高分子科学概论复习提要

高分子科学概论复习提要
高分子科学概论复习提要

高分子科学概论复习提要

第1章概论

1. 关于高分子的定义,基本概念,分类,命名(习惯命名法)

2. 高分子相对分子质量的统计平均意义

3. 高分子结构的一般特点

(1) 一级结构

链节的键接方式,立体构型,分子的几何形状(即分子构造),共聚物的序列结构

(2) 二级结构

高分子分子链的结构形态(构象)

(3) 三级和四级结构

即聚合物的聚集态结构(三级)和高分子材料中的堆砌方式(四级)

4. 高分子性质的一般特点

力学性质,热性质,溶解行为特点

第2章天然高分子

1. 天然高分子的主要大类

2. 各类天然高分子的结构特点

3. 各类天然高分子的主要作用和应用

4. 天然纤维素的改性应用

第3章链式聚合反应

1. 烯烃单体和链式聚合机理的选择性

2. 自由基聚合反应机理(构成自由基聚合历程的四个基元反应),了解各个基元反应的对自由基聚合的影响

3. 自由基聚合的四个特征

4. 认识自由基聚合的两种主要的引发剂及其引发反应机理

5. 从自由基聚合动力学方程认识自由基聚合反应的速率及产物分子相对质量的相关影响因素

6. 自由基聚合反应中自动加速的原因及对聚合的影响

7. 各种链转移对分子量的影响

8. 自由基聚合的四种聚合方法的体系组成及优缺点

9. 悬浮聚合的成球机理及颗粒尺寸的主要影响因素

10. 乳液聚合中表面活性剂的三个作用

11. 乳液聚合体系的特点

12. 乳液聚合的动力学机理和特点(聚合速率和分子量的影响因素)

13. 离子型聚合对单体选择性的要求(烯烃类单体)

14. 阳离子聚合的引发体系及引发反应机理(质子酸和Lewis酸)

15. 阳离子聚合反应机理(四个基元反应)和特点

16. 阴离子聚合的引发体系及反应机理

17. 阴离子聚合的特点,动力学影响因素

18. 阴离子聚合可以获得活的高分子(即无终止、无链转移)的三点原因

19. 离子型聚合中溶剂对聚合反应的综合影响

20. 自由基聚合与离子型聚合的比较

21. 配位聚合的Ziegler-Natta引发体系及配位引发聚合机理

22. 链式共聚合反应中,共聚物组成和单体组成的相互关系

23. 竞聚率的意义、竞聚率的构成与F-f关系曲线的形状特点

24. 共聚物组成的控制方法

25. 竞聚率的影响因素

26.共轭效应、诱导效应、空阻效应对烯烃单体即其自由基的活性的影响

第4章逐步聚合反应

1. 逐步聚合反应的一般特征(四点),单体转化率和产物分子量

与反应时间的关系曲线

2. 缩聚反应的分类

按热力学分:平衡缩聚和不平衡缩聚

按生成聚合物结构分:线型和体型缩聚

按参加反应单体种类分:均缩聚、混缩聚、共缩聚

按生成聚合物主链结构分:聚酯、聚酰胺、聚醚等

3. 单体官能度f 和聚合产物结构形状的关系

4. 线型缩聚反应机理

(1) 逐步性和可逆平衡反应性

(2) 反应程度p 和数均聚合度的关系

(3) 反应过程中聚合体系内分子链大小变化的特点

(4) 影响缩聚产物分子量的各因素,有效控制分子量的方法

(5) 官能团等活性概念,自催化和外加酸催化的动力学比较

(6) 从平衡缩聚动力学方程说明平衡常数及小分子浓度对聚合速率的影响和排除小分子副产物对获得大分子量聚合产物的重要性

5. 官能团数量比r 或官能团过量分率q 对缩聚分子量的影响

6. 线型缩聚物的分子量分布

7. 非线型缩聚反应

(1) 生成体型缩聚产物的必要条件:平均官能度大于2

(2) 体型缩聚的三个阶段及其对应的反应程度

(3) 凝胶化作用和凝胶点的预测

(4) Carothers 方程中反应程度、数均聚合度和平均官能度的关系

(5) 凝胶点理论计算结果和实验测定结果的差异及其原因

8. 逐步聚合反应实施方法

(1) 温度对缩聚反应平衡常数的影响规律

(2) 三种缩聚实施方法的比较

(3) 界面缩聚的特点,以及不再遵循 X W

X

n ??d == 1 + p ≈ 2

X n ?= 1/(1-p )X n ? 1 + r 1 + r - 2 r p =或

第5章聚合物化学反应

1. 研究聚合物反应的意义

2. 聚合物化学反应的分类、特性

3.聚合物化学反应的影响因素

(1) 物理因素——结晶度,非晶玻璃态,温度等的影响

(2) 化学因素——邻近基团效应、静电效应、成对官能团反应的几率效应

4. 聚合物相似转变及其应用

(1) 引入新基团的聚乙烯氯化反应、聚苯乙烯的氯甲基化反应

(2)基团转化的纤维素改性、聚乙烯醇的制备反应及其缩醛化反应5. 聚合物变大的化学转变及其应用

(1) 交联:橡胶的硫化、饱和聚合物的过氧化物交联、离子交联

(2) 接枝:长出支链接枝法、嫁接上支链法、大分子单体共聚嫁接法

(3) 嵌段共聚:活性聚合法、特殊引发剂法、偶联法、链交换法、力化学法

新材料科学导论期末复习题(有答案版)

一、填空题: 1.材料性质的表述包括力学性能、物理性质和化学性质。 2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。 3.材料的结构包括键合结构、晶体结构和组织结构。 4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。 5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。 6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。 7.复合材料可分为结构复合材料和功能复合材料两大类。 8.聚合物分子运动具有多重性和明显的松弛特性。 9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。如有 光,电,热,磁,阻尼,声,摩擦等功能。 10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。 11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚 合度。 12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示 为增强体与基体的互补。(ppt-复合材料,15页) 13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能); (3)抗粉末化性能;(4)导热性能;(5)滞后现象。 14.典型热处理工艺有淬火、退火、回火和正火。 15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。复合效应表现线性效应和非线性效 应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。 16.新材料发展的重点已经从结构材料转向功能材料。 17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。功能高 分子材料的制备主要有以下三种基本类型: ①功能小分子固定在骨架材料上; ②大分子材料的功能化; ③已有功能高分子材料的功能扩展; 18.材料的化学性质主要表现为催化性能和抗腐蚀性。 19.1977年,美国化学家MacDiarmid,物理学家Heeger和日本化学家Shirakawa首次发现掺杂碘的聚乙炔具有金 属的导电特性,并因此获得2000年诺贝尔化学奖。 20.陶瓷材料的韧性和塑性较低,这是陶瓷材料的最大弱点。 第二部分名词解释

高分子材料科学基础B卷答案

【高分子材料科学基础】课程试题(B卷)【半开卷】 姓名____________ 学号 _______________专业及班级_______________________ 本试卷共有五道大题, 一?填空题(每空1分,共30分) 1.材料按化学组成分类,可分为金属材料、无机材料和高分子材料三类。 2.高分子材料按大分子主链结构可分为碳链高分子材料、杂链高分子材料和元素______ 材料 3.20世纪70年代人们把能源、信息和材料归纳为现代物质文明的三大支柱。 4.原子的排列可分为三个等级,第一种是无序排列,第二种是短程有序而长程无序,第三种是长程有序。 5.从几何学的角度,结构缺陷可分为点缺陷、线缺陷、面缺陷及体缺陷。 6.由低分子单体合成聚合物的反应称为聚合反应。 7.由于单体单元排列方式的不同,可构成不同类型的共聚物,可分为四种类型无规共聚物、交替共聚物、嵌段共聚物、接枝共聚物。 8.高强度、耐高温、耐老化的高分子材料是当前高分子材料的重要研究课题。 9.大分子链形态的基本类型包括:伸直链、折叠链、螺旋形链、无规线团。 10.聚合物晶态结构的基本模型有两种:一种是缨状胶束模型,另一种是折叠链模型。 11在室温下,塑料处于玻璃态,玻璃化温度是非晶态塑料使用的上线温度二点则是结晶聚合物使用的上线温度,对于橡胶,玻璃化温度是其使用的下限温度。 12橡胶制品的主要原料是生胶、再生胶以及配合剂。 13.酚醛树脂是由苯酚和甲醛两种物质合成的。

'、NiMi 10 1 04 5 1(第2页 5 10 =40000 10 5 14.丁苯橡胶是由丁二烯和苯乙烯两种原料合成的。 15?聚酰胺类的习惯名称为尼龙。 16.聚对苯二甲酸乙二酯的商品名为涤纶。 17.聚丙烯腈的商品名为腈纶。 二?名词解释(共10小题,每题2分,共20分) 1.引发剂:引发剂是容易分解成自由基的化合物,分子结构上具有弱键,在热能或辐射能的作用下,沿弱键均裂成自由基。 2.笼蔽效应:引发剂分解成初始自由基后,必须扩散出溶剂所形成的“笼子”才能引发单体聚合,这时会有部分初始自由基在扩散出“笼子”之前因相互复合而失去引发单体聚合的能力,这就成为笼蔽效应。 3.诱导分解:诱导分解实际上是自由基向引发剂的转移反应,其结果使引发剂效率降低。 4.热固性塑料:是由单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再恢复到可塑状态。 5.连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 6.体形缩聚:在缩聚反应中,单体分子多于两个官能团时,则能形成支化或交联等非线型结构的产物,此类反应称体型缩聚反应。 7.凝胶点:体形缩聚初期为线型产物,当达到一定程度时,体系粘度突然增大,出现不溶不熔且具有弹性的凝胶一一体型产物(即凝胶化现象或凝胶化作用),这时的P称凝胶点Pc。 8.自动加速现象:随着聚合反应进行,聚合速率不但没有降低,反而迅速增加,这种反常的动力学行为称为自动加速现象。 9.应力松弛:在温度、应变恒定的条件下,材料的内应力随时间延长而逐渐减小的现象称为应力松弛。 10.乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。 四?计算题(共5小题,1,2, 3题每题5分,4题10分共25分) 1.设一聚合物样品,其中分子量为104的分子有10 mol,分子量为105的分子有5 mol,求分子 Mn

《高分子科学概论》习题及参考答案

《高分子科学概论》习题及参考答案 聚合物结构与性能的基本理论 1、高分子链有哪三种不同的几何形态?分别各举一例 线型(HDPE)、支链型(LDPE)和交联型(硫化橡胶、固化的环氧树脂)。 2、比较高分子与小分子在相对分子质量及其分布上的差异 小分子的相对分子质量一般在1000以下,高分子的相对分子质量一般在104~106;小分子有确定的相对分子质量,高分子的相对分子质量具有多分散性,是由一系列相对分子质量不等的同系物组成的混合物,通常用平均相对分子质量和分散系数来表示。 3、什么是聚集态结构?按有序性不同,高分子的聚集态结构主要分为哪三种?典型的结晶性(或非结晶性)聚合物有哪些(至少6例)?什么是高分子合金? 高分子链与链之间的排列或堆砌结构。按有序性不同,高分子的聚集态结构主要分为晶态、非晶态和取向态。 典型的结晶性聚合物有:聚乙烯、聚丙烯、聚对苯二甲酸丁二酯、聚甲醛、尼龙6、尼龙66、聚四氟乙烯等。 由两种或两种以上聚合物混合在一起得到的多组分聚合物体系,称共混聚合物,又称“高分子合金”。 4、聚合物的主要性能包括哪些方面的性能?(至少六种)表征聚合物力学性能和电学的指标主要有哪些? 力学性能、电性能、热性能、耐化学介质性、耐老化性、加工性能、溶液性质、燃烧性质等。 表征力学性能的指标主要有:拉伸强度、断裂伸长率、弹性模量、硬度、冲击强度等。 表征电学性能的指标主要有:介电常数、介电损耗、介电强度、表面电阻、体积电阻率。 5、什么是玻璃化(转变)温度?什么是熔融指数? 玻璃化温度:是非晶态聚合物的玻璃态与高弹态之间的热转变温度,是链段运动状态由冻结到解冻的转变温度。室温下用作塑料的聚合物,其玻璃化温度高于室温;玻璃化温度是塑料使用的上限温度。室温下用作橡胶的聚合物,其玻璃化温度低于室温,玻璃化温度是其使用的下限温度。 熔融指数:在一定温度下,熔融状态的聚合物在一定负荷下,十分钟内从规定直径和长度的标准毛细管中流出的重量(克数),单位g/10min。 6、线型聚合物溶解过程的两个阶段是什么?聚合物溶剂的选择原则有哪些? 线型聚合物溶解过程的两个阶段是:溶胀、溶解。 相似相溶与极性相近原则;溶剂化原则;溶度参数相近原则;选择聚合物的溶剂时,除了使用单一溶剂外,还可以使用混合溶剂。 7、什么是聚电介质?它有哪些重要应用? 在侧链中有许多可电离的离子性基团的高分子称为聚电解质。絮凝剂、吸水性树脂、增稠剂、分散剂、泥浆处理剂等。 聚合物合成技术的基本知识 8、聚合物的生产过程,通常包括哪几个部分? 原料准备(单体精制、催化剂配制)、聚合、分离、回收(单体、溶剂)、后处理(干燥、造粒)。

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

高分子科学概论复习提要

高分子科学概论复习提要 第1章概论 1. 关于高分子的定义,基本概念,分类,命名(习惯命名法) 2. 高分子相对分子质量的统计平均意义 3. 高分子结构的一般特点 (1) 一级结构 链节的键接方式,立体构型,分子的几何形状(即分子构造),共聚物的序列结构 (2) 二级结构 高分子分子链的结构形态(构象) (3) 三级和四级结构 即聚合物的聚集态结构(三级)和高分子材料中的堆砌方式(四级) 4. 高分子性质的一般特点 力学性质,热性质,溶解行为特点 第2章天然高分子 1. 天然高分子的主要大类 2. 各类天然高分子的结构特点 3. 各类天然高分子的主要作用和应用 4. 天然纤维素的改性应用 第3章链式聚合反应 1. 烯烃单体和链式聚合机理的选择性 2. 自由基聚合反应机理(构成自由基聚合历程的四个基元反应),了解各个基元反应的对自由基聚合的影响 3. 自由基聚合的四个特征 4. 认识自由基聚合的两种主要的引发剂及其引发反应机理

5. 从自由基聚合动力学方程认识自由基聚合反应的速率及产物分子相对质量的相关影响因素 6. 自由基聚合反应中自动加速的原因及对聚合的影响 7. 各种链转移对分子量的影响 8. 自由基聚合的四种聚合方法的体系组成及优缺点 9. 悬浮聚合的成球机理及颗粒尺寸的主要影响因素 10. 乳液聚合中表面活性剂的三个作用 11. 乳液聚合体系的特点 12. 乳液聚合的动力学机理和特点(聚合速率和分子量的影响因素) 13. 离子型聚合对单体选择性的要求(烯烃类单体) 14. 阳离子聚合的引发体系及引发反应机理(质子酸和Lewis酸) 15. 阳离子聚合反应机理(四个基元反应)和特点 16. 阴离子聚合的引发体系及反应机理 17. 阴离子聚合的特点,动力学影响因素 18. 阴离子聚合可以获得活的高分子(即无终止、无链转移)的三点原因 19. 离子型聚合中溶剂对聚合反应的综合影响 20. 自由基聚合与离子型聚合的比较 21. 配位聚合的Ziegler-Natta引发体系及配位引发聚合机理 22. 链式共聚合反应中,共聚物组成和单体组成的相互关系 23. 竞聚率的意义、竞聚率的构成与F-f关系曲线的形状特点 24. 共聚物组成的控制方法 25. 竞聚率的影响因素 26.共轭效应、诱导效应、空阻效应对烯烃单体即其自由基的活性的影响 第4章逐步聚合反应 1. 逐步聚合反应的一般特征(四点),单体转化率和产物分子量

高分子材料

(一) 一、名词解释 1.药用高分子材料(polymers for pharmaceuticals):是具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料。 2.药用高分子材料学(pharmaceutical polymer material science):是研究药用高分子材料的结构、理化性质、工艺性能及用途的理论和应用的专业基础学科。 3. 高分子化合物(macromolecules)简称高分子,是指分子量很高的一类化合物,其分子链是由许多简单结构单元以一定方式重复连接而成。 4. 聚合度(Degree of polymerization):单个聚合物分子所含单体单元的数目是衡量高分子大小的一个指标。实际上是各同系分子重复单元数的平均值。 5. 均聚物:由一种单体聚合而成的聚合物称为均聚物。 6. 共聚物:由两种或两种以上的单体共同聚合而成聚合物 7. 高分子链结构是指单个分子的结构和形态,即分子内结构。分子内结构包含两个层次:近程结构和远程结构。 8. 高分子近程结构是指单个大分子链结构单元的化学结构和立体化学结构。 9. 高分子远程结构是指分子的大小与构象。 10. 聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向结构和织态结构等。 11.加聚反应:加聚物的元素组成与其单体相同;加聚物的分子量是单体分子量的整数倍。 二、简答题 1.使用辅料的目的: (1)在药物制剂制备过程中有助于成品的加工。 (2)有助于保护、保持和加强药物制剂稳定性及生物利用度或病人的顺应性。 (3)有助于鉴别药物制剂。 (4)增强药物制剂在贮藏或应用时的安全性和有效性。 2.简述高分子辅料在药物制剂十的应用 (1)填充材料 固体片剂:质量均,运输不易破裂,口服后易崩解 高分子功能:控制药物可压缩性、硬度、吸潮性、脆性、润滑性、稳定性、体内溶解速度 功能角色: 润湿剂:药物疏水性强,难润湿-增加药物分散吐,片面光滑 材料:聚乙二醇、聚山梨酯、环氧乙烷-环氧丙烷共聚物、聚乙二醇油酸酯 稀释剂和吸收剂:药物剂量<0.1g,不易压制需增加片重体积 原料药含有油类和其它液体,需吸收成为固态,也有黏合作用 (2)黏合性与黏附材料 黏合利料:采用高分子材料的水或醇水溶液或分散液与药粉混合均匀,使药粉团聚,易于压片 (3)粘附材料:粘附在生物黏膜上,应用于口腔、鼻腔、眼眶、阴道、胃肠道特定区段 崩解性材料 崩解剂作用:克服压缩产生的黏结力,应具有亲水性遇水迅速膨胀

东北大学《材料科学导论》期末考试必备真题集(含答案)18

东北大学继续教育学院 材料科学导论复习题 一、选择填空,在给出的a、b、c、d选项中选择一或多个你认为最合适的答案, 使得题目中给出描述完整准确。 1、材料的性质是在元器件或设备实现预期的使用性能而得到利用的。即材料的使用性能取决于( b )。 a 材料的组成 b 材料的基本性能 c 材料的结构 d 材料的合成与加工工艺 2、钢铁、有色金属、玻璃、陶瓷、高分子材料等的原材料多数来自( d )、为矿物资源,形成于亿万年之前,是不可再生的资源。因此,在材料生产中必须节省资源、节约能源、回收再生。 a 工业 b 农业 c 材料加工行业 d 采掘工业 3、高分子材料、金属材料和无机非金属材料,不论其形状大小如何,其宏观性能都是由( b )。 a 它的化学成分所决定的 b其化学组成和组织结构决定的。 c 其加工工艺过程所决定的 d其使用环境所决定的 4、如果使用温度是室温,就可以优先考虑高分子材料,因为在相同密度的材料中它们是 b、d 的。 a 最容易得到 b最便宜 c 最常见 d 加工最方便 5、根据其性能及用途的不同,可将陶瓷材料分为( a、c )和两大类。 a 结构材料用陶瓷 b特种陶瓷 c功能陶瓷 d 传统陶瓷 6、金属材料与无机非金属材料成型加工时由于工艺条件的不同也会造成制品性能的差异。因此,材料的( a、d )的总和决定了制品性能。 a 内在性能 b成型加工 c附加性能 d 成型加工所赋予的附加性能 7、材料的化学性能是指材料抵抗各种介质作用的能力。它包括溶蚀性、耐腐蚀性、抗渗

入性、抗氧化性等,可归结为材料的( c )。 a 有效性 b 实用性 c 稳定性 d 可用性 8、切削物体或对物体进行塑性变形加工的工具材料可分为高碳钢、高速钢、超硬质合金、金刚石等材料,其中可列入超硬质材料范畴的是( c、d )。 a高碳钢 b高速钢 c超硬质合金 d金刚石 9、纳米材料通常定义为材料的显微结构中,包括( a、b、c、d )等特征尺度都处于纳米尺寸水平的材料,通常由直径为纳米数量级的粒子压缩而成。 a 颗粒直径 b 晶粒大小 c 晶界 d 厚度 10、天然矿物原料一般杂质较多,价格较低;而人工合成原料( a、b )。此外,对环境的影响也是选用原材料时必须考虑的因素之一。 a 纯度较高 b价格也较高 c难以得到 d 以上所有 11、电化学腐蚀必须要有一个阴极与一个阳极。在纯金属中( a )或( b )可以构成阴极。 a 晶界 b 晶粒 c 环境的介质 d 更小的不均匀物种 12、腐蚀一旦发生,材料或制品就会( d );所以腐蚀是材料设计和选择时不得不考虑的重要因素。 a大受影响 b性能显著下降 c服务寿命缩短 d 以上所有 13、晶体的宏观形貌可以是( d )。 a一维的 b 二维的 c 三维的 d 上述所有 14、范德华键是永远存在于分子间或分子内非键结合的力,是一种( a )。

高分子科学家(中国)

高分子科学家 徐僖 徐僖,1921年1月16日生于江苏南京。1940年毕业于重庆南开中学,1944年在浙江大学化工系毕业,1948年获美国里亥大学(LehighUniversity)科学硕士学位。高分子化学、高分子材料科学专家。现任四川大学教授、高分子研究所所长,兼任上海交通大学教授、高分子材料研究所所长。 1991年当选为中国科学院院士(学部委员)。长期从事高分子力化学和高分子工程基础理论研究,在高分子超声降解和共聚、高分子氢键复合、高分子复合共混体系相容性等方面做出多项成果。采用超声波、振荡磨、气流粉碎等多种手段制得了一系列难以用一般化学方法合成、有应用前景的新型高分子材料;发明了磨盘形力化学反应器;提出通过氢键复合可以有效降低导电材料的结晶度,提高材料导电率,这一见解对推动快离子导体研究有很大意义;抑制了聚烯烃材料在电子束、γ-射线、紫外线和微波辐照过程中交联反应,在聚烯烃分子链上引入含氧极性基团,改善了聚烯烃/工程塑料、聚烯烃/无机材料体系相容性,制得高强高韧聚烯烃共混材料,为多组分高分子材料的增容提供了一项新途径。发表研究论文200余篇,出版著作、译著4本,申请专利20余项。曾获国家自然科学奖、国家发明奖等20余项国家、部委、省级奖励,以及高分子学科高层次人才培养国家级优秀教学成果奖、高分子化学育才奖、何梁何利基金科学与技术进步奖。曾被授予全国高校先进科技工作者和全国教育系统劳动模范称号,是我国高分子材料科学与工程的奠基人和开拓者之一。

钱保功(1916—1992) 钱保功,曾用名钱乐华,1916年3月18日出生于江苏省江阴县。1935年至1940年,钱保功先后在上海交通大学、武汉大学化学系学习,获理学学士学位。此后,分别任重庆动力油料厂研究生、助理工程师,重庆兴华油脂公司涪陵炼油厂工程师。1947年在美国纽约布鲁科林多科理工学院高分子研究生院学习,获化学硕士学位。1949年回国后,曾任上海化工厂、沈阳化工局研究室工程师。1951年任中国科学院长春应用化学研究所研究员,先后担任合成橡胶研究室、高分子辐射化学研究室、高分子物理研究室主任、研究员,1961年任该所副所长。1981年后历任中国科学院武汉分院副院长、院长,波谱与原子分子物理国家重点实验室顾问,兼湖北省化学研究所所长、名誉所长,上海交通大学、武汉大学、吉林大学、深圳大学等校兼职教授,国务院学位委员会首批批准的博士生导师,美国《应用高聚物》杂志编辑顾问,《高分子学报》副主编,《中国科学》《科学通报》《应用化学》《高分子材料与工程》等杂志的编委。 在国内开创了合成橡胶、高分子辐射化学、高聚物粘弹性能和高分子固态反应等方面的研究。在合成橡胶的力学性能、粘弹性能、分子运动等方面进行了深入系统研究。领导组织稀土顺丁、镍顺丁橡胶的表征研究。还对天然橡胶的结晶过程、聚乙烯的紫外光敏交联、高聚物体系固态反应等方面进行了研究。

高分子材料发展史

高分子材料发展史 随着生产和科学技术的发展,人们不断对材料提出各种各样的新要求。而高分子材料的出现逐渐满足了人们的需要。并对人类的生产生活产生了巨大的影响。 高分子材料是以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。1907年出现合成高分子酚醛树脂,真正标志着人类应用合成方法有目的的合成高分子材料的开始。1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。并且高分子材料资源丰富、原料广,轻质、高强度,成形工艺简易。很容易为人所用。 高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 高分子材料是材料领域之中的后起之秀,是在人们长期的生产实践和科学实验的基础上逐渐发展起来的。几千年前,人们就开始使用棉、麻、丝、毛等天然高分子作丝织物材料。有些加工方法还改变了天然高分子的化学组成,如:天然橡胶硫化,皮革鞣制,天然纤维制成人造丝等。但由于当时受科学技术发展的限制,直到19世纪中叶,人们仍未能探究到高分子材料的本质。高分子材料科学的发展萌芽于19世纪后期和20世纪初。当时天然橡胶由异戊二烯,纤维素和淀粉由葡萄糖残体,蛋白质由氨基酸组成的确立,使高分子的长链概念获得了公认,孕育了高分子的思想。1872年德国化学家拜耳(A.Bayer)首先发现苯酚与甲醛在酸性条件下加热时能迅速结成红褐色硬块或粘稠物,但因它们无法用经典方法纯化而停止实验。20世纪以后,苯酚已经能从煤焦油中大量获得,甲醛也作为防腐剂大量生产,因此二者的反应产物更加引人关注。1907年贝克兰和他的助手不仅制出了绝缘漆,而且还制出了真正的合成可塑性材料—Bakelite,它就是人们熟知的“电木”、“胶木”或酚醛树脂。Bakelite一经问世, 很快厂商发现,它不但可以制造多种电绝缘品,而且还能制日用品,于是一时间把贝克兰的发 明誉为20世纪的“炼金术”。20世纪30~40年代是高分子材料科学的创立时期。新的聚合物单体不断出现,具有工业化价值的高效催化聚合方法不断产生,加工方法及结构性能不断改善。美国化学家卡罗塞斯(W.H.Carothers)于1934年合成了优良纺织纤维的聚酰胺-66,尼龙(Nylon)是它在1939年投产时公司使用的商品名。这一成功不仅是合成纤维的第一次重大

高分子科学导论复习资料(3)

名词解释(六选五) 1.构型:分子中由化学键固定的原子在空间的排列。 2.构象:由于高分子链上的化学键的不同取向引起的结构单元在空间的不同排布。 3.官能度:是指一个单体分子中能够参加反应的官能团的数目。 4.反应程度:是参加反应的官能团数占起始官能团数的分数,用P表示。 5.凝胶点:开始出现凝胶瞬间的临界反应程度。 6.动力学链长:每个活性种从引发阶段到终止阶段所消耗的单体分子数。 简答题(六选三) 1.为什么聚合物只能以固态或液态存在,不能以气态存在? 答:随分子量的增加,范德华力增大。由于聚合物的分子量很大,范德华力加和的结果使得聚合物分子间用力相当大,远远超过加热的方法将聚合物大分子相互拆开,当能量还不足以克服分子间作用力时,分子链中的化学键就会发生断裂。所以聚合物只能以固态或液态存在,不能以气态存在。 2.改善结晶聚合物透明性的方法。 答: 1)降低结晶度--减轻光线在相界面上的折射和反射。 2)使晶区密度和非晶区密度尽可能接近--使两相的折光率基本相同,从而减轻相界面上的折射和反射。 3)减小结晶聚合物中晶区的尺寸--当晶区的尺寸小于可见光波长时,光线可以不必进入晶区而直接从非晶区中穿过,这样相界面上的折射和反射不会发生;在结晶聚合物成型加工过程中加入成核剂,可以降低球晶的尺寸,增加透明性。 3.高分子结晶熔融时出现熔限的原因。 答: 在结晶聚合物中存在着完善程度不同的晶体: (1)晶体的大小不同; (2)晶区内部大分子有序排列的程度不同。 结晶熔融过程是由于分子链排列的有序化向无序化转变的过程。当聚合物受热后,结晶不完善的晶粒、有序化排列不充分的结晶区域由于稳定性差,在较低的温度下就会发生熔融,而结晶比较完善的区域则要在较高的温度下才会熔融。所以在通常的升温速率下高分子结晶不可能同时熔融,只会出现一个较宽的熔限。

高分子材料发展史

高分子材料发展史随着生产和科学技术的发展,人们不断对材料提出各种各样的新要求。而高分子材料的出现逐渐满足了人们的需要。并对人类的生产生活产生了巨大的影响。 高分子材料是以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。1907年出现合成高分子酚醛树脂,真正标志着人类应用合成方法有目的的合成高分子材料的开始。1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。并且高分子材料资源丰富、原料广,轻质、高强度,成形工艺简易。很容易为人所用。 高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅

高分子材料科学基础B卷答案

【高分子材料科学基础】课程试题 (B卷)【半开卷】 姓名学号专业及班级 分)1分,共30一.填空题(每空材料按化学组成分类,可分为金属材料、无机材料和高分子材料三类。1.高分子材料按大分子主链结构可分为碳链高分子材料、杂链高分子材料和元素有机高分子2. 材料年代人们把能源、信息和材料归纳为现代物质文明的三大支柱。世纪703.20原子的排列可分为三个等级,第一种是无序排列,第二种是短程有序而长程无序,第三种4.是长程有序。 5.从几何学的角度,结构缺陷可分为点缺陷、线缺陷、面缺陷及体缺陷。 6.由低分子单体合成聚合物的反应称为聚合反应。由于单体单元排列方式的不同,可构成不同类型的共聚物,可分为四种类型无规共聚物、7.交替共聚物、嵌段共聚物、接枝共聚物。 高强度、耐高温、耐老化的高分子材料是当前高分子材料的重要研究课题。8. 大分子链形态的基本类型包括:伸直链、折叠链、螺旋形链、无规线团。9.10.聚合物晶态结构的基本模型有两种:一种是缨状胶束模型,另一种是折叠链模型。 在室温下,塑料处于玻璃态,玻璃化温度是非晶态塑料使用的上线温度,熔点则是结晶聚11.合物使用的上线温度,对于橡胶,玻璃化温度是其使用的下限温度。橡胶制品的主要原料是生胶、再生胶以及配合剂。12.13.酚醛树脂是由苯酚和甲醛两种物质合成的。 第页5共页1. 14.丁苯橡胶是由丁二烯和苯乙烯两种原料合成的。 15.聚酰胺类的习惯名称为尼龙。 16.聚对苯二甲酸乙二酯的商品名为涤纶。 17.聚丙烯腈的商品名为腈纶。

二.名词解释(共10小题,每题2分,共20分) 1.引发剂:引发剂是容易分解成自由基的化合物,分子结构上具有弱键,在热能或辐射能的作用下,沿弱键均裂成自由基。 2.笼蔽效应:引发剂分解成初始自由基后,必须扩散出溶剂所形成的“笼子”才能引发单体聚合,这时会有部分初始自由基在扩散出“笼子”之前因相互复合而失去引发单体聚合的能力,这就成为笼蔽效应。 3.诱导分解:诱导分解实际上是自由基向引发剂的转移反应,其结果使引发剂效率降低。 4.热固性塑料:是由单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再恢复到可塑状态。 5.连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 6.体形缩聚:在缩聚反应中,单体分子多于两个官能团时,则能形成支化或交联等非线型结构的产物,此类反应称体型缩聚反应。 7.凝胶点:体形缩聚初期为线型产物,当达到一定程度时,体系粘度突然增大,出现不溶不熔且具有弹性的凝胶——体型产物(即凝胶化现象或凝胶化作用),这时的P称凝胶点Pc。 8.自动加速现象:随着聚合反应进行,聚合速率不但没有降低,反而迅速增加,这种反常的动力学行为称为自动加速现象。 9.应力松弛:在温度、应变恒定的条件下,材料的内应力随时间延长而逐渐减小的现象称为应力松弛。 10.乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。 四.计算题(共5小题,1,2,3题每题5分,4题10分共25分) 45的分子有5 mol, 10求分子其中分子量为10的分子有10 mol, 分子量为设一聚合物样品,1.第页5共页2?NiMi5410?1010?5?40000???Mn ?Ni5?10. 量数均分子量和质均分子量 ?2NiMi2254)?10()10?510?(85000Mw???? 5410NiMi10?5?10?时聚酯的聚合度多少?等摩尔二元醇和二元酸缩聚,另加醋酸1.5%,p=0.995或0.9992. ,=2mol0.015mol。N=2mol,N解:假设二元醇与二元酸的摩尔数各为1mol,则醋酸的摩尔数为ba'mol 015N?0.b N2a 985??r?0.,01502?2*.N2?N bb当p=0.995时,985r1?0.1?88??X?79.

高分子材料与工程专业排名

一、工科:偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学;偏加工和应用的:四川大学、华南理工、东华大学(原中国纺织大学)、上海交通大学 理科:偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些);偏性能形态研究的:南京大学、复旦大学、北京大学 5-10年这个行业发展都会不错。 二、高分子材料与工程就业前景分析高分子材料与工程专业排名一览表 【北京市】清华大学、北京理工大学、北京航空航天大学、北京化工大学、北京服装学院、北京石油化工学院、北京工商大学 【天津市】天津大学、天津科技大学 【河北省】河北工业大学、河北科技大学、河北大学、燕山大学 【山西省】太原理工大学、华北工学院 【辽宁省】大连轻工业学院、沈阳化工学院、大连理工大学、大连轻工业学院、沈阳工业大学、沈阳工业学院 【吉林省】吉林大学、长春工业大学、吉林建筑工程学院 【黑龙江省】哈尔滨工业大学、哈尔滨理工大学、齐齐哈尔大学、东北林业大学 【上海市】复旦大学、华东理工大学、东华大学、上海大学 【江苏省】江苏大学、南京理工大学、江南大学、扬州大学、南京工业大学、江苏工业学院、江苏大学、南京林业大学、华东船舶工业学院 【浙江省】浙江大学、浙江工业大学 【安徽省】中国科学技术大学、合肥工业大学、安徽大学、安徽建筑工业学院、安徽工业大学、安徽理工大学 【福建省】福建师范大学 【江西省】南昌大学、华东交通大学 【山东省】山东大学、青岛大学、青岛科技大学、济南大学、烟台大学六 【河南省】郑州大学、河南科技大学、郑州轻工业学院 【湖北省】湖北大学、武汉理工大学、湖北工学院、武汉化工学院、武汉科技学院、湖

高分子材料未来与发展前景

高分子材料相对于传统材料如玻璃、陶瓷、水泥、金属而言是后起之秀,但其发展的速度及应用的广泛性却远远超过了许多传统材料,在当今世界乃至未来的世纪都充当着举足重轻的角色,已成为工业、农业、国防和科技等领域的重要材料,尤其是在开发新型替代能源、节约资源和保护生态环境方面更是发挥着不可替代的作用。新时代的高分子材料已成为现代工程材料的主要支柱,与信息技术、生物技术一起,推动着社会的进步,今天,我将就高分子材料的发展历程及未来趋势做一个简单的概述。 说起高分子材料的发展历程,可能会比我们想象中要长远的多,最早关于高 分子材料的应用要追溯到几万年前人类或者类似人类的远古智能生物最先使用的树枝,兽皮,稻草等天然高分子材料。在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起,奏响了一首久远流长的高分子之歌。 然而随着社会的发展,人类已经不满足于对这些材料的简单利用,相应的天 然高分子材料的改性和加工工艺应运而生,这其中比较具有代表性的是19 世纪中叶,德国人用硝酸溶解纤维素,然后纺织成丝或制成膜,并利用其易燃的特性制成炸药,但是硝化纤维素难于加工成型,因此人们在其中加入樟脑,使其易于加工成型,做成了之后闻名遐迩的“赛璐珞” 的塑料材料。再比如,橡胶的改性,早在11 世纪美洲的劳动人民已经在长期的生产实践中开始利用橡胶了,但当时橡胶制品遇冷就变硬,加热则发粘受温度的影响比较大。1839 年美国科学家发现了橡胶与硫磺一起加热可以消除上述变硬发粘的缺点,并可以大大增加橡胶的弹性和强度。通过硫化改性,有力的推动了橡胶工业的发展,因为硫化胶的性能比生胶优异很多,从而开辟了橡胶制品广泛应用的前景。同时,橡胶的加工方法也在逐渐完善,形成了塑炼、混炼、压延、压出、成型这一完整的加工过程,使得橡胶工业蓬勃兴起,一日千里的突飞猛进。 从二十世纪初开始,高分子材料进入了工业合成高分子的重要阶段,而合成 高分子的诞生和发展则是从酚醛树脂开始的。化学家们研究了苯酚与甲醛的反应,发现在不同的反应条件下可以得到两类树脂,一种是在酸催化下生成可融化可溶解的线型酚醛树脂,另一种则是在碱催化下生成的不溶解不熔化的体型酚醛树脂,这种酚醛树脂是人类历史上第一个完全靠化学合成方法生产出来的合成树

高分子科学导论-习题(上册)

第一章绪论 (1)在酯化反应中丙三醇、乳酸、均苯四甲酸二酐中分别有几个功能团? -CH-CH2 OHCH(CH3)COOH OH OH (2)交联聚合物具有什么样的特性? (3)分子量为10000的线形聚乙烯(CH2-CH2)、聚丙烯(CH2-CHCH3)、聚氯乙烯(CH2-CHCl)、 聚苯乙烯(CH2-CHC6H5)的聚合度D p分别为多少? (4)下列那些聚合物是热塑性的:硫化橡胶,尼龙、酚醛树脂,聚氯乙烯,聚苯乙烯? (5)PBS是丁二醇与丁二酸的缩聚产物,其可能的端基结构是什么? (6)PVA(聚乙烯醇)的结构式如下所示,请按标准命名法加以命名。 ( CH2-CH )n (7)谈谈自己对高分子的认识 第二章高分子合成与化学性能 (1)端基分别为酰氯(-COCl)和羟基(-OH)的单体可以发生缩聚反应生成聚酯,这个反 应放出的小分子副产物是什么? (2)连锁聚合中包含哪些基元反应? (3)偶合终止与歧化终止的聚合产物在分子量上有什么区别? (4)从纤维素制备醋酸纤维素,产物的分子量和聚合度与原料相比有什么样的变化趋势? (5)A和B是两种内酯单体,如果采用羟基化合物为引发剂开环聚合可以制备端基为羟基的 聚合产物。现需要制备两端为A链段,中间为B链段的嵌段共聚物,也称为ABA型三嵌段共聚物,请设计一条合成路线来制备这种共聚物。 (6)简要分析老化与降解之间的关系。 (7)研究高分子的降解与回收具有什么样的意义? (8)简要叙述高分子合成与分子设计的原则。

第三章高分子的结构与性能 (1)聚乙烯的齐聚物(聚合度低于10)是什么状态的物质? (2)高分子构型(configuration)、构象(conformation)分别具有什么含义? (3)高分子的结晶具有什么特点,与小分子相比有何异同? (4)以下高分子哪些具有顺序异构体,哪些具有立构异构体?聚乙烯(CH2-CH2)、聚丙烯 (CH2-CHCH3)、聚苯乙烯(CH2-CHPh)、聚氯乙烯(CH2-CHCl)、聚偏氯乙烯(CH2-CCl2)、聚四氟乙烯(CF2-CF2)。 (5)高分子的力学三态是什么?在不同状态下的高分子具有什么样的特性。 (6)高分子的溶解过程有什么样的特点?影响高分子溶解性能的主要因素有哪些? (7)简要叙述粘流温度T f、熔点T m、热分解温度T d之间的大小关系对聚合物熔融加工的影响。第四章高分子的表征与分析 (1)为什么要对高分子进行表征与分析? (2)如何理解平均分子量的概念,高分子的分子量对性能有何重要影响? (3)下图为聚乳酸的红外谱图和结构式,试分析主要吸收的归属。 (4)测定高分子分子量的常用方法有哪些?每种方法所测定得到的分子量分别是什么?其 中那种方法可以测定分子量分布?

高分子材料导论2007试卷-A 合肥工业大学

一、填空题(每空1分,共20分) 1.由单体合成聚合物,按聚合机理可分为链式聚合(或连锁聚合)和两大类;而链式聚合又包括、阳子聚合和等。2.线型缩聚反应中提高缩聚产物的分子量很重要,提高线型缩聚产物分子量的主要手段有:、、 和。 3.自由基聚合的实施方法主要有、、悬浮聚合和等四种。 4.聚合物的聚集态结构包括、、 取向结构、液晶态结构和多相结构。 5.影响聚合物化学反应的化学因素主要有:和邻近基团效应,而邻近基团效应又包括和。 6.聚合物的力学松弛,主要表现为、、 滞后和力学损耗现象。 7.热塑性聚合物主要的成型加工手段有:、 、和压延成型。

二、解释下列名词或术语(每小题4分,共20分)。(1)竞聚率 (2)体型缩聚的凝胶点 (3)活性聚合 (4)应力松弛 (5)成型加工

三、简答题 1.简要说明自由基本体聚合过程中出现自动加速现象的原因。 (7分)。 2.分别写出下列单体进行连锁聚合的可能机理类型(自由基、阳离子或阴离子)。(5分) a.CH2=C (CH3)2;b.CH2=CHC6H5;c.CH2=C (CN)2 3.写出下列聚合物的化学反应方程式。(8分) a.聚乙烯;b.聚1,4-丁二烯;c.聚己二酸己二胺(尼龙-66);d.聚对苯二甲酸乙二醇酯(PET)。

4.试从溶解特性方面分析高分子化合物与小分子物质(如NaCl)的主要区别。(6分) 5.简要说明影响聚合物玻璃化转变温度的影响。(8分)。 6.通过本门课程的学习,简要说明高分子科学在国民经济中的作用。(6分)

四、计算题 1.已知一聚合物试样中会有分子量为104和105两组分,试求下列两种情况下的M n和M w及分子量分布指数:(8分) (1)两组分分子数相同; (2)两组分质量相同。 2.1mol的丁二醇与1.01mol的己二酸缩聚,求所得聚酯的数均聚合度为100时,羟基的反应程度为多少?(6分)

高分子材料工程专业英语翻译全

第一单元什么是高聚物? 什么是高聚物?首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。与低分子化合物不同的是,普通盐的分子量仅仅是58.5,而高聚物的分子量高于105,甚至大于106。这些大分子或“高分子”由许多小分子组成。小分子相互结合形成大分子,大分子能够是一种或多种化合物。举例说明,想象一组大小相同并由相同的材料制成的环。当这些环相互连接起来,可以把形成的链看成是具有同种分子量化合物组成的高聚物。另一方面,独特的环可以大小不同、材料不同,相连接后形成具有不同分子量化合物组成的聚合物。 许多单元相连接给予了聚合物一个名称,poly意味着“多、聚、重复”,mer意味着“链节、基体”(希腊语中)。例如:称为丁二烯的气态化合物,分子量为54,化合将近4000次,得到分子量大约为200000被称作聚丁二烯(合成橡胶)的高聚物。形成高聚物的低分子化合物称为单体。下面简单地描述一下形成过程: 丁二烯+丁二烯+…+丁二烯——→聚丁二烯 (4000次) 因而能够看到分子量仅为54的小分子物质(单体)如何逐渐形成分子量为200000的大分子(高聚物)。实质上,正是由于聚合物的巨大的分子尺寸才使其性能不同于象苯这样的一般化合物。例如,固态苯,在5.5℃熔融成液态苯,进一步加热,煮沸成气态苯。与这类简单化合物明确的行为相比,像聚乙烯这样的聚合物不能在某一特定的温度快速地熔融成纯净的液体。而聚合物变得越来越软,最终,变成十分粘稠的聚合物熔融体。将这种热而粘稠的聚合物熔融体进一步加热,不会转变成各种气体,但它不再是聚乙烯(如图1.1)。 固态苯——→液态苯——→气态苯 加热,5.5℃加热,80℃ 固体聚乙烯——→熔化的聚乙烯——→各种分解产物-但不是聚乙烯 加热加热 图1.1 低分子量化合物(苯)和聚合物(聚乙烯)受热后的不同行为 发现另一种不同的聚合物行为和低分子量化合物行为是关于溶解过程。例如,让我们研究一下,将氯化钠慢慢地添加到固定量的水中。盐,代表一种低分子量化合物,在水中达到点(叫饱和点)溶解,但,此后,进一步添加盐不进入溶液中却沉到底部而保持原有的固体状态。饱和盐溶液的粘度与水的粘度不是十分不同,但是,如果我们用聚合物替代,譬如说,将聚乙烯醇添加到固定量的水中,聚合物不是马上进入到溶液中。聚乙烯醇颗粒首先吸水溶胀,发生形变,经过很长的时间以后进入到溶液中。同样地,我们可以将大量的聚合物加入到同样量的水中,不存在饱和点。将越来越多的聚合物加入水中,认为聚合物溶解的时间明显地增加,最终呈现柔软像面团一样粘稠的混合物。另一个特点是,在水中聚乙烯醇不会像过量的氯化钠在饱和盐溶液中那样能保持其初始的粉末状态。总之,我们可以讲(1)聚乙烯醇的溶解需要很长时间,(2)不存在饱和点,(3)粘度的增加是典

相关文档
最新文档