浅谈钢结构焊接变形的火焰矫正方法

浅谈钢结构焊接变形的火焰矫正方法
浅谈钢结构焊接变形的火焰矫正方法

浅谈钢结构焊接变形的火焰矫正方法

浅谈钢结构焊接变形的火焰矫正方法

及焊接过程的规范问题

锅炉车间刘宝成

摘要:根据这些年的工作经验,结合相关焊接资料,文中阐述了钢制产品焊接变形的主要种类,以及本人对焊接变形的火焰矫正施工方法的粗浅看法以及在焊接方法中需要注意的规范问题。关键词:火焰矫正焊接变形

0引言

生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正,目前,钢制产品在生产建设工程和日常生活中得到了广泛的应用。而钢结构厂房的生产工艺的诞生,为现代建设工程增添了一道亮丽的风景线。然而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。这些构件在制作过程中都存在着焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。焊接钢结构产生的变形超过技术设计允许变形范围,就应设法进行矫正,使其达到符合产品质量的要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。但火焰矫正是一门较难操作的工作,方法掌握不当,、温度控制不当还会造成构件新的更大变形。因此,火焰矫正需要有丰富的实践工作经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗浅的分析。

1 钢结构焊接变形的种类和火焰矫正方法

火焰矫正法是利用火焰加热时产生的局部压缩塑性变形,使较长的金属在冷却后缩短来消除变形。此方法操作简单, 机动灵活, 适用面广。在使用时应注意控制火焰温度和加热位置。对低碳钢和普通低合金钢常采600~800℃的加热温度。由于需要再次加热, 对合金钢等慎用。以下为火焰矫正时的加热温度(材质为低碳钢)

注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16Mn在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。

钢结构焊接变形的种类与火焰矫正钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面简单介绍解决不同部位变形的校正施工方法。

1.1翼缘板的角变形矫正H型钢柱、梁、撑角变形。

在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。

1.2柱、梁、撑的上拱与下挠及弯曲。

1)、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避免产生弯曲和扭曲变形,两条加热带要同步进行。可采取低温矫正或中温矫正法。这种方法有利于减少焊接内应力,但这种方法在纵向收缩的同时有较大的横向收缩,较难掌握。

2)、翼缘板上作线状加热,在腹板上作三角形加热。用这种方法矫正柱、梁、撑的弯曲变形,效果显著,横向线状加热宽度一般取20—90mm,板厚小时,加热宽度要窄一些,加热过程应由宽度中间向两边扩展。线状加热最好由两人同时操作进行,再分别加热三角形三角形的宽度不应超过板厚的2倍,三角形的底与对应的翼板上线状加热宽度相等。加热三角形从顶部开始,然后从中心向两侧扩展,一层层加热直到三角形的底为止。加热腹板时温度不能太高,否则造成凹陷变形,很难修复。

注:以上三角形加热方法同样适用于构件的旁弯矫正。加热时应用中温矫正,浇水要少。柱、梁、撑腹板的波浪变形矫正波浪变形首先要找出凸起的波峰,用圆点加热法配合手锤矫正。加热圆点的直径一般为50~90mm,当钢板厚度或

波浪形面积较大时直径也应放大,可按d=(4δ+10)mm(d为加热点直径;δ为板厚)计算得出值加热。烤嘴从波峰起作螺旋形移动,采用中温矫正。当温度达到600~700度时,将手锤放在加热区边缘处,再用大锤击手锤,使加热区金属受挤压,冷却收缩后被拉平。矫正时应避免产生过大的收缩应力。矫完一个圆点后再进行加热第二个波峰点,方法同上。为加快冷却速度,可对Q235钢材进行加水冷却。这种矫正方法属于点状加热法,加热点的分布可呈梅花形或链式密点形。注意温度不要超过750度。

2 选用合理的焊接方法的规范

2.1.选用能量密度高的焊接方法,如采用二氧化碳气体保护焊、等离子弧焊和手工点弧焊进行薄板焊接, 可以减少变形量。

2.2.采用较小的焊接线能量可以减少焊接变形量。但在实际生产中要考虑生产率, 焊接线能量不宜过低。

2.3.焊接不对称的构件, 通过选用不同的焊接参数, 可以控制和调节弯曲变形。如图所示的截面不对称的梁, 焊缝1和2到中心轴的距离e 比焊缝3和4 到中心轴的距离f 大焊后引起的变形也大。如果焊缝1和2采用比焊缝3和4 小的规范参数分层焊接, 可以是上下弯曲变形抵消。选择合理的装配焊接顺序。

2.4.构件在装配过程中, 侧面中心位置不断发生变化, 因而焊接变形也在不断变化。利用这一特点通过把结构适当的分成部件, 分别装配焊装, 使不对称的焊缝和收缩量较大的焊缝在焊接过程中能比较自由的收缩而不影响整体结构, 然后拼焊成整体。这样有利于控制变形,矫正也比较容易。

2.5.分布在侧面中心线两侧的焊缝,一般来说,先焊的一侧焊缝产生的弯曲变形比后焊的一侧焊缝产生的弯曲变形要大。因此焊接顺序总的规律是先焊焊缝少的一侧。对于截面形状对称的结构, 尽可能采用对称焊接方法。防止薄板焊接

变形的预拉伸法在薄板焊接骨架时, 采用机械的预拉伸, 加热的预拉伸, 或者

两者同时使用, 使薄板预先得到拉伸或伸长, 然后在张紧薄板上装配焊接骨架, 可以有效防止波浪变形。

3 结束语

火焰矫正引起的应力与焊接内应力一样都是内应力。不恰当的矫正产生的内应力与焊接内应力和负载应力迭加,会使柱、梁、撑的纵应力超过允许应力,从而导致承载安全系数的降低。因此在钢结构制造中一定要慎重,尽量采用合理的工艺措施以减少变形,矫正时尽量可能采用机械矫正。当不得不采用火焰矫正时应注意以下几点:

1)、烤火位置不得在主梁最大应力截面附近;

2)、矫正处烤火面积在一个截面上不得过大,要多选几个截面;

3)、宜用点状加热方式,以改善加热区的应力状态;

4)、加热温度最好不超过700度。

同时选用合理的焊接方法及焊接顺序也是减少焊接变形的一个重要措施。针对不同结构的构件需要不同的焊接方法。总之,焊接变形在一定程度上可以减少,不可避免的焊接变形采用合理的矫正办法进行矫正,这样才能使其达到符合产品质量的要求。

焊接应力与变形

4.2 焊接应力与变形: 4.2.1 焊接变形和残余应力的不利影响: 焊接变形 1.影响工件形状、尺寸精度 2.影响组装质量 3.增大制造成本———矫正变形费工、费时 4.降低承载能力———变形产生了附加应力 焊接应力 1.降低承载能力 2.引起焊接裂纹,甚至脆断 3.在腐蚀介质中,产生应力腐蚀裂纹 4.引起变形 4.2.2 焊接变形和应力的产生原因: 根本原因:对焊件进行的不均匀加热和冷却,如图6-2-8 焊接应力 焊接加热时,焊缝区受压力应力(因膨胀受阻,用符号“-”表示) 远离焊缝区手拉应力(用符号“+”表示) 焊后冷却时,焊缝受拉应力(因收缩受阻),远离焊缝区受压应力 焊接变形:当焊接应力超过金属σs时,焊件将产生变形 焊接应力和焊接变形总是同时存在,不会单独存在,当母材塑性较好,结构刚度较小时,焊接变形较大而应力较小;反之,则应力较大而变形较小。 4.2.3 焊接变形的控制和矫正:

4.2.3.1 焊接变形的基本形式,如图6-2-9 如图6-2-9 常见的焊接残余变形的类型 1、2---纵向收缩量3---横向收缩量4、5---角变形量f---挠度 (1)收缩变形:即焊件沿焊缝的纵向和横向尺寸减少,是由于焊缝区的纵向和横向收缩引起的。如图5-2-9 a (2)角变形:即相连接的构件间的角度发生改变,一般是由于焊缝区的横向收缩在焊件厚度上分布不均匀引起的。如图5-2-9b (3)弯曲变形:即焊件产生弯曲。通常是由焊缝区的纵向或横向收缩引起的。如图5-2-9c (4)扭曲变形:即焊件沿轴线方向发生扭转,与角焊缝引起的角度形沿焊接方向逐渐增大有关。如图5-2-9d (5)失稳变形(波浪变形):一般是由沿板面方向的压应力作用引起的。如图5-2-9e 4.2.3.2 控制焊接变形的措施 (1)设计措施(详见焊接结构设计) 尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状,合理安排焊缝位置──尽量使焊缝对称或接近于构件截面的中性轴(以减少弯曲变形)。如图6-2-10

浅谈钢结构焊接变形的火焰矫正方法

浅谈钢结构焊接变形的火焰矫正方法

浅谈钢结构焊接变形的火焰矫正方法 及焊接过程的规范问题 锅炉车间刘宝成 摘要:根据这些年的工作经验,结合相关焊接资料,文中阐述了钢制产品焊接变形的主要种类,以及本人对焊接变形的火焰矫正施工方法的粗浅看法以及在焊接方法中需要注意的规范问题。关键词:火焰矫正焊接变形 0引言 生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正,目前,钢制产品在生产建设工程和日常生活中得到了广泛的应用。而钢结构厂房的生产工艺的诞生,为现代建设工程增添了一道亮丽的风景线。然而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。这些构件在制作过程中都存在着焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。焊接钢结构产生的变形超过技术设计允许变形范围,就应设法进行矫正,使其达到符合产品质量的要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。但火焰矫正是一门较难操作的工作,方法掌握不当,、温度控制不当还会造成构件新的更大变形。因此,火焰矫正需要有丰富的实践工作经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗浅的分析。 1 钢结构焊接变形的种类和火焰矫正方法 火焰矫正法是利用火焰加热时产生的局部压缩塑性变形,使较长的金属在冷却后缩短来消除变形。此方法操作简单, 机动灵活, 适用面广。在使用时应注意控制火焰温度和加热位置。对低碳钢和普通低合金钢常采600~800℃的加热温度。由于需要再次加热, 对合金钢等慎用。以下为火焰矫正时的加热温度(材质为低碳钢)

注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16Mn在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。 钢结构焊接变形的种类与火焰矫正钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面简单介绍解决不同部位变形的校正施工方法。 1.1翼缘板的角变形矫正H型钢柱、梁、撑角变形。 在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。 1.2柱、梁、撑的上拱与下挠及弯曲。 1)、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避免产生弯曲和扭曲变形,两条加热带要同步进行。可采取低温矫正或中温矫正法。这种方法有利于减少焊接内应力,但这种方法在纵向收缩的同时有较大的横向收缩,较难掌握。 2)、翼缘板上作线状加热,在腹板上作三角形加热。用这种方法矫正柱、梁、撑的弯曲变形,效果显著,横向线状加热宽度一般取20—90mm,板厚小时,加热宽度要窄一些,加热过程应由宽度中间向两边扩展。线状加热最好由两人同时操作进行,再分别加热三角形三角形的宽度不应超过板厚的2倍,三角形的底与对应的翼板上线状加热宽度相等。加热三角形从顶部开始,然后从中心向两侧扩展,一层层加热直到三角形的底为止。加热腹板时温度不能太高,否则造成凹陷变形,很难修复。 注:以上三角形加热方法同样适用于构件的旁弯矫正。加热时应用中温矫正,浇水要少。柱、梁、撑腹板的波浪变形矫正波浪变形首先要找出凸起的波峰,用圆点加热法配合手锤矫正。加热圆点的直径一般为50~90mm,当钢板厚度或

防止和矫正钢结构焊接变形的方法

防止和矫正钢结构焊接变形的方法 钢结构离不开焊接,其连接普遍采用焊接,且对于一些重要焊缝一般都采用全熔透焊接。金属焊接时在局部加热、熔化过程中,加热区的金属与周边的母材温度相差很大,产生焊接过程中的瞬时应力。冷却至原始温度后,整个接头区焊缝及近缝区的拉应力区与母材在压应力区数值达到平衡,这就产生了结构本身的焊接残余应力。此时,在焊接应力的作用下焊接件结构发生多种形式的变形。残余应力的存在与变形的产生是相互转化的,认清变形规律,就不难从中找到防止减少和纠正变形的方法。 一、焊接变形的形式与原因 钢结构焊接后发生的变形大致可分为两种情况:即整体结构的变形和结构局部的变形。整体结构的变形包括结构的纵向和横向缩短和弯曲(即翘曲)。局部变形表现为凸弯、波浪形、角变形等多种。 1.变形常见基本形式 常见焊接变形基本形式有如下几种:板材坡口对焊后产生的长度缩短(纵向收缩)和宽度变窄(横向收缩)的变形;板材坡口对接焊接后产生的角变形;焊后构件的角变形沿构件纵轴方向数值不同及构件翼缘与腹板的纵向收缩不一致形成的扭曲变形;薄板焊接后母材受压应力区由于失稳而使板面产生翘曲形成的波浪变形;由于焊缝的纵向和横向收缩相对于构件的中和轴不对称引起构件的整体弯曲,此种变形为弯曲变形。

图1:焊接变形的基本形式 这些变形都是基本的变形形式,各种复杂的结构变形都是这些基本变形的发展、转化和综合。 2.焊接变形的原因 在焊接过程中对焊件进行了局部的、不均匀的加热是产生焊接应力及变形的原因。焊接时焊缝和焊缝附近受热区的金属发生膨胀,由于四周较冷的金属阻止这种膨胀,在焊接区域内就发生压缩应力和塑性收缩变形,产生了不同程度的横向和纵向收缩。由于这两个方向的收缩,造成了焊接结构的各种变形。 二、影响焊接结构变形的因素 影响焊接变形量的因素较多,有时同一因素对纵向变形、横向变形及角变形会有相反的影响。全面分析各因素对各种变形的影响,掌握其影响规律是采取合理措施控制变形的基础。否则,难以达到预期的效果。 1.焊缝截面积的影响:焊缝截面积是指熔合线范围内的金属面积,焊缝面积越大,冷却时收缩引起的塑性变形量越大。 2.焊接热输入的影响:一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大,不论对纵向、横向或角变形都有变形增大的影响。但在表面堆焊时,当热输入增大到一定程度时,由于整个板厚温度趋近,因而即使热输入继续增大,角变形不再增大,反而有所下降。 3.工件的预热、层间温度影响:预热温度和层间温度越高,相当于热输入增大,使冷却速度减慢,收缩变形增大。 4.焊接方法的影响:在建筑钢结构焊接常用的几种方法中,除电渣焊以外,埋弧焊热输入最大,在其他条件如焊缝面积等相同情况下,收缩变形最大。手工电弧焊热输入居中,收缩变形比埋弧焊小。CO2气体保护焊热输入最小,收缩变形响应也最小。 5.焊缝位置对变形的影响:由于焊缝位置在结构中不对称,焊缝位置不对称等将引起各种变形。 6.结构的刚性对焊接变形的影响:结构的刚性大小,主要取决于结构的形状和其截面大

钢结构焊接变形的控制与矫正

钢结构焊接变形的控制与矫正 一、前言 钢结构离不开焊接,焊接必然产生一定量的焊接变形,焊接变形的控制与矫正尤为重要,其焊接的质量和生产效率直接影响到钢结构的建造周期和使用寿命。 二、焊接变形产生的原因 电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。 (一)影响焊接热变形的因素 1.焊接工艺方法。不同的焊接方法,将产生不同的温度场,形成的热变形也不相同。一般来说,自动焊比手工焊加热集中,受热区窄,变形较小。CO2气体保护焊焊丝细,电流密度大,加热集中,变形小。 2.焊接参数。即焊接电流、电弧电压和焊接速度。线能量愈大,焊接变形愈大。焊接变形随焊接电流和电弧电压的增大而增大,随焊接速度增大而减小。在3个参数中,电弧电压的作用明

显,因此低电压高速大电流密度的自动焊变形较小。 3.焊缝数量和断面大小。焊缝数量愈多,断面尺寸愈大,焊接变形愈大。 4.施工方法。连续焊、断续焊的温度场不同,产生的热变形也不同。通常连续焊变形较大,断续焊变形最小。 5.材料的热物理性能。不同的材料,导热系数、比热和膨胀系数等均不相同,产生的热变形也不相同,焊接变形也不相同。 (二)影响焊接构件刚性系数的因素 1构件的尺寸和形状。随着构件刚性的增加,焊接变形愈小。 2胎夹具的应用。采用胎夹具,增加了构件的刚性,从而减少焊接变形。 3装配焊接程序。装配焊接程序能引起构件在不同装配阶段刚性的变化和重心位置的改变,对控制构件的焊接变形有很大的影响。 一般来说,焊接构件在拘束小的条件下,焊接变形大,反之,则变形小。 三、钢结构焊接变形的种类 任何钢结构的焊接变形,可分为整体变形和局部变形。整体变形就是焊接以后,整个构件的尺寸或形状发生的变化,包括纵向和横向收缩(总尺寸缩短),弯曲变形(中拱、中垂)和扭曲变形等。局部变形是指焊接以后构件的局部区域出现的变形,包括角变形和波浪变形等。

钢结构焊接变形的火焰矫正施工方法

钢结构焊接变形的火焰矫正施工方法 根据多年经验,结合国内同行相关资料,阐述钢结构变形的主要种类,介绍焊接变形的火焰矫正施工方法。 关键词:火焰矫正焊接变形施工方法 目前,钢结构已在厂房建筑中得到广泛的应用。而钢结构厂房的主要构件是焊接H型 钢柱、梁、撑。这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。 焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产 品质量要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形 来达到抵消已经发生的变形。 在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。因此,火焰矫正要有丰富的实践经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。 1钢结构焊接变形的种类与火焰矫正 钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面介绍解决不同部位的施工方法。 以下为火焰矫正时的加热温度(材质为低碳钢) 低温矫正500度?600度冷却方式:水 中温矫正600度?700度冷却方式:空气和水 高温矫正700度?800度冷却方式:空气 注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16Mn 在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。 1.1翼缘板的角变形 矫正H型钢柱、梁、撑角变形。在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。 1.2柱、梁、撑的上拱与下挠及弯曲 一、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避 免产生弯曲和扭曲变形,两条加热带要同步进行。可采取低温矫正或中温矫正法。这种方法

钢结构火焰校正方法

钢结构焊接变形的火焰校正方法 目前,钢结构已在厂房建筑中得到广泛的应用。而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。 焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。 在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。因此,火焰矫正要有丰富的实践经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。 1 钢结构焊接变形的种类与火焰矫正 钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面介绍解决不同部位的施工方法。 以下为火焰矫正时的加热温度(材质为低碳钢) 低温矫正 500度~600度冷却方式:水 中温矫正 600度~700度冷却方式:空气和水 高温矫正 700度~800度冷却方式:空气 注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16Mn在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。 1.1翼缘板的角变形 矫正H型钢柱、梁、撑角变形。在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。 1.2柱、梁、撑的上拱与下挠及弯曲 一、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避免产生弯曲和扭曲变形,两条加热带要同步进行。可采取低温矫正或

钢结构焊接变形的火焰矫正方法

钢结构焊接变形的火焰 矫正方法 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

钢结构焊接变形的火焰矫正方法 摘要火焰矫正是钢结构制作过程中解决焊接变形常用的一种方法,本文重点介绍了钢结构焊接变形火焰矫正方法的施工工艺。 关键词钢结构焊接变形矫正 1 前言 在XXX三期炼钢板坯,轨梁精整等厂房钢结构制作项目中,大部分是由宽翼缘焊接H型钢组成梁、柱等构件。这些构件在加工过程中存在焊接变形问题。这些焊接变形如果不矫正,对结构的整体安装和工程的安全可靠性都存在很大的影响。为此我主要采用了火焰矫正方法,使这些梁柱的焊接变形得到了很好矫正。 2 气体火焰矫正原理 金属具有热胀冷缩的特性,机械性能也随温度而变化。低碳钢(以Q235钢为 温度的关系如图1虚线所示,一般可简化为实线所示,即当例)的屈服极限σ s 温度在500οC以下,屈服极限基本无变化;温度高于600οC时,屈服极限接近于零。温度在500—600οC之间时呈线性变化。 当金属结构局部加热时,加热区的金属热膨胀受到周围冷金属的阻止,不能自由变形,某些部位的金属被塑性压缩。冷却后,残留的局部收缩使结构获得所需要的变形。 线状加热法 线状加热法的原理如图2所示,钢板表面被加热后,离加热点最近的表面温度上升最快,膨胀也最快,周围所受热影响较小,膨胀也很小,加热停止后,温度向周围扩散,被加热部分开始冷却,形状也渐次恢复,但又因钢板表面与空气 接触,热散较快,因而使表面被加热部分还未恢复原状就已固定下来。

随着冷却过程的持续(图2),在中性轴上侧的高温开始收缩,其收缩力使板向上弯曲,弯曲终止后,钢板两端各缩短a/2,中间却凸起a,这样总体积不变,重量也不变。火焰沿钢板直线方向移动,同时为使加热线增宽也可作横向摆动,形成长条形加热。 点状加热法 对薄板进行加热时,因板较薄,表面热量很快传递到内侧,高温部分贯通至整个板的横剖面。冷却时,上下表面冷却相同,中性轴上下侧的冷却收缩力也相同,所以加热时上下表面膨胀部分留下来,从而造成板整体缩短,但并没有弯曲。如图3所示。 缩短加工时加热点位置相对固定。这种方法一般用于矫正薄板波浪变形。加热温度和冷却介质 火焰矫正所用氧—乙炔混合比应为1:—1:之间的中性焰或氧化焰比较合适。 按火焰矫正的加热温度可分为低温矫正、中温矫正和高温矫正三种,相应的加热温度和冷却介质见表1所示。 2.3.1低温矫正低碳钢 根据图1中加热到500—600οC时,低碳钢的屈服极限已大幅度下降,加热到这个温度范围,可以起到火焰矫正的目的,且金相组织和机械性能不变。由于喷水、冷却速度快,火焰矫正效率高。这种方法我们在实际生产中采用较少。 2.3.2中温矫正 中温矫正时金属的加热温度在600—700οC,屈服极限σ 更接近零值。加热 s 温度仍在相变温度以下,金属组织没有相变,因此金属的机械性能也变化不大。中温矫正在我们实际生产中经常使用。 2.3.3高温矫正 这一温度范围内虽然存在金属组织的相变,但由于Q235、Q235F和Q345等钢材在空气中冷却后,仍然可以得到退火组织,其机械性能变化也不大。但如果加热温度过高,会引起奥氏体晶粒长大,冷却中得不到细化,则会增加金属的脆性,降低冲击韧性。 应注意,对Q345钢加热至相变温度的情况下不得使用水冷,否则将产生低碳马氏体,影响冲击韧性。

火焰校正方法

浅谈火焰校正 摘要由于材料、设备、运输等因素的影响,会引起原材料的变形,而在制造过程中有切割变形、焊接变形、运输变形及吊装变形;对于这些变形,通过实践与初步的理论分析,对校正的工序进行了探讨,并对校正的温度、加热时间、加热范围进行了研究,对校正的位置作了一般性讨论。 关键词火焰校正位置时间温度加热工序 在钢结构制造过程中,由于材料、设备、运输等因素的影响,会引起原 材料的变形。在制造过程中有切割变形、焊接变形、运输变形及吊装变形等。 在这些变形中,像原材料的变形可采用平板机或卷板机来消除变形,而像翼 板小于60毫米的“H、T”等规则物体的焊接变形则可以通过翼缘校直机校 正龟背,其它变形和大尺寸的工件的就无法通过校直机来校正,尤其是焊接 后的复杂外形就更加无法采用校直机校正,而是一般采用火焰校正的方法。 引起这些变形的原因是由于构件或原材料受到外力或者内力的作用,会 引起拉伸,压缩,弯曲,扭曲或复合变形。各种变形的产生原因分析如下: 原材料的变形: 生产时轧辊的变曲或间隙和速度分布不一致时会在宽度方向产生机械应 力引起变形;存放不当引起的变形,存放的多、堆放的时间长因自重而引起 朔性变形,运输吊装不正确会引起物体变形或将物体吊坏等。 切割变形: 因氧气乙炔火焰高温时切边的金属的冷热收缩不一致,使切口在切割加 热边向外弯曲,冷却后内应力使加热边向内弯曲. 组装变形: 组装时许多板料由于多方面的原因需要用外力强行组合,使得组装件在 焊接前就因残余应力而产生了变形。 焊接变形: 焊接产生的不均匀温度场使构件因焊接的热变形无法自由伸缩机遇产生 的温度应力造成的变形。加热温度达到一定程度就会影响组织的形变而造成

钢结构焊接变形的火焰矫正方法

钢结构焊接变形的火焰矫正方法 摘要火焰矫正是钢结构制作过程中解决焊接变形常用的一种方法,本文重点介绍了钢结构焊接变形火焰矫正方法的施工工艺。 关键词钢结构焊接变形矫正 1 前言 在XXX三期炼钢板坯,轨梁精整等厂房钢结构制作项目中,大部分是由宽翼缘焊接H型钢组成梁、柱等构件。这些构件在加工过程中存在焊接变形问题。这些焊接变形如果不矫正,对结构的整体安装和工程的安全可靠性都存在很大的影响。为此我主要采用了火焰矫正方法,使这些梁柱的焊接变形得到了很好矫正。 2 气体火焰矫正原理 金属具有热胀冷缩的特性,机械性能也随温度而变化。低碳钢(以Q235钢为例)的屈服温度的关系如图1虚线所示,一般可简化为实线所示,即当温度在500οC以下,屈极限σ s 服极限基本无变化;温度高于600οC时,屈服极限接近于零。温度在500—600οC之间时呈线性变化。 当金属结构局部加热时,加热区的金属热膨胀受到周围冷金属的阻止,不能自由变形,某些部位的金属被塑性压缩。冷却后,残留的局部收缩使结构获得所需要的变形。 2.1线状加热法 线状加热法的原理如图2所示,钢板表面被加热后,离加热点最近的表面温度上升最快,膨胀也最快,周围所受热影响较小,膨胀也很小,加热停止后,温度向周围扩散,被加热部分开始冷却,形状也渐次恢复,但又因钢板表面与空气接触,热散较快,因而使表面被加热部分还未恢复原状就已固定下来。

随着冷却过程的持续(图2),在中性轴上侧的高温开始收缩,其收缩力使板向上弯曲,弯曲终止后,钢板两端各缩短a/2,中间却凸起a,这样总体积不变,重量也不变。火焰沿钢板直线方向移动,同时为使加热线增宽也可作横向摆动,形成长条形加热。 2.2点状加热法 对薄板进行加热时,因板较薄,表面热量很快传递到内侧,高温部分贯通至整个板的横剖面。冷却时,上下表面冷却相同,中性轴上下侧的冷却收缩力也相同,所以加热时上下表面膨胀部分留下来,从而造成板整体缩短,但并没有弯曲。如图3所示。 缩短加工时加热点位置相对固定。这种方法一般用于矫正薄板波浪变形。 2.3加热温度和冷却介质 火焰矫正所用氧—乙炔混合比应为1:1.05—1:1.25之间的中性焰或氧化焰比较合适。 按火焰矫正的加热温度可分为低温矫正、中温矫正和高温矫正三种,相应的加热温度和冷却介质见表1所示。 表1:火焰矫正加工温度

钢结构焊接变形火焰矫正方法修订稿

钢结构焊接变形火焰矫 正方法 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

钢结构焊接变形的火焰矫正施工方法 , , , , 摘要:根据多年经验,结合国内同行相关资料,阐述钢结构变形的主要种类, 介绍焊接变形的火焰矫正施工方法。 关键词:火焰矫正焊接变形施工方法 目前,钢结构已在厂房建筑中得到广泛的应用。而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠 性。 焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。 在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。因此,火焰矫正要有丰富的实践经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。 1钢结构焊接变形的种类与火焰矫正 钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面 介绍解决不同部位的施工方法。 以下为火焰矫正时的加热温度(材质为低碳钢) 低温矫正500度~600度冷却方式:水 中温矫正600度~700度冷却方式:空气和水 高温矫正700度~800度冷却方式:空气注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16Mn在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。 翼缘板的角变形 矫正H型钢柱、梁、撑角变形。在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热; (2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。 柱、梁、撑的上拱与下挠及弯曲 一、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避免产生弯曲和扭曲变形,两条加热带要同步进行。可采取低温矫

如何防止焊接变形

如何防止焊接变形 1、焊接变形的种类: 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2、如何利用合理的装配焊接顺序来控制焊接残余变形? 不同的构件形式应采用不同的装配焊接方法。 1)结构截面对称、焊缝布置对称的焊接结构,采用先装配成整体,然后再按一定的焊接顺序进行生产,使结构在整体刚性较大的情况下焊接,能有效地减少弯曲变形。 例如,工字梁的装配焊接过程,可以有两种不同方案,见图4。若采用图4b所示的边装边焊顺序进行生产,焊后要产生较大的上拱弯曲变形;若采用图4c所示的整装后焊顺序,就可有效地减少弯曲变形的产生。

2)结构截面形状和焊缝不对称的焊接结构,可以分别装焊成部件,最后再组焊在一起见图5。图5b所示的方案由于焊缝1离中性轴距离较大,所以弯曲变形较大,而图5a所示的焊缝1 的位置几乎与上盖板截面中性轴重合,所以对整个结构的弯曲变形没有影响。 3、如何利用合理的焊接顺序来控制焊接残余变形? ⑴对称焊缝采用对称焊接当构件具有对称布置的焊缝时,可采用对称焊接减少变形。如 图4所示工字梁,当总体装配好后先焊焊缝1、2,然后焊接3、4,焊后就产生上拱的弯曲变形。 如果按1、4、2、3的顺序进行焊接,焊后弯曲变形就会减小。但对称焊接不能完全消除变形, 因为焊缝的增加,结构刚度逐渐增大,后焊的焊缝引起的变形比先焊的焊缝小,虽然两者方向 相反,但并不能完全抵消,最后仍将保留先焊焊缝的变形方向。 ⑵不对称焊缝先焊焊缝少的一侧因为先焊焊缝的变形大,故焊缝少的一侧先焊时,使它 产生较大的变形,然后再用另一侧多的焊缝引起的变形来加以抵消,就可以减少整个结构的变 形。

焊接变形校正(火焰法)、

钢结构焊接变形的火焰校正方法 钢结构焊接变形的火焰校正方法 目前,钢结构已在厂房建筑中得到广泛的应用。而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。 焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。 在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。因此,火焰矫正要有丰富的实践经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。 1 钢结构焊接变形的种类与火焰矫正 钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面介绍解决不同部位的施工方法。 以下为火焰矫正时的加热温度(材质为低碳钢) 低温矫正500度~600度冷却方式:水 中温矫正600度~700度冷却方式:空气和水 高温矫正700度~800度冷却方式:空气 注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16M n在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。 1.1翼缘板的角变形 矫正H型钢柱、梁、撑角变形。在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。 1.2柱、梁、撑的上拱与下挠及弯曲 一、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避免产生弯曲和扭曲变形,两条加热带要同步进行。可采取低温矫正或中温矫正法。这种方法有利于减少焊接内应力,但这种方法在纵向收缩的同时有较大的横向收缩,较难掌

火焰矫正的规范

1.火焰矫正的基本参数 火焰矫正基本参数主要有:加热温度、氧气与丙烷火焰燃烧比、加热速度、冷却速度和火焰能率等。 1.1火焰加热温度 火焰矫正根据材质、板厚和加热方法等不同情况,选择不同的加热温度。可分为低温加热、中温加热和高温加热。 1)低温加热 加热温度为500~600℃。适宜加热板厚小于6mm的钢板。适宜含碳量大于0.25%的碳素钢(Q235B)和低合金高强度钢(Q345B)火焰矫正。 2)中温加热 加热温度为600~700℃,适宜加热板厚6~12mm的钢板。对于含碳量大于0.35%的碳素钢(45#)和低合金高强度钢(Q345B)加热温度要控制准确,应采用测温笔或测温仪器测量,不得超过723℃。 3)高温加热 加热温度为723~850℃,适于大厚板加热,板厚14~16mm加热温度750~800℃,大于20mm厚板加热温度为850℃。含碳量大于0.35%钢(45#)和合金高强度钢(Q345B)不能采用高温加热矫正。 1.2火焰矫正加热温度的控制。 对于低碳钢来说,由于加热温度范围较宽。可近似地凭观察钢材的加热颜色估计加热温度或采用在矫正部位用“测温笔”做好记号,待加热到测温的温度“记号”融化则停止加热。 1 氧与丙烷燃烧比是指混合气体内氧气体积与丙烷体积的比值a,根据a的大小,把氧丙烷焰分成三种:a=1~1.2称中性焰,a>1.2称氧化焰:a<1为碳化焰。 (1)对于厚度在10mm以下的钢板,采用氧化焰。 (2)若使钢材均匀收缩,一般可采用中性焰。中性焰适合矫正10~30mm 厚度的钢板。 (3)对于厚度大于30mm以上的钢板,采用碳化焰缓慢加热,以便烤透钢板,避免钢材表面温度较高,而内部温度比较低的现象。 1.3火焰矫正的加热速度和冷却速度 1)火焰矫正加热速度

焊接应力与变形试题

第一章焊接应力和变形 一、判断题(在题末括号内,对的画√,错的画×) 1、焊接接头在焊接热循环过程中,形成拉伸应力应变,并随温度降低而降低。() 2、焊缝的纵向收缩量,随焊缝的长度、焊缝熔敷金属截面积的增加而增加,随焊件截面积的增加而减小。() 3、同样厚度的焊件,一次就填满焊缝时产生的纵向收缩量比多层焊大。() 4、横向收缩量随焊接热输入的提高而增加,随板厚的增加而减小。() 5、挠度f 是指焊件在焊后的中心轴偏离焊件原始中心轴的最大距离。() 6、焊缝纵向收缩量随焊缝及其两侧的压缩塑性变形区的面积和焊件长度的增加而增加。() 7、焊接对接接头的横向收缩量比较大。() 8、当焊缝不在焊件截面中性轴上时,只有纵向收缩才能引起挠曲变形。() 9、同样的板厚和坡口形式,多层焊要比单层焊角变形大,焊接层数越多,角变形越大。() 10、不同的焊接顺序焊后将产生不同的变形量,如焊缝不对称时,应先焊焊缝少的一侧,这样可以减小整个焊件的焊接变形。() 11、火焰校正角变形时,采用正面线状热源,背面跟踪水冷的效果最好。() 12、火焰校正横向收缩变形时,采用正面线状热源加热,同时再配以正面跟踪水冷的效果最好。() 13、采用火焰加热与水冷却联合校正时,要在受加热的钢材没失去红热态前浇水。() 14、角焊缝的纵向收缩量,与角焊缝横截面积有关,与焊接接头总横截面无关。() 15、铝比钢的导热率和线膨胀系数大,所以,铝的横向收缩量也较大。() 16、角焊缝与对接焊缝相比,其横向收缩量大。() 17、角变形是焊接过程中焊接区内沿板材厚度方向不均匀的纵向收缩而引起的回转变形()

18、角变形是由于坡口形状不对称,是纵向收缩在厚度方向上分布不均匀造成的。() 19、坡口角度对角变形影响很大。() 20、焊缝截面形状对角变形量的影响不大。() 21、T型接头角焊缝所引起的角变形,主要取决于焊角尺寸大小,与焊件厚度无关。() 22、偏离焊件截面中性轴的纵向焊缝,只能引起焊件的纵向收缩,不会引起弯曲变形。() 23、工字梁的弯曲变形,与焊件的长度成正比,与焊缝距中性轴的偏心距成反比。() 24、工字梁的弯曲变形,与焊件截面惯性距成正比,与材料的弹性模量成反比。() 25、为减小波浪变形,可采取措施:降低焊接压应力和降低临界应力。() 26、焊前装配不良,在焊接过程中会产生错边变形。() 27、焊接接头两侧金属受热不平衡是产生错边的主要原因。() 28、扭曲变形是由于焊件装配不良,施焊顺序或方向不当,使焊缝纵向或横向收缩变形或角变形产生不均匀、不对称而引起的。() 29、焊缝在焊件中的不对称布置,容易引起角变形。() 30、焊接接头重心与焊件截面重心不重合,容易引起角变形。() 31、焊缝在焊件中的对称布置,不仅引起收缩变形,而且还引起角变形。() 32、焊件抵抗弯曲变形的刚性主要取决焊件的截面积。() 33、非对称布置的焊缝,应先焊焊缝长的一侧,后焊焊缝短的一侧。() 34、焊接过程中采用的热输入越大,产生的热压缩塑性变形也越大,焊接变形也大。() 35、焊件坡口尺寸越大,填充金属越多,变形就越大。() 36、1m 以上的长焊缝,采用从中心向两端焊或逐段跳焊,焊后变形最小。() 37、采用间断角焊缝代替连续角焊缝,可显著的减小纵向弯曲变形。() 38、园筒体纵向焊缝横向收缩引起的直径误差,可通过预留收缩余量法加以克服。

薄板结构件焊接变形的控制与矫正

薄板结构件焊接变形的控制与矫正 一、前言 薄板结构件一般指由厚度不大于4毫米的钢板(包括不锈钢板、镀锌板、白铁皮)组焊而成的结构件。在焊接过程中,不可避免会产生一些变形,下面就针对变形控制与矫正进行探讨。 二、焊接变形产生的原因 电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。 二、焊接变形产生的原因 电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。 二、焊接变形产生的原因 电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。 (一)影响焊接热变形的因素 1.焊接工艺方法。不同的焊接方法,将产生不同的温度场,形成的热变形也不相同。一般来说,自动焊比手工焊加热集中,受热区窄,变形较小。CO2气体保护焊焊丝细,电流密度大,加热集中,变形小。 2.焊接参数。即焊接电流、电弧电压和焊接速度。线能量越大,随焊接速度增大而减小。在3个参数中,电弧电压的作用明显,

因此低电压高速大电流密度的自动焊变形较小。3.焊缝数量和断面大小。焊缝数量越多,断面尺寸越大,焊接变形越大。4.施工方法。连续焊、断续焊的温度场不同,产生的热变形也不同。通常连续焊变形较大,断续焊变形最小。5.材料的热物理性能。不同的材料,导热系数、比热和膨胀系数等均不相同,产生的热变形也不相同,焊接变形也不相同。 (二)影响焊接构件刚性系数的因素 1构件的尺寸和形状。随着构件刚性的增加,焊接变形越小。2胎夹具的应用。采用胎夹具,增加了构件的刚性,从而减少焊接变形。3装配焊接程序。装配焊接程序能引起构件在不同装配阶段刚性的变化和重心位置的改变,对控制构件的焊接变形有很大的影响。一般来说,焊接构件在拘束小的条件下,焊接变形大,反之,则变形小。 三、薄板结结构焊接变形的种类 任何钢结构的焊接变形,可分为整体变形和局部变形。整体变形就是焊接以后,整个构件的尺寸或形状发生的变化,包括纵向和横向收缩(总尺寸缩短),弯曲变形(中拱、中垂)和扭曲 变形等。局部变形是指焊接以后构件的局部区域出现的变形,包括角变形和波浪变形等。 四、控制薄板结结构焊接变形的原则与方法 焊接过程中的热变形和施焊时焊接构件的刚性条件是影响焊接残余变形的两个主要因素。根据这两个主要因素可以认为焊接残余变形是不可避免的,即完全消除焊接变形是不太可能的。控制焊接残余变形必须从薄板结构件设计和施工工艺两个方面同时采取措施。

钢结构焊接变形的火焰矫正施工方法

钢结构焊接变形的火焰矫正施工方法 发表时间:2009-04-08T14:16:57.280Z 来源:《科海故事博览•科教创新》2009年第3期供稿作者:庞博[导读] 阐述钢结构变形的主要种类,介绍焊接变形的火焰矫正施工方法。 摘要:根据多年经验,结合国内同行相关资料,阐述钢结构变形的主要种类,介绍焊接变形的火焰矫正施工方法。关键词:火焰矫正焊接变形施工方法目前,钢结构已在厂房建筑中得到广泛的应用。而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。因此,火焰矫正要有丰富的实践经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。 一、钢结构焊接变形的种类与火焰矫正钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面介绍解决不同部位的施工方法。以下为火焰矫正时的加热温度(材质为低碳钢)低温矫正 500度~600度冷却方式:水中温矫正 600度~700度冷却方式:空气和水高温矫正 700度~800度冷却方式:空气注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16Mn在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。 1. 翼缘板的角变形 矫正H型钢柱、梁、撑角变形。在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。 2.柱、梁、撑的上拱与下挠及弯曲在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避免产生弯曲和扭曲变形,两条加热带要同步进行。可采取低温矫正或中温矫正法。这种方法有利于减少焊接内应力,但这种方法在纵向收缩的同时有较大的横向收缩,较难掌握。翼缘板上作线状加热,在腹板上作三角形加热。用这种方法矫正柱、梁、撑的弯曲变形,效果显著,横向线状加热宽度一般取20—90mm,板厚小时,加热宽度要窄一些,加热过程应由宽度中间向两边扩展。线状加热最好由两人同时操作进行,再分别加热三角形三角形的宽度不应超过板厚的2倍,三角形的底与对应的翼板上线状加热宽度相等。加热三角形从顶部开始,然后从中心向两侧扩展,一层层加热直到三角形的底为止。加热腹板时温度不能太高,否则造成凹陷变形,很难修复。注:以上三角形加热方法同样适用于构件的旁弯矫正。加热时应采用中温矫正,浇水要少。3.柱、梁、撑腹板的波浪变形矫正波浪变形首先要找出凸起的波峰,用圆点加热法配合手锤矫正。加热圆点的直径一般为50~90mm,当钢板厚度或波浪形面积较大时直径也应放大,可按d=(4δ+10)mm(d为加热点直径;δ为板厚)计算得出值加热。烤嘴从波峰起作螺旋形移动,采用中温矫正。当温度达到600~700度时,将手锤放在加热区边缘处,再用大锤击手锤,使加热区金属受挤压,冷却收缩后被拉平。矫正时应避免产生过大的收缩应力。矫完一个圆点后再进行加热第二个波峰点,方法同上。为加快冷却速度,可对Q235钢材进行加水冷却。这种矫正方法属于点状加热法,加热点的分布可呈梅花形或链式密点形。注意温度不要超过750度。 二、结语 火焰矫正引起的应力与焊接内应力一样都是内应力。不恰当的矫正产生的内应力与焊接内应力和负载应力迭加,会使柱、梁、撑的纵应力超过允许应力,从而导致承载安全系数的降低。因此在钢结构制造中一定要慎重,尽量采用合理的工艺措施以减少变形,矫正时尽量可能采用机械矫正。当不得不采用火焰矫正时应注意以下几点:1.烤火位置不得在主梁最大应力截面附近;2.矫正处烤火面积在一个截面上不得过大,要多选几个截面;3.宜用点状加热方式,以改善加热区的应力状态;4.加热温度最好不超过700度。

焊接变形的火焰矫正

焊接变形的火焰矫正 隧盔越 焊接变形的火焰矫正 山东常林机械集团股份有限公司(临沭276715)王绪桥在l丁程机械产品中,钢制结构件在制做过程中,常 因施焊过程中的热胀冷缩,构件布局及工艺等因素的影响,引起结构件产生变形.虽然对其采取了一系列预防和控制措施,但最后的变形量仍会超过设计允许变形范围.针对构件各种不同形式的变形,必须选择合适的矫正方法,一般刚性较大的结构件产生的弯曲变形,尤其大型结构件,不易采用冷矫正方法,否则会产生较大的叠加应力或裂纹,这时应在焊接部位与所对称的位置采用火焰矫正. 火焰矫正主要应用于焊接性能好的低碳钢和强度较 低的低合金钢.火焰矫正是把焊后的凸面部分加热使其热胀,一开始加热时有明显的凸形,而加热到500℃以上时,塑性明显增大,但一般不应>800℃,这时反向 抗力即可克服其膨胀力,不再伸长.当冷却时,加热部 分会收缩,中问部分收缩最大,比原来状态变得更短些,从而达到矫正目的,使焊件恢复正确尺寸,形状.

实质上火焰矫正是利用金属局部受火焰加热后的冷却收缩所产生的张力去拉直原来已经产生的各种焊接变形. 一 ,火焰矫正的关键 准确的加热位置,适宜的加热温度,合适的加热深 度,正确的矫正顺序以及合理加热方式这五个方面是提高火焰矫正效果的关键.不同的加热位置可以矫正不同方向的变形,不同的加热温度,可以获得不同的矫正变 形能力.而与加热后的冷却速度关系不大,但冷却速度 增大,会使金属变脆,可能引起裂纹. 1.加热位置的确定 并不是所有的变形位置都是矫正的正确位置,变形 往往存在于刚性较差的部位. 加热位置一定要选择存焊件变形后的凸面部分,如 果选择在变形的凹面,则变形将越矫越大.所以说如果 加热位置定错了,不但矫正不了变形,有时甚至还会得 囡芏笪兰塑塑堡型.热舡 WWW.meta1working1950com 到相反的结果.另外注意不要在同一位置反复加热,同 一 部位加热不得超过两次,加热位置通常都远离焊缝. 2.加热温度

相关文档
最新文档