直圆柱齿面接触疲劳强度计算(不计重合度系数)

直圆柱齿面接触疲劳强度计算(不计重合度系数)
直圆柱齿面接触疲劳强度计算(不计重合度系数)

疲劳强度的计算

摘要:零件的疲劳强度是一个值得深刻探讨的问题,在众多领域有着至关重要 的地位,零件的疲劳强度决定了其疲劳寿命,也就决定了对零件的选择和对这个器件的设计。本论文在参考多方资料,以及在平日学习中积累总结的经验之后,对零件疲劳强度的计算有了一些结论,得出影响导致零件疲劳的原因有破坏应力与循环次数之间量的变化影响,静应力的影响,应力集中的影响,零件绝对尺寸的影响,表面状态与强化的影响等方面。在分析零件疲劳产生原因之后,得出许多关系变化图与计算方法。运用这些计算方法,对零件疲劳极限进行了计算上的确定。并总结出疲劳强度在一些条件下的相关计算方法,如在简单应力状态,复杂应力状态下的不同。对疲劳强度安全系数的确定也进行了一系列分析,最后,尝试建立了疲劳强度的统计模型。 Abstract:The fatigue strength of parts is a worthy of deep discussion, have a vital role in many fields, the fatigue strength of parts determines its fatigue life, also decided on the part of the selection and the device design.This paper in reference to various data, and after the usual study accumulation experience, calculation of the fatigue strength of parts have some conclusion, that caused damage should change between force and the number of cycles of the causes of fatigue parts, the influence of static stress, effect of stress concentration, affects the absolute size, surface state and strengthening effect etc.. After the analysis of fatigue causes, draw many relationship graph and calculation method. Using the calculation method of fatigue limit, determined the calculation. And summarizes the related calculation under some conditions the method of fatigue strength, as in the simple stress state, the complex stress state under the different. Determination of the fatigue strength safety factor is also carried out a series of analysis, finally, try to establish a statistical model of fatigue strength. 关键词:零件疲劳寿命疲劳强度 Key word:Spare parts Fatigue life Fatigue strength

直齿圆柱齿轮传动的轮齿弯曲强度计算

直齿圆柱齿轮传动的轮齿弯曲强度计算准则 为了保证在预定寿命内齿轮不发生轮齿断裂失效,应进行轮齿弯曲强度计算。 直齿圆柱齿轮传动的轮齿弯曲强度计算准则为:齿根弯曲应力σF 小于或等于许用弯曲应力[σ F ],即 σF ≤[σF ] 轮齿弯曲强度计算公式 轮齿弯曲强度的验算公式 计算弯曲强度时,仍假定全部载荷仅由一对轮齿承担。显然,当载荷作用于齿顶时,齿根所受的弯曲力矩最大。 图 11-8 齿根危险截面 计算时将轮齿看作悬臂梁(如图11-8所示)。其危险截面可用切线法确定,即作与轮齿对称中心线成夹角并与齿根圆角相切的斜线,而认为两切点连线是危险截面位置(轮齿折断的实际情况与此基本相符)。危险截面处齿厚为。 法向力Fn 与轮齿对称中心线的垂线的夹角为 ,Fn 可分解为 使齿根产生弯曲应力,则产生压缩应力。因后者较小故通常略去不计。 齿根危险截面的弯曲力矩为 式中:K 为载荷系数;为弯曲力臂。 危险截面的弯曲截面系数W 为 故危险截面的弯曲应力为 3030F s F α1F 2F F h F σ

令 式中称为齿形系数....。因和均与模数成正比,故值只与齿形中的尺寸比例有关而与模数无关,对标准齿轮仅决定于齿数。由此可得轮齿弯曲强度的验算公式 Mpa (a) 通常两齿轮的齿形系数和并不相同,两齿轮材料的许用弯曲应力[]和[] 也不相同,因此应分别验算两个齿轮的弯曲强度。 轮齿弯曲强度设计公式 引入齿宽系数,可得轮齿弯曲强度设计公式为 mm (b) 上式中的负号用于内啮合传动。内齿轮的齿形系数可参阅有关书籍。 式(a )和(b)中为小齿轮齿数;的单位为N ·mm ;b 和m 的单位为mm ; 和[]的单位为MPa 。 式(b)中的应代入和中的较大者。 算得的模数应圆整为标准模数。 传递动力的齿轮,其模数不宜小于1.5mm 。 26( )cos ()cos F F F F h m Y s m αα=F Y F h F s F Y 1 112122[]F F F F KTY KTY bd m bm z σσ= =≤1F Y 2F Y 1F σ2F σa b a ψ=m ≥1z 1T F σF σ[]F F Y σ11[]F F Y σ2 2[]F F Y σ

直齿轮和斜齿轮承载能力计算方法 第2部分:齿面接触(点蚀)强度计算 编制说明

GB/T 3480.2—XXXX 直齿轮和斜齿轮承载能力计算 第2部分:齿面接触(点蚀)强度计算 (征求意见稿) 编制说明 课题工作组 2020年3月

《直齿轮和斜齿轮承载能力计算 第2部分: 齿面接触(点蚀)强度计算》(征求意见稿)编制说明 一、 工作简况 1 任务来源 本项目是根据国家标准化管理委员会制、修订国家标准项目计划(国标委综合[2010]年87号文),计划编号:20101311-T-469,项目名称“直齿轮和斜齿轮承载能力计算方法 第2部分:齿面接触(点蚀)强度计算”进行修订,等同采用ISO 6336-2:2019,部分代替GB/T 3480—1997。 主要起草单位:郑州机械研究所有限公司、湖南大学、中机轨道交通装备科技有限公司、西安法士特汽车传动有限公司、山东华成中德传动设备有限公司、中机生产力促进中心、河南中豫远大重工科技有限公司、苏州绿控传动科技股份有限公司、郑州高端装备与信息产业技术研究院有限公司、江苏中工高端装备研究院有限公司。 计划完成时间:2020年6月。 GB/T 3480系列标准引进自ISO 6336系列。ISO 6336在“直齿轮和斜齿轮承载能力计算”的总标题下包括以下5个部分: ——第1部分:基本原理、概述和通用影响因素; ——第2部分:齿面接触(点蚀)强度计算; ——第3部分:轮齿弯曲强度计算 ——第5部分:材料的强度和质量 ——第6部分:变载荷条件下的使用寿命计算 其中,GB/T 3480.1—2019(ISO 6336-1:2006,IDT )、GB/T 3480.5—2008(ISO 6336-5:2006,IDT )和GB/T 3480.6—2018(ISO 6336-6:2006,IDT )已经先后发布,GB/T 3480.2—XXXX (ISO 6336-2:2019,IDT )和GB/T 3480.3—XXXX (ISO 6336-3:2019,IDT )已完成征求意见稿,现在开始向全社会征集修改意见。 2 主要工作过程 (已等效转化GB/T 3480—1997)

钢筋疲劳计算

这部分要求大家掌握: 影响疲劳强度的主要因素包括,应力幅,应力循环次数,结构构造细节(构造细节决定了应力集中程度,教材按照规范把不同的构造分成了8种类型),疲劳强度的计算。 疲劳破坏属于脆断。 GB50017-2003规定,小结如下: 1、直接承受动力荷载重复作用的钢结构及其连接,当应力变化的循环次数n 等于或大于5万次时(美国规范是2万次),应进行疲劳计算; 2、应力循环中不出现拉应力的部位,可不计算疲劳; 3、计算疲劳时,应采用荷载的标准值; 4、对于直接承受动力荷载的结构,计算疲劳时,动力荷载标准值不乘动力系数; 5、疲劳计算应采用容许应力幅法,应力按弹性状态计算。区分为常幅疲劳和变幅疲劳。常幅疲劳计算如下:Δσ≤[Δσ] Δσ——对焊接部位为应力幅,Δσ=σmax -σmin 对非焊接部位为折算应力幅,Δσ=σmax -0.7σmin βσ/1][?? ? ??=?n C ,n ——应力循环次数;C 、β参数,查表确定。 6、规定不适用于特殊条件(如构件表面温度大于150℃,处于海水腐蚀环境,焊后经热处理消除残余应力以及低周-高应变疲劳条件等)下的结构构件及其连接的疲劳计算。 规范存在的问题: (1)不出现拉应力的部位可不计算疲劳。但对出现拉应力的部位,例如 σmax =140MPa 、σmin =-10MPa 和σmax =10MPa 、σmin =-140MPa 两种应力循环,Δσ都是150, 按规范计算疲劳强度相同,显然不合理。 (2)螺栓受拉时,螺纹处的应力集中很大,疲劳强度很低,常有疲劳破坏的实例,但规范没有规定,应予补充。

【计算例题】 某承受轴心拉力的钢板,截面为400mm ×20mm ,Q345钢,因长度不够而用横向对接焊缝如图所示。焊缝质量为一级,焊缝表面加工磨平,。钢板承受重复荷载,预期循环次数610=n 次,荷载标准值0,1365min max ==N kN N ,荷载设计值kN N 1880=。试进行疲劳计算。 提示:容许应力幅βσ/1][?? ? ??=?n C ,4,1061.812=?=βC ,2/295mm N f =。 更详细些的规定(不需要大家掌握):GB50017-2003规范对疲劳计算所作的说明 6.1一般规定 6.1.1本条阐明本章的适用范围为直接承受动力荷载重复作用的钢结构,当其荷载产生应力变化的循环次数4105?≥n 时的高周疲劳计算。需要进行疲劳计算的循环次数,原规范规定为510≥n 次,考虑到在某些情况下可能不安全,参考国外规定并结合建筑钢结构的实际情况,改为4105?≥n 次。 6.1.2本条说明本章的适用范围为在常温、无强烈腐蚀作用环境中的结构构件和连

齿轮接触疲劳强度试验方法

齿轮接触疲劳强度试验方法(GB/T14229-93) 1主题内容与适用范围 本标准规定了测定渐开线圆柱齿轮接触疲劳强度的试验方法,以确定齿轮接触承载能力所需的基础数据。 本标准适用于钢、铸铁制造的渐开线圆柱齿轮由齿面点蚀损伤而失效的试验。其它金属齿轮的接触疲劳强度试验可参照使用。 4试验方法 确定齿轮接触疲劳强度应在齿轮试验机上进行试验齿轮的负荷运转试验。当齿面出现接触疲劳失效或齿面应力循环次数达到规定的循环基数N。而未失效时(以下简称“越出”),试验终止并获得齿面在试验应力下的一个寿命数据。当试验齿轮及试验过程均无异常时,通常将该数据称为“试验点”。根据不同的试验目的,选择小列不同的试验点的组合,经试验数据的统计处理,确定试验齿轮的接触疲劳特性曲线及接触疲劳极限应力。 4.1常规成组法 常规成组法用于测定试验齿轮的可靠度-应力-寿命曲线(即R-S-N曲线),求出试验齿轮的接触疲劳极限应力。 试验时取4~5个应力级,每个应力级不少于5个试验点(不包括越出点)。最高应力有中的各试验点的齿面应力循环次数不少于1×106。最高应力级与次高应力级的应力间隔为总试验应力范围的40%~50%,随着应力的降低,应力间隔逐渐减少。最低应力级至少有一个试验点越出。 4.2少试验点组合法 少试验点组合法通常用于测定S-N曲线或仅测定极限应力。 试验时试验点总数为7~16个。测定S-N曲线时,应力级为4~10个,每个应力级取1~4个试验点。 测定极限应力时可采用升降法。 采用正交法进行对比试验时,每个对比因素至少有3个试验点。 5试验条件及试验齿轮 5.1齿轮接触疲劳强度试验按下述规定的试验条件和试验齿轮进行(对比试验的研究对象除外),上此可确定试验齿轮的接触疲劳极限应力σHlim。

螺栓疲劳强度计算分析

螺栓疲劳强度计算分析 摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。 关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysis Abstract:In stress fatigue strength theory, bolt, design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid, fasten bolt connection as the object of research, this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes, cylinder diameters between = = 400mm, bolting materials D2 for ms5.6 35 steel, bolt number for 14, in F "= 1.5 F below 15 ℃, the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw, nut, cylinder under cover, cover model. Starts with theoretical knowledge calculate,analysis, and then during analysis, ANSYS finite element analysis software by this paper analyzes forces bolt connection, to verify the rationality of the design of and reliability. After nearly decades of development, the theory of finite element method is more perfect, more extensive application, has become an indispensable design, analysis the emollient tool. Then in its analysis and calculation for bolt connection, based on the type of connection to the fatigue strength design of the general formula classification, further on top of this summary. Keywords: bolt fatigue strength, calculation and analysis, strength theory,ANSYS finite elements analysis.

疲劳强度计算.

疲劳强度计算 一、变应力作用下机械零件的失效特征 1、失效形式:疲劳(破坏)(断裂)——机械零件的断裂事故中,有80%为疲劳断裂。 2、疲劳破坏特征: 1)断裂过程:①产生初始裂反(应力较大处);②裂纹尖端在切应力作用下,反复扩展,直至产生疲劳裂纹。 2)断裂面:①光滑区(疲劳发展区);②粗糙区(脆性断裂区)(图2-5) 3)无明显塑性变形的脆性突然断裂 4)破坏时的应力(疲劳极限)远小于材料的屈服极限。 3、疲劳破坏的机理:是损伤的累笱 4、影响因素:除与材料性能有关外,还与γ,应力循环次数N ,应力幅a σ主要影响 当平均应力m σ、γ一定时,a σ越小,N 越少,疲劳强度越高 二、材料的疲劳曲线和极限应力图 疲劳极限)(N N γλτσ—循环变应力下应力循环N 次后材料不发生疲劳破坏时的最大应力称为材料的疲劳极限 疲劳寿命(N )——材料疲劳失效前所经历的应力循环次数N 称为疲劳寿命 1、疲劳曲线(N γσ-N 曲线):γ一定时,材料的疲劳极限N γσ与应力循环次数N 之间关系的曲线 0N —循环基数 γσ—持久极限 1)有限寿命区 当N <103(104)——低周循环疲劳——疲劳极限接近于屈服极限,可接静强度计算 )10(1043≥N ——高周循环疲劳,当043)10(10N N ≤≤时,N γσ随N ↑→N σσ↓ 2)无限寿命区,0N N ≥ γγσσ=N 不随N 增加而变化 γσ——持久极限,对称循环为1-σ、1-τ,脉动循环时为0σ、0τ 注意:有色金属和高强度合金钢无无限寿命区,如图所示。 3)疲劳曲线方程))10(10(04 3N N ≤≤ C N N m m N =?=?0γγσσ——常数

齿面接触疲劳强度计算

齿面接触疲劳强度计算 由齿面接触疲劳强度计算公式: d ≥32 1 21 .() [] E H d H Z Z Z KT u u ε φσ + 1、材料弹性系数ZE 根据参考文献《机械设计》表8.5查取,材料都为铸铁。查取ZE =188.0。 2、节点区域系数ZH 根据参考文献《机械设计》图8.14查取,此系数反映了节点齿廓形状对接触应力的影响。查取ZH=2.5。 3、重合度系数Zε 根据参考文献《机械设计》图8.15查取,次系数是考虑重合度对齿面接触应力影响的系数。查处Zε=0.975。 4、齿宽系数d φ, 根据参考文献《机械设计》表8.6查取,d φ=0.6。 5、齿宽b 根据计算公式b=d φ*d= 0.6×30=18mm。 6、齿轮传递的转矩T1 根据计算公式T1= 2F1d1=2×1.2×9.8×50=1176N·mm ZN接触强度计算的寿命系数 根据参考文献《机械设计》图8.29查取,ZN=1.15 齿面接触疲劳极限min H σ 根据参考文献《机械设计》图8.28查取,m i n H σ=750MPa

9接触强度计算的安全系数SH 根据参考文献《机械设计》表8.7查取,一般选取SH=1.0。 10许用接触应力[]H σ 根据参考文献《机械设计》公式8.26 min []/H H N H Z S σσ= 代入数据[]H σ=862.5MPa 。 11、设计计算 根据公式 其中数据由上可知,带入数据: d=30≥ 3 22 1.341176188 2.50.975()0.6862.5????=11.4 所求得满足齿面接触疲劳强度要求。则可取齿轮的标准分度圆直径d=30。

标准直齿圆柱齿轮传动强度计算

§8-5 标准直齿圆柱齿轮传动的强度计算 一.齿轮传动承载能力计算依据 轮辐、轮缘、轮毂等设计时,由经验公式确定尺寸。若设计新齿,可参《工程手册》20、22篇,用有限元法进行设计。 轮齿的强度计算: 1.齿根弯曲强度计算:应用材料力学弯曲强度公式W M b = σ进行计算。数学模型:将轮齿看成悬臂梁,对齿根进行计算,针对齿根折断失效。

险截面上,γcos ca p --产生剪应力τ,γsin ca p 产生压应力σc ,γcos .h p M ca =产生弯曲应力σF 。分析表明,σF 起主要作用,若只用σF 计算齿根弯曲疲劳强度,误差很小(<5%),在工程计算允许范围内,所以危险剖面上只考虑σF 。 单位齿宽(b=1)时齿根危险截面的理论弯曲应力为 2 20cos .66 *1cos .S h p S h p W M ca ca F γγσ=== 令α cos ,,b KF L KF p m K S m K h t n ca S h = ===,代入上式,得 ()αγαγσcos cos 6.cos cos ..622 0S h t S h t F K K bm KF m K b m K KF == 令 αγc o s c o s 62 S h Fa K K Y = Fa Y --齿形系数,表示齿轮齿形对σF 的影响。Fa Y 的大小只与轮齿形状有关(z 、h *a 、c *、

α)而与模数无关,其值查表10-5。 齿根危险截面理论弯曲应力为 bm Y KF Fa t F = 0σ 实际计算时,应计入载荷系数及齿根危险剖面处的齿根过渡曲线引起的应力集中的影响。 bm Y Y KF Sa Fa t F = σ 式中:Sa Y --考虑齿根过渡曲线引起的应力集中系数,其影响因素同Fa Y ,其值可查表10-5。 2.齿根弯曲疲劳强度计算 校核公式 []F Fa Sa Sa Fa t F Y Y bmd KT bm Y Y KF σσ≤== 1 1 2 MPa 令1 d b d = φ,d φ--齿宽系数。 将111,mz d d b d ==φ代入上式 设计公式 [])(.23 211mm Y Y z KT m F Sa Fa d σφ≥

第6章结构件及连接的疲劳强度计算原理分解

148 第6章 结构件及连接的疲劳强度 随着社会生产力的发展,起重机械的应用越来越频繁,对起重机械的工作级别要求越来越高。《起重机设计规范》GB/T 3811-2008规定,应计算构件及连接的抗疲劳强度。对于结构疲劳强度计算,常采用应力比法和应力幅法,本章仅介绍起重机械常用的应力比法。 6.1 循环作用的载荷和应力 起重机的作业是循环往复的,其钢结构或连接必然承受循环交变作用的载荷,在结构或连接中产生的应力是变幅循环应力,如图6-1所示。 起重机的一个工作循环中,结构或连接中某点的循环应力也是变幅循环应力。起重机工作过程中每个工作循环中应力的变化都是随机的,难以用实验的方法确定其构件或连接的抗疲劳强度。然而,其结构或连接在等应力比的变幅循环或等幅应力循环作用下的疲劳强度是可以用实验的方法确定的,对于起重机构件或连接的疲劳强度可以用循环记数法计算出整个 循环应力中的各应力循环参数,将其转化为等应力比的变幅循环应力或转化为等平均应力的等幅循环应力。最后,采用累积损伤理论来计算构件或连接的抗疲劳强度。 6.1.1 循环应力的特征参数 (1) 最大应力 一个循环中峰值和谷值两极值应力中绝对值最大的应力,用max σ表示。 (2) 最小应力 一个循环中峰值和谷值两极值应力中绝对值最小的应力,用min σ表示。 (3) 整个工作循环中最大应力值 构件或连接整个工作循环中最大应力的数值,用max ?σ 表示。 (4) 应力循环特性值 一个循环中最小应力与最大应力的比值,用min max r σσ=表示。 (5) 循环应力的应力幅 一个循环中最大的应力与最小的应力的差的绝对值,用σ?表示。

齿轮传动的强度设计计算

1. 齿面接触疲劳强度的计算 齿面接触疲劳强度的计算中,由于赫兹应力是齿面间应力的主要指标,故把赫兹应力作为齿面接触应力的计算基础,并用来评价接触强度。齿面接触疲劳强度核算时,根据设计要求可以选择不同的计算公式。用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。 分析计算表明,大、小齿轮的接触应力总是相等的。齿面最大接触应力一般出现在小轮单对齿啮合区内界点、节点和大轮单对齿啮合区内界点三个特征点之一。实际使用和实验也证明了这一规律的正确。因此,在齿面接触疲劳强度的计算中,常采用节点的接触应力分析齿轮的接触强度。强度条件为:大、小齿轮在节点处的计算接触应力均不大于其相应的许用接触应力,即: ⑴圆柱齿轮的接触疲劳强度计算 1)两圆柱体接触时的接触应力 在载荷作用下,两曲面零件表面理论上为线接触或点接触,考虑到弹性变形,实际为很小的面接触。两圆柱体接触时的接触面尺寸和接触应力可按赫兹公式计算。 两圆柱体接触,接触面为矩形(2axb),最大接触应力σHmax位于接触面宽中线处。计算公式为: 接触面半宽:

最大接触应力: ?F——接触面所受到的载荷

?ρ——综合曲率半径,(正号用于外接触,负号用于内接触) ?E1、E2——两接触体材料的弹性模量 ?μ1、μ2——两接触体材料的泊松比 2)齿轮啮合时的接触应力 两渐开线圆柱齿轮在任意一处啮合点时接触应力状况,都可以转化为以啮合点处的曲率半径ρ1、ρ2为半径的两圆柱体的接触应力。在整个啮合过程中的最大接触应力即为各啮合点接触应力的最大值。节点附近处的ρ虽然不是最小值,但节点处一般只有一对轮齿啮合,点蚀也往往先在节点附近的齿根表面出现,因此,接触疲劳强度计算通常以节点为最大接触应力计算点。 参数直齿圆柱齿轮斜齿圆柱齿轮 节点处的载荷为

齿轮弯曲强度计算

齿轮弯曲强度计算 根据标准Q/STB 16.061-2008 齿轮的计算弯曲应力b σ=v f Y b m P ... 齿轮BT05-01002 1m =6.5 1z =39 α=20° x=0 分度圆上的轴转矩T=121×4.84×2.7=1581.23N.m (即涡轮传递的扭矩) P (分度圆上切线负荷)=13102d T ??=395.61023.158123???=12475N b (齿宽)=24mm λb S (齿厚)=αα++tan 221???∏x inv Z =1.571+0.0149×1Z +0=2.152 知道变为系数x 和齿厚λb S 后,即可由附图查得齿形系数Y=0.385 分度圆周速度v= 31060???∏n d =310600395.6????∏=0(涡轮传递扭矩最大时,转速为0) V ≤25 所以,v f =1+ =6v 1+0=1 弯曲应力b σ=v f Y b m P ...= 1385.0245.612475???=207MPa 齿轮材料20CrMnTi 抗拉强度b σ=1080MPa 该材料的许用弯曲应力1-σ=0.43b σ=464.4MPa 所以,安全系数S=b σσ1 -=2.2 与BT05-01002啮合的齿轮BT05-00004 m=6.5 z=33 α=20° x=0

P= 23 102d T ?? =335.61023.158123???=14743N b=19 λb S =1.571+0.0149×33=2.0627 查附图得Y=0.365 v=0≤25 ∴v f =1+ =6v 1+0=1 ∴b σ=v f Y b m P ...=1 365.0195.614743???=327.04MPa ∴安全系数S= 04.3274.464=1.4 按照以上公式,可算出另外一对齿轮(BT05-00002、BT05-02001) 的弯曲应力1b σ=198.75MPa 2b σ=177.45MPa 所以,安全系数1S =2.3 2S =2.6

齿面接触疲劳强度计算

齿面接触疲劳强度计算 一、轮齿受力 分析 一对直齿圆锥 齿轮啮合传动 时,如果不考虑 摩擦力的影响,轮齿间的作用力可以近似简化为作用于齿宽中点节线的集中载荷f n,其方向垂直于工作齿面。如图6-14所示主动锥齿轮的受力情况,轮齿间的法向作用力f n可分解为三个互相垂直的分力:圆周力f t1、径向力f r1和轴向力f a1。各力的大小为: = (6-15) 式中:d m1为主动锥齿轮分度圆锥上齿宽中点处的直径,也称分度圆锥的平均直径,可根据锥距r、齿宽b和分度圆直径d1确定,即: d m1=(1-0.5)d1(6-16) 式中:称齿宽系数,通常取=0.25~0.35

圆周力的方向在主动轮上与回转方向相反,在从动轮上与回转方向相同;径向力的方向分别指向各自的轮心;轴向力的方向分别指向大端。根据作用力与反作用力的原理得主、从动轮上三个分力之间的关系:f t1 =-f t2、f r1=- f a2、f a1= -f r2,负号表示方向相反。 二、齿面接触疲劳强度计算 直齿圆锥齿轮的失效形式及强度计算的依据与直齿圆柱齿轮基本相同,可近似按齿宽中点的一对当量直齿圆柱齿轮来考虑。将当量齿轮有关参数代入直齿圆柱齿轮齿面接触疲劳强度计算公式,则得圆锥齿轮齿面接触疲劳强度的计算公式分别为 ≤(6-17) d1 ≥(6-18) 式中:z e为齿轮材料弹性系数,见表6-5;z h为节点啮合系数,标准齿轮正 确安装时z h =2 .5;为许用应力,确定方法与直齿圆柱齿轮相同。 三、齿根弯曲疲劳强度计算 将当量齿轮有关参数代入直齿圆柱齿轮齿根弯曲疲劳强度计算公式,则得圆锥齿轮齿根弯曲疲劳强度的计算公式为 ≤(6-19) m ≥ (6-20) 式中:为齿形系数,应根据当量齿数z v(z v=z/cosδ)由图6-8查得;[]为许用弯曲应力,确定方法与直齿圆柱齿轮相同。

分度圆直径对齿轮齿面接触疲劳强度的影响

分度圆直径对齿轮齿面接触疲劳强度的影响 车辆0902班 王子哲 0911021060 一、概述 齿轮在设计时的计算准则由失效形式来确定。对于闭式传动的齿轮来说,主要失效形式是接触疲劳磨损、弯曲疲劳折断和胶合。而对于接触疲劳磨损来说应校核它的齿面接触疲劳强度。影响齿面接触疲劳强度的主要因素就是分度圆直径。 二、分析 将一对齿轮的啮合简化为两个圆柱体接触后,对其应用赫兹公式 ??= F πb ? 1 ρ 1?μ1 2 E 1 + 1?μ22E 2 ○ 1为使齿面不发生疲劳点蚀,应有??≤ ?? ,即 F πb ? 1ρ 1?μ1 2 E 1 + 1?μ22E 2 ≤ ?? ○ 2 1、对于直齿圆柱齿轮 由于综合曲率半径1 ρ=2 d 1cos αtan α ′ ? u ±1u ○3 中cos αtan α′与齿轮的压力 角和啮合角有关, u±1u 与大小齿轮齿数比有关。因此,将式○3改写为1ρ =A 1d 1 ○4。式 中F 为圆柱体上的压力,在齿轮中应为法向力 F n = 2T 1 d 1cos α ○5,由于T 1为输入的转矩,cos α与齿轮压力角有关。因此将式○5改写为F n = A 2d 1 ○6.式中b 为圆柱体接触长度,用于齿轮则为齿轮宽度b ,由于端面 重合度εα总是大于1,所以用接触线总长度L 代替。因为重合度 εα= 12π Z 1 tan αa 1?tan α′ +Z 2 tan αa 2?tan α′ 中Z 1、Z 2、α′与分度 圆直径无关,而αa =arc cos mz cos αm (z+2h a ?) 也与分度圆直径无关。所以接触线总长 L= b Z ε 2,Z ε= 4?εα3 与分度圆直径无关,故将其代之以L =A 3○7.将式○1中 1π ? 1 1?μ12 E 1+1?μ22 E 2 以A 4代替。将○4○6○7代入○1中整理后可得?h = A 1A 2A 3A 4 d 1 即

(完整版)疲劳分析的数值计算方法及ANSYS疲劳分析实例

第十四章疲劳分析的数值计算方法 及实例 第一节引言 零件或构件由于交变载荷的反复作用,在它所承受的交变应力尚未达到静强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并扩展、最后突然断裂。这种现象称为疲劳破坏。疲劳裂纹的形成和扩展具有很大的隐蔽性而在疲劳断裂时又具有瞬发性,因此疲劳破坏往往会造成极大的经济损失和灾难性后果。金属的疲劳破坏形式和机理不同与静载破坏,所以零件疲劳强度的设计计算不能为经典的静强度设计计算所替代,属于动强度设计。随着机车车辆向高速、大功率和轻量化方向的迅速发展,其疲劳强度及其可靠性的要求也越来越高。近几年随着我国铁路的不断提速,机车、车辆和道轨等铁路设施的疲劳断裂事故不断发生,越来越引起人们的重视。疲劳强度设计及其研究正在成为我国高速机车车辆设计制造中的一项不可缺少的和重要的工作。 金属疲劳的研究已有近150年的历史,有相当多的学者和工程技术人员进行了大量的研究,得到了许多关于金属疲劳损伤和断裂的理论及有关经验技术。但是由于疲劳破坏的影响因素多而复杂并且这些因素互相影响又与构件的实际情况密切相关,使得其应用性成果尚远远不能满足工程设计和生产应用的需要。据统计,至今有约90%的机械零部件的断裂破坏仍然是由直接于疲劳或者间接疲劳而引起的。因此,在21世纪的今天,尤其是在高速和大功率化的新产品的开发制造中,其疲劳强度或疲劳寿命的设计十分重要,并且往往需要同时进行相应的试验研究和试验验证。 疲劳断裂是因为在零件或构件表层上的高应力或强度比较低弱的部位区域产生疲劳裂纹,并进一步扩展而造成的。这些危险部位小到几个毫米甚至几十个微米的范围,零件或构件的几何缺口根部、表面缺陷、切削刀痕、碰磕伤痕及材料的内部缺陷等往往是这种危险部位。因此,提高构件疲劳强度的基本途径主要有两种。一种是机械设计的方法,主要有优化或改善缺口形状,改进加工工艺工程和质量等手段将危险点的峰值应力降下来;另一种是材料冶金的方法,即用热处理手段将危险点局部区域的疲劳强度提高,或者是提高冶金质量来减少金属基体中的非金属夹杂等材料缺陷等局部薄弱区域。在解决实际工程问题时,往往需要结合运用以上两种方法进行疲劳强度设计和研究。合理地利用各种提高疲劳强度的手段,可以有效地提高构件的疲劳强度或延长其疲劳寿命,并起到轻量化的作用。 关于疲劳问题的研究,基本上可分为疲劳裂纹的形成和扩展机理、规律方面的基础性研究和疲劳强度设计以及提高疲劳强度的有效途径等应用性研究。应用性研究虽然借鉴了基础性研究的成果,但因为它需要考虑更多的实际影响因素,所以它的研究更为复杂和困难。因此相比之下关于疲劳寿命的预测和疲劳强度设计等应用性研究要少得多,远远落后于实际工程的需求。过去,疲劳强度设计和寿命预测的研究主要是以试验为基础进行的。随着计算机应用技术和有限元数值计算理论及其应用的迅速发展,现在又兴起了基于大量试验数据的疲

轴的疲劳强度计算

材料的疲劳 1 图示拉杆受交变载荷作用,最大拉力kN 10max =F ,最小拉力kN 7min =F ,拉杆的直径mm 8=d 。试求此杆的平均应力m σ、应力幅a σ和循环特征r 。 解: 横截面面积:22m m 27.504 == d A π 最大应力: M P a 93.198Pa 1027.50101063 max max =??==-A F σ 最小应力: M P a 25.139Pa 1027.501076 3 min min =??==-A F σ 平均应力: M P a 09.1692 min max m =+=σσσ 应力幅: MPa 84.292 min max a =-=σσσ 循环特征: 7.0m a x m i n ==σσr 2 图示火车轮轴。mm 500=a ,m m 1435=l ,轮轴中段直径mm 150=d 。若kN 50=F , 试求轮轴中段表面上任一点的最大应力max σ、最小应力min σ、循环特征r ,并作出t -σ曲 线。 解: 轮轴中段截面上的弯矩为 m kN 255.050?=?==Fa M

343 m 1031.332-?==d W z π M P a 53.75max ==z W M σ,MPa 53.75min -=- =z W M σ 循环特征:1max min -== σσr 22.1=d D 曲线(取初始位于中性层处的点) 3 图示阶梯形圆轴。材料为3CrNi 合金钢,抗拉强度MPa 820b =σ,疲劳极限MPa 3601=-σ,MPa 2101=-τ。轴的尺寸为m m 40 =d ,mm 50=D ,mm 5=r 。试求此轴在弯曲和扭转时的有效应力集中系数和尺寸系数。 解: 25.1=d D ,125.0=d r 弯曲:由弯曲有效集中系数图中查得:55.1=σk 由弯曲尺寸系数表查得:77.0=σε 扭转:由扭转有效集中系数图中查得:26.1=τk 由扭转尺寸系数表查得:81.0=τε

齿轮强度计算公式

1 标准斜齿圆柱齿轮的强度计算 一. 齿面接触疲劳强度计算 1. 斜齿轮接触方式 !—KF ----------- 1 2. 计算公式 校核式: H Z E Z H - t_u_ 设计式: bd 1 u 3. 参数取值说明 1) Z E ---弹性系数 2) Z H ---节点区域系数 3) …斜齿轮端面重合度 4) …螺旋角。斜齿轮: =8°?25° ;人字齿轮 =20 °?35° 5) 许用应力:[H ]=([ Hl ]+[ H2])/2 1.23[ H2] 6) 分度圆直径的初步计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: a ) 初取K=K t b ) 计算 d t d t1 c ) 修正 d t 二. 齿根弯曲疲劳强度计算 1. 轮齿断裂 2. 计算公式校核式: 设计式: 叫 3. 参数取值说明 1)Y F a 、Y Sa-齿形系数和应力修正系数 。Z v =Z/COS 3 Y Fa 、Y Fa 2)Y …螺旋角系数 标准圆锥齿轮传动的强度计算 作用:用于传递相交轴之间的运动和动力。 二.几何计算 齿轮设计计算简化 3 2K t T i u 1 Z E Z H d U H 你丫 曲 Y Fa Y sa dN 2 F 3)初步设计计算 在设计式中, d ) 初取K=K t e ) 计算m nt f ) 修正m n K 等与齿轮尺寸参数有关,故需初步估算: m nt 2中丫曲 Y Fa Y sa 2 d z 1 1.锥

n1 d m/d=(R-°.5b)/R=1-°.5b/R 记R=b/R---齿宽系数R=°.25?°.3 d m=(1-°.5 R)d 2.锥n2 V- d2 2 4.齿宽中点分度圆直径d1d m A2 0° A1 距 3.齿数比: O=Z2/Z1=d2/d1Rtan 2=cot ■ _ - K' j

直齿圆柱齿轮传动的齿面接触强度计算

直齿圆柱齿轮传动的齿面接触强度计算 直齿圆柱齿轮传动的齿面接触强度计算准则 为了保证在预定寿命内齿轮不发生点蚀失效,应进行齿面接触疲劳强度计算. 直齿圆柱齿轮传动的齿面接触强度计算准则是: 齿面接触应力小于或等于许用接触应力[],即 ≤[] 赫兹公式 赫兹公式 齿面疲劳点蚀与齿面接触应力的大小有关,而齿面最大接触应力可近似地用赫兹公式: 进行计算,式中正号用于外啮合,负号用于内啮合。 实验表明,齿根部分靠近节线处最易发生点蚀,故常取节点处的接触应力为计算依据。 曲率半径 对于标准齿轮传动,节点处的齿廓曲率半径 , 令, H σH σH σH σ22212121111 1 E E b F n H μμρρπσ-+-±?= 111sin 2d N C ρα== 222sin 2d N C ρα==2121//d d z z u ==

则中心距 , 或表示为 。 式中u 为大轮与小轮的齿数比。由此可得 法向力 在节点处一般仅有一对齿啮合,即载荷由一对齿承担,则 接触疲劳强度计算公式 接触疲劳强度计算公式 一对钢制齿轮,==2.06×105MPa ,==0.3,标准压力角=。引入载荷系数K ,可得一对钢制标准齿轮传动的齿面接触强度验算公式如下: MPa a 式中[]为许用接触应力。 如取齿宽系数.... ,则上式可变换为下列设计公式 mm b 1211()(1)22d a d d u =±=±12(1)a d u =±ααρρρρρρsin 21sin )(211 12112211221d u u d d d d ?±=±=+=±112cos cos t n F T F a d αα==1E 2E 1μ2μα20 []H H σσ=≤H σa b a ψ =(a u ≥±

相关文档
最新文档