性自适应系统,因为这类系统便于设计且易于数学处理,所以实际应用广泛。本文研究的自适应滤波器就是这类滤波器。 自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波的频率是固定的,自适应滤波器的频率则是自动适应输入信号而变化的,所以其适用围更广。在没有任何信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。1.2选题背景及研究意义 伴随着移动通信事业的飞速发展,自适应滤波技术应用的围也日益扩大。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),用线性最小均方误差估计准则设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度地滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。现在,卡尔曼滤波器已成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。实质上,维纳滤波器是卡尔曼滤波器的一个特例。 在设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识,但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。 Widrow.B等于1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而

相关文档
最新文档