二次函数综合题型分类训练

二次函数综合题型分类训练
二次函数综合题型分类训练

专题一 二次函数之面积、周长最值问题

1 2 鼻 y =- x bx c

1、

如图,抛物线 2 与x 轴交于A 、B 两点,

与y 轴交于点C ,且OA=2,0C=3 . (1)求抛物线的解析式。 ⑵若点D(2 , 2)是抛物线上一点,那么在抛物线的对称轴上, 是否存在一点P ,使得△ BDP 的周长最小,若存在, 请求出点 P 的坐标,若不存在,请说明理由.

2

2、 如图,已知抛物线 y= — x+bx+c 与一直线相交于 A (- 1, 0), C (2, 3)两点,与y 轴交于点N .其顶点为D . (1) 抛物线及直线 AC 的函数关系式;

(2) 设点M 在对称轴上一点,求使MN+MD 的值最小时的 M 的坐标;

(3) 若P 是抛物线上位于直线 AC 上方的一个动点,求厶APC 的面积的最大值.

3、 如图,已知抛物线 y=ax +bx - 2 (0)与x 轴交于 A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点 D ,并且D (2, 3), tan / DBA= \ . (1) 求抛物线的解析式;

(2) 已知点M 为抛物线上一动点,且在第三象限,顺次连接 点B 、M 、C 、A ,求四边形BMCA 面积的最大值;

4、 如图,在平面直角坐标系中,已知点 A 的坐标是(4, 0), 并且OA=OC=4OB ,动点P 在过A , B , C 三点的抛物线上. (1) 求抛物线的解析式;

(2) 是否存在点P ,使得△ ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合 条件的点P 的坐标;若不存在,说明理由; (3) 过动点P 作PE 垂直于y 轴于点E ,交直线AC 于点D ,过点D 作y 轴的垂线.垂足 为F ,连接EF ,当线段EF 的长度最短时,求出点 P 的坐标.

5、如图12,已知二次函数

1 2

y 二-x bx c

的图象与

J

V Al 0

1

x 轴的正半轴相交于点 A 、 B ,与 y

轴相交于点C,且OC2=OA ? OB .

(1)求c的值;

⑵若△ ABC的面积为3,求该二次函数的解析式;

(3) 设D是(2)中所确定的二次函数图象的顶点,试问在直线AC上是否存在一点P使厶PBD

的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

6、如图,在直角坐标系中,点A的坐标为(一2, 0),连结OA,将线段OA绕原点O 顺时针旋转120 °,得到线段OB.

(1)求点B的坐标;

(2)求经过A、O、B三点的抛物线的解析式;

(3)在(2)中抛物线的对称轴上是否存在点6使厶BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由

(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△ PAB是否有最大面积?若有,求出此时P点的坐标及△ PAB的最大面积;若没有,请说明理由.

专题二二次函数之等腰三角形问题

2

1、如图,抛物线y=ax -5ax+4经过ABC △的三个顶点,已知BC // x轴,点A在x轴上,点C 在y轴上,且AC=BC .( 1)求抛物线的对称轴;

(2)写出A、B、C三点的坐标并求抛物线的解析式;

(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.

2、如图,已知抛物线与x轴交于A (-1,0 ),B( 3,0)两点,与y轴交于点C( 0,3) . (1) 求抛物线的解析式;

(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△ PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;

(3)点M是抛物线上一点,以B , C, D, M为顶点的四边形是直角梯形,试求出点M 的坐标.

3、在平面直角坐标系xOy中,抛物线y=x2-(m+n) x+mn (m>n)与x轴相交于A、B 两点(点A位于点B的右侧),与y轴相交于点C.

(1 )若m=2 , n=1,求A、B两点的坐标;

(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,- 1),求/ ACB的大小;

(3)若m=2 , △ ABC是等腰三角形,求n的值.

2

4、如图,已知抛物线y=ax +bx+c与x轴的一个交点为A( 3, 0),

与y轴的交点为B ( 0, 3),其顶点为C,对称轴为x=1 . (1)求抛物线的解析式;

(2)已知点M为y轴上的一个动点,当△ ABM为等腰三角形时,求点M的坐标;

(3)将厶AOB沿x轴向右平移m个单位长度(0v m v 3)得到另一个三角形,将所得的三角形与△ ABC重叠部分的面积记为S,用m的代数式表示S.

5、如图,已知抛物线经过A (1, 0), B (0, 3)两点,对称轴是x= -

1.

(1 )求抛物线对应的函数关系式;

(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运

动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段

OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点

P,设运动的时间为t秒.

①当t为何值时,四边形OMPQ为矩形;

②厶AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

6、如图,已知抛物线y= - 14x2+bx+4与x轴相交于A、

B两点,与y轴相交于点C,若已知A点的坐标为A (

2, 0).

(1)求抛物线的解析式及它的对称轴方程;

(2)求点C的坐标,连接AC、BC并求线段BC所在直线的

解析式;

(3)试判断△ AOC与厶COB是否相似?并说明理由;

(4)在抛物线的对称轴上是否存在点0,使厶ACQ为等腰

三角形?若不存在,求出符合条件的Q点坐标;若不存在,

请说明理由.

7、已知Rt△ ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系内,使其斜边AB与x轴重合(其中OA v OB),直角顶点在y轴正半轴上。如图1 ( 1) 求线段OA , OB的长和经过点 A , B的抛物线的解析式;

(2)如图2,点D的坐标为(2, 0),点P (m , n)是该抛物线上的一个动点(其中m > 0, n> 0),连接DP交BC于点E。

①当△ BDE是等腰三角形时,直接写出此时点E的坐标;

②连接CD , CP,如图、△ CDP是否有最大面积?若有,求出它的最大面积和此时点

2、阅读材料:

如图,过△ ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ ABC的“水平宽” (a),中间的这条直线在

△ ABC内部线段的长度叫△ ABC的“铅垂高(h)”?我们可得出一种计算三角形面积的新方法:ah

S A ABC ,即三角形面积等于水平宽与铅垂高乘积的一半?解答下列问题:如图,抛物2

线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B. (1)求抛物线和直线AB的解析式;⑵点P 是抛物线(在第一象限内)上的一个动点,连结PA, PB,当P点运动到顶点C时,求

专题三二次函数之面积问题

1、如图9,已知正比例函数和反比例函数的图象都经过点

(1)求正比例函数和反比例函数的解析式;

(2)把直线OA向下平移后与反比例函数的图象交于点

的解析式;

A(3,3).

B(6,m),求m的值和这个一次函数(3) 第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二

次函数的解析式;

(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1

与四边形OABD的面积S满足:3S= 2S?若存在,求点E的坐标;若不存在,请说明理由.

2021年中考 二次函数题型分类复习总结

二次函数考点分类复习 知识点一:二次函数的定义 考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式。 备注:当b=c=0时,二次函数y=ax2是最简单的二次函数. 1、下列函数中,是二次函数的是 . ①y=x 2 -4x+1; ②y=2x 2 ; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2 +2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 课后练习: (1)下列函数中,二次函数的是( ) A .y=ax 2+bx+c B 。2 )1()2)(2(---+=x x x y C 。x x y 1 2+ = D 。y=x(x —1) (2)如果函数1)3(2 32++-=+-mx x m y m m 是二次函数,那么m 的值为 知识点二:二次函数的对称轴、顶点、最值 1、二次函数 c bx ax y ++=2,当0>a 时?抛物线开口向上?顶点为其最低点;当0

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.

二次函数知识点总结题型分类总结

二次函数知识点总结——题型分类总结 一、二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①142 +-=x x y ; ②2 2x y =; ③x x y 422 +=; ④x y 3-=; ⑤12--=x y ; ⑥p nx mx y ++=2 ; ⑦()x y ,4=; ⑧x y 5-=。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为t t s 252 +=,则t =4秒时,该物体所经过的路程为 _________ 。 3、若函数( ) 54722 2 ++-+=x x m m y 是关于x 的二次函数,则m 的取值范围为 。 4、若函数()1522 ++-=-x x m y m 是关于x 的二次函数,则m 的值为 。 6、已知函数()35112 -+-=+x x m y m 是二次函数,求m 的值。 二、二次函数的对称轴、顶点、最值 记忆:如果解析式为顶点式:()k h x a y +-=2 ,则对称轴为: _ , 最值 为: ; 如果解析式为一般式:c bx ax y ++=2 ,则对称轴为: __ ,最值为: ; 如果解析式为交点式:()()21x x x x a y --=, 则对称轴为: ,最值为: 。 1.抛物线m m x x y -++=2 2 42经过坐标原点,则m 的值为 。 2.抛物线c bx x y ++=2的顶点坐标为(1,3),则b = ,c = . 3.抛物线x x y 32+=的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线x ax y 62-=经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线b ax y +=不经过二、四象限,则抛物线c bx ax y ++=2 ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线()4 1 12- -+=x m x y 的顶点的横坐标是2,则m 的值是 . 7.抛物线322 -+=x x y 的对称轴是 。 8.若二次函数332 -+=mx x y 的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数()()x n m x n m y n -++=的图象是抛物线,

二次函数中考复习(题型分类练习)

二次函数题型分析练习 题型一:二次函数对称轴及顶点坐标的应用 1.(2015?兰州)在下列二次函数中,其图象对称轴为x =﹣2的是( ) A . y =(x +2)2 B .y =2x 2﹣2 C .y =﹣2x 2﹣2 D .y =2(x ﹣2)2 2.(2014?浙江)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称 点坐标为( ) A.(﹣3,7) B.(﹣1,7) C.(﹣4,10) D.(0,10) 3.在同一坐标系中,图像与y=2x 2 的图像关于x 轴对称的函数是( ) A.212y x = B.212y x =- C.22y x =- D.2y x =- 4.二次函数 无论k 取何值,其图象的顶点都在( ) A.直线 上 B.直线 上 C.x 轴上 D.y 轴上 5.(2012?烟台)已知二次函数y=2(x ﹣3)2 +1.下列说法:①其图象的开口向下;②其图象的对称轴为直 线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个 B .2个 C .3个 D .4个 6.(2014?扬州)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点 P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 . 7.已知二次函数 ,当 取 , ( ≠ )时,函数值相等,则当 取 时,函数值为 ( ) A. B . C. D.c 8.如图所示,已知二次函数 的图象经过(-1,0)和(0,-1)两点,则化简代数式 = . 题型二:平移

九年级数学二次函数 基础分类练习题(含答案)

二次函数 基础分类练习题 练习一 二次函数 1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数 据如下表: 时间t (秒)1234…距离s (米) 2 8 18 32 … 写出用t 表示s 的函数关系式. 2、下列函数:① ;② ;③ ;④ ; y = ()21y x x x =-+()224y x x x =+-2 1 y x x = +⑤ ,其中是二次函数的是 ,其中 , , ()1y x x =-a =b =c =3、当 时,函数(为常数)是关于的二次函数 m ()2 235y m x x =-+-m x 4、当时,函数是关于的二次函数 ____m =()2 221m m y m m x --= +x 5、当时,函数+3x 是关于的二次函数 ____m =()256 4m m y m x -+=-x 6、若点 A ( 2, ) 在函数 的图像上,则 A 点的坐标是____. m 12 -=x y 7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2. 10、已知二次函数当x=1时,y= -1;当x=2时,y=2,求该函数解析式. ),0(2 ≠+=a c ax y 11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形. (1)如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关 系? (2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧 墙的长度是否会对猪舍的长度有影响?怎样影响?

二次函数考点和题型归纳

二次函数考点和题型归纳 一、基础知识 1.二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0); 顶点式:f (x )=a (x -h )2+k (a ≠0); 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象与性质 二次函数系数的特征 (1)二次函数y =ax 2+bx +c (a ≠0)中,系数a 的正负决定图象的开口方向及开口大小; (2)- b 2a 的值决定图象对称轴的位置; (3)c 的取值决定图象与y 轴的交点; (4)b 2-4ac 的正负决定图象与x 轴的交点个数. 解析式 f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0) 图象 定义域 (-∞,+∞) (-∞,+∞) 值域 ??? ?4ac -b 24a ,+∞ ? ???-∞,4ac -b 24a 单调性 在??? ?-b 2a ,+∞上单调递增;在????-∞,-b 2a 上单调递减 在? ???-∞,-b 2a 上单调递增;在??? ?-b 2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数 顶点 ????-b 2a ,4ac -b 24a 对称性 图象关于直线x =-b 2a 成轴对称图形

二、常用结论 1.一元二次不等式恒成立的条件 (1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0,且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0,且Δ<0”. 2.二次函数在闭区间上的最值 设二次函数f (x )=ax 2+bx +c (a >0),闭区间为[m ,n ]. (1)当-b 2a ≤m 时,最小值为f (m ),最大值为f (n ); (2)当m <-b 2a ≤m +n 2时,最小值为f ????-b 2a ,最大值为f (n ); (3)当 m +n 2<-b 2a ≤n 时,最小值为f ????-b 2a ,最大值为f (m ); (4)当-b 2a >n 时,最小值为f (n ),最大值为f (m ). 考点一 求二次函数的解析式 求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同. [典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式. [解] 法一:利用二次函数的一般式 设f (x )=ax 2+bx +c (a ≠0). 由题意得?? ? 4a +2b +c =-1, a - b + c =-1, 4ac -b 2 4a =8, 解得????? a =-4, b =4, c =7. 故所求二次函数为f (x )=-4x 2+4x +7. 法二:利用二次函数的顶点式 设f (x )=a (x -m )2+n .

二次函数大题分类题型

二次函数中求线段距离之和最小,两种方法:第一种我们平常讲的几种题型最短路径的题型第二种运用点坐标将线段长度之和表示出来,进而转化成二次函数的最值问题 以及二次函数中的最值问题优先考虑的方法就是将所求的用未知数表示出来,最大最小值转化为求二次函数的最大最小值 “造桥选址” 直线∥,在、,上分别求点M、N,使MN⊥,且AM+MN+BN的值最小. 将点A向下平移MN的长度单位得A',连A'B,交于点N,过N作NM⊥于M. 直线上求两点M、N(M在左),使,并使AM+MN+NB的值最小. 在直线l上求一点P,使的值最大. 如图,抛物线y=x2-3x+5 4 与x轴相交于A、B两点,与y轴相交于点C,点D是 直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式; (2)当线段DE的长度最大时,求点D的坐标

正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点. (1)建立适当的平面直角坐标系, ①直接写出O 、P 、A 三点坐标; ②求抛物线L 的解析式; (2)求△OAE 与△OCE 面积之和的最大值. 若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C 1:y 1=-2x 2+4x+2与C 2:y 2=-x 2+mx+n 为“友好抛物线”. (1)求抛物线C 2的解析式. (2)点A 是抛物线C 2上在第一象限的动点,过A 作AQ ⊥x 轴,Q 为垂足,求AQ+OQ 的最大值. (3)设抛物线C 2的顶点为C ,点B 的坐标为(-1,4),问在C 2的对称轴上是否存在点M ,使线段MB 绕点M 逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C 2上?若存在求出点M 的坐标,不存在说明理由.

二次函数知识点及题型归纳总结

二次函数知识点及题型归纳总结 知识点精讲 一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式 (1)一般式:2 ()(0)f x ax bx c a =++≠; (2)顶点式:2 ()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像 二次函数2 ()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2b x a =- ,顶点坐标为24(,)24b ac b a a --. (1) 单调性与最值 ①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,) b -+∞上递减,当 b x =- 时,;24()4ac b f x a -=. (2) 当2 40b ac ?=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和 22(,0)M x ,1212|||||| M M x x a =-== . 二、二次函数在闭区间上的最值 闭区间上二次函数最值的取得一定是在区间端点或顶点处. 对二次函数2 ()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m , 图2-9

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例 1】如图 2,抛物线顶点坐标为点C(1,4),交 x 轴于点 A(3,0),交 y 轴于点 B.(1)求抛物线和直线AB的解析式; (2)求△CAB的铅垂高CD及S△CAB; (3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使 S△PAB 9 S△CAB, =8若存在,求出P 点的坐标;若不存在,请说明理由. y C B D 1 O1A x 图 2 【变式练习】 1.如图,在直角坐标系中,点 A 的坐标为(-2,0),连结 OA,将线段 OA绕原点 O顺时针旋转 120°,得到线段OB. (1)求点B的坐标; (2)求经过A、O、B三点的抛物线的解析式; (3)在( 2)中抛物线的对称轴上是否存在点C,使△ BOC的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P是( 2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积? 若有,求出此时 P 点的坐标及△ PAB的最大面积;若没有,请说明理由. y B A O x 2. 如图,抛物线y =ax2+ bx + 4与x轴的两个交点分别为A(-4,0)、 B(2,0),与 y 1

轴交于点 C,顶点为 D.E(1,2)为线段BC的中点, BC的垂直平分线与x 轴、 y 轴分别交于F、 G. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)在直线 EF 上求一点,使△的周长最小,并求出最小周长; y H CDH D (3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,C △EFK的面积最大?并求出最大面积.G E A F O B x 3.如图,已知:直线y x 3 交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、 B、 C( 1, 0)三点 . ( 1)求抛物线的解析式; ( 2)若点 D 的坐标为( -1 ,0),在直线y x 3 上有一点P,使ABO与ADP相似,求出点 P 的坐标; ( 3)在( 2)的条件下,在 x 轴下方的抛物线上,是否存在点 E,使 ADE的面积等于四边形APCE的面积?如果存在,请求出点 E 的坐标;如果不存在,请说明理由. 2

二次函数的实际应用(典型例题分类)

二次函数与实际问题 1、理论应用(基本性质的考查:解析式、图象、性质等) 2、实际应用(求最值、最大利润、最大面积等) 解决此类问题的基本思路是: (1)理解问题; (2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解; (5)检验结果的合理性,拓展等. 例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系并求出绿地面积的最大值 @ 变式练习1:如图,用50m长的护栏全部用于建造 一块靠墙的长方形花园,写出长方形花园的面积 y(㎡)与它与墙平行的边的长x(m)之间的函数 关系式当x为多长时,花园面积最大 ·

例二:某商店经营T恤衫,已知成批购进时单价是元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多 设销售单价为x元,(0<x≤元,那么 (1)销售量可以表示为____________________; (2)销售额可以表示为____________________; (3)@ (4)所获利润可以表示为__________________; (5)当销售单价是________元时,可以获得最大利润,最大利润是__________。 ~ 变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有哪些变量其中自变量是_______,因变量是___________. (2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结 _________个橙子. (3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________.(4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。 (

二次函数题型分类总结答案

二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 ①②③ . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t = 4秒时,该物体所经过的路程为 88m 。 3、若函数y=(m 2+2m -7)x 2+4x+5是关于m 的二次函数,则m 的取值范围为 ___ 。 4、已知函数 是二次函数,则m = -3 。 5、若函数 是关于x 的二次函数,则m 的值为 -2 。 6、已知函数y=(m -1)x m +1+5x -3是二次函数,求m 的值。 -1 二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b 24a 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 0或-1 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = -2 ,c = -2 . 3.抛物线y =x 2+3x 的顶点在( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 (1)4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( B )? B. 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( A ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ -3 . 7.抛物线y=x 2 +2x -3的对称轴是 x=-1 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = -6 。 9.当n =___2___,m =__2____时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点 在原点,此抛物线的开口____向上____. 10.已知二次函数y=x 2-2ax+2a+3,当a 3或-1 时,该函数y 的最小值为0?

二次函数题型分类总结

二次函数题型总结【回顾与思考】 一、二次函数的定义 定义:一般地,如果 c b a c bx ax y, , ( 2+ + =是常数,)0 ≠ a,那么y叫做x的二次函数. (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 精典例题: 例1:在下列关系式中,y是x的二次函数的关系式是() A.2xy+x2=1 B.y2-ax+2=0 C.y+x2-2=0 D.x2-y2+4=0 考点:二次函数的定义. 分析:根据二次函数的定义对四个选项进行逐一分析即可,即一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数. 解答:解:A、2xy+x2=1当x≠0时,可化为的形式的形式,不符合一元二次方程的一般形式,故本选项错误; B、y2-ax+2=0可化为y2=ax-2不符合一元二次方程的一般形式,故本选项错误; C、y+x2-2=0可化为y=x2+2,符合一元二次方程的一般形式,故本选项正确; D、x2-y2+4=0可化为y2=x2+4的形式,不符合一元二次方程的一般形式,故本选项错误. 故选C. 点评:本题考查的是二此函数的一般形式,即一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a 是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式. 例2:函数y=(m+3)x m2+m-4,当m= 时,它的图象是抛物线. 考点:二次函数的定义. 分析:二次函数的图象是抛物线的,由二次函数的定义列出方程与不等式解答即可.

二次函数应用题题型归纳

二次函数应用题 题型一 面积问题 1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. (1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围. 2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设A B 边的长为x 米,长方形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值; (2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为 1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗 圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由. O 2 O 1 围墙 D A B C O 2 O 1 围墙D A B C E F G H I J

题型二 利润问题 1利民商店经销甲、乙两种商品. 现有如下信息: 请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少? 2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系. (1)分别求出1y 和2y 的函数解析式; (2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额. 型 号 金 额 Ⅰ型设备 Ⅱ型设备 投资金额x (万元) x 5 x 2 4 补贴金额y (万元) y 1=kx(k≠0) 2 y 2=ax 2+bx(a≠0) 2.4 3.2 信息1:甲、乙两种商品的进货单价之和是5元; 信息2:甲商品零售单价比进货单价多1元, 乙商品零售单价比进货单价的2倍少 1元. 信息3:按零售单价购买 甲商品3件和乙商品2件, 共付了19元.

自己总结很经典二次函数各种题型分类总结

二次函数题型分类总结 题型1、二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2+2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 4、若函数y=(m -2)x m -2 +5x+1是关于x 的二次函数,则m 的值为 。 5、已知函数y=(m -1)x 21 m +5x -3是二次函数,求m 的值。 题型2、二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2 +k ,则最值为k ;如果解析式为一般式y=ax 2 +bx+c 则最值为4ac-b 2 4a 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2 +3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2 -6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A.13 B.10 C.15 D.14 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2 +bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2 +(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2+2x -3的对称轴是 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口_______. 10.已知二次函数y=x 2 -2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。 题型3、函数y=ax 2+bx+c 的图象和性质 1.抛物线y=x 2 +4x+9的对称轴是 。 2.抛物线y=2x 2 -12x+25的开口方向是 ,顶点坐标是 。 3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。 4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)y=12 x 2-2x+1 ; (2)y=-3x 2 +8x -2; (3)y=-14 x 2+x -4 5.把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2 -3x+5,试求b 、c 的值。 6.把抛物线y=-2x 2 +4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。 7.某商场以每台2500元进口一批彩电。如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元? 题型4、函数y=a(x -h)2的图象与性质 1.填表:

二次函数 十大模型 综合题型 (非常好 分类全面)

教学主题 二次函数综合题型 教学目标 掌握二次函数综合题型 重要知识点1.二次函数综合 2. 3. 教学过程 如图所示,已知二次函数y=a(x +1)(x -3)的图象与x轴交于A、B 两点(点A在点B 的左侧) ,与y轴交于C点,顶点M的纵坐标为-4,求: 1、求点A、B、C的坐标及而二次函数解析式a=1

2、在对称轴上是否存在点P,使得△ACP 的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.(1,-2) 3、(1)在对称轴上是否存在点 Q,使△ACQ 是等腰三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由.(1,0)(1,根6)(1,-根6)(1,-1) (2)若点Q在对称轴上,点Q1在坐标平面内,那么以A、C、Q、Q1为顶点的菱形共多少个?4个

4、讨论在坐标平面内是否存在点D,使△ACD 是以A C 为斜边的等腰直角三角形,试求出点D 的坐标. (1,-1)(-2,-2) 5、在对称轴上是否存在点R,使得 ∠ARC,若存在,求出点R 的坐标;若不存在,请说 = 45 明理由.(对称轴上是否存在点R使ARC ∠=30o?) 45:(1,根5 -1)(1,-1-根5)

6、点D为线段B C 上异于B、C 的动点,过点D作D E⊥x 轴交于点E,交抛物线于点F,当△CDF 为直角三角形时,求点D的坐标. (△CEF能为直角三角形吗?能求出此时点D的坐标吗?)(2分之3,-2分之3) 1.C=90,y=-x-3 y=x2-2x-3交于(1,-4) D(1,-2) 2. D=90 ,y=-3,x=2 D(2.-1) 7、在直线B C 下方的抛物线上是否存在点E,使BCE 面积最大?若存在,求出点E的坐标;若不存在,请说明理由. E(2分之3,-4分之15)S=8分之27

初三 二次函数基础分类练习题(含答案)

二次函数练习题 练习一 二次函数 1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t 写出用t 表示s 的函数关系式: 2、 下列函数:① y =② ()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x =+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = 3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221m m y m m x --=+是关于x 的二次函数 5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____. 7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关 系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2. 10、已知二次函数),0(2 ≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造 猪舍三间,如图,它们的平面图是一排大小相等的长方形. (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样 的函数关系? (2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安 排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有

高中数学二次函数分类讨论经典例题

精品文档 例1(1)关于的方程有两个实根,且一个大0??14)x?2mx?2(m?3x2于1,一个小于1,求的取值范围;m(2)x?2(m?3)x?2m?14?0mx),4[02的取值范围;关于有两实根都在的方程内,求 ??2外,求m的取值范围⑶关于x的方程有两实根在31,0(m?3)x?m?14?2x?2(4)关于的方程有两实根,且一个大于4,一个小0?14?x(m?3)?2m?mx2x2于4,求的取值范围. m3例求实数,上的最大值为13已知函数在区间3a?)?1x2?ax)(fx?(a]2?[,22的值。 精品文档. 精品文档 解(1)令,∵对应抛物线开口向上,∴方程有14?2m?3)x?f(x)?x?2(m2两个实根,且一个大于1,一个小于1等价于(思考:需要吗?),0)?f(10??21即.??m4(2)令,原命题等价于 14m?)x?2)?x?2(m?3f(x2f(0)?0?2m?14?0??f(4)?0??0??14)?2m16?8(m?327??????m??5. 2(m?3)???7?m??350???4??2??m??5,m?1??4(m?3)?4(2m?14)?02?(3)令,原命题等价于14??2m2(m?3)xf(x)?x?2f(1)?01?2(m?3)?2m?14?0??21即得.??m?? 4f(3)?09?6(m?3)?2m?14?0??(4)令,依题得142m??3)x??g(x)?mx2(m2m?0m?0??19或得.0?m??,??g(4)?0g(4)?013??例2(1)已知函数,若有解,求实数的取值22?ax??af(x)0)?f(xa范围;(2)已知,当时,若恒成立,求实数的取 2x?x4f(x)??a?f(x?[?1,1])xa值范围。2有解有解,即有解解:(1)222??1?a(x)0ax?a?2?0)?(fx??a 2?1x2有解所以.?|2|a??).,2?(??a max21x?时,(2)当时,又当恒成立 ?]ax)?,1?x?[1x?[?1,]1f(.?x)]a[f(min,所以).?5?(??,a5??1)??[f(x)]f(min【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)恒成立;(2)?a)?f(xa?[f(x)]min[f(x)]?a;恒成立((4)3)有解; ??aa(fx)?f(x)?a?f(x)a?x)][f(maxmax有解?.a)](x?[f min分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a是否为零,如果的最大值与二次函数系数的正负有关,也与对称轴)xf0a?,(a精品文档. 精品文档a21?的最大值只可能在端点或顶点处取得,解答时必f(x)的位置有关,但?x0a2须用讨论法。解、时,,0?a3x?f(x)?? 3.,故上不能取得1在0a?)f(x][?,22 a?21的对称轴方程为)(a?0?f(x)?ax?(2a?1)x3.?x20a2

相关文档
最新文档