超精密加工的机床设备

超精密加工的机床设备
超精密加工的机床设备

超精密加工的机床设备

摘要:超精密加工技术的发展直接影响整个国家的制造业发展,影响尖端技术和国防工业的发展。机床是实现超精密加工的重要载体,机床的制造水平和研究水平便显得非常的重要。本文在论述目前国内外超精密加工机床的现状的同时,介绍了国内外有代表性的几种超精密加工机床,并介绍分析了超精密机床的精密主轴部件、进给驱动系统、误差建模和补偿技术和数控技术。

关键词:超精密加工机床发展关键技术

1.引言

制造业是一个国家或地区国民经济的重要支柱,其竞争能力最终体现在新生产的工业产品市场占有率上,而制造技术则是发展制造业并提高其产品竞争力的关键。精密和超精密加工技术是制造业的前沿和发展方向。精密和超精密加工技术的发展直接影响到一个国家尖端技术和国防工业的发展,世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅猛发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平面、曲面和复杂形状的加工需求日益迫切。目前,国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。

最近几年,我国的机床制造业虽然发展很快,年产量和出口量都明显增加,成为世界机床最大消费国和第一大进口国,在精密机床设备制造方面取得不小进展,但仍和国外有较大差距。我国还没有根本扭转大量进口昂贵的数控和精密机床、出口廉价中低档次机床的基本状况。由于国外对我们封锁禁运一些重要的高精度机床设备和仪器,而这些精密设备仪器正是国防和尖端技术发展所迫切需要的,我们必须投入必要的人力物力,自主发展精密和超精密加工机床,使我国的国防和科技发展不会受制于人。

2.超精密机床的发展现状

2.1国外超精密机床发展现状

目前在国际上处于领先地位的国家有美国、英国和日本, 这3个国家的超精密加工装备不仅总体成套水平高, 而且商品化的程度也非常高。各国主要代表性研究机构及机床综述如下。

1962年美国Union Carbide公司研制成功半球车床, 它是最早使用金刚石刀具实现超精密镜面切削的机床, 可用于加工球形和半球形零件, 机床为立式布局, 电动机通过带轮带动主轴旋转, 主轴采用高精度空气轴承, 加工件尺寸精度为0.6μm, 表面粗糙度Ra为0.025μm以内。美国LLNL 实验室于20世纪80年代研制成功两台大型超精金刚石车床。一台是卧式DTM-3超精密金刚石车床, 该机床为T 形结构, 采用多路激光干涉测量系统, 可对各轴进行直线和偏移误差补偿。其系统分辨率为215nm, 最大加工直径为Φ2100mm, 加工精度方面: 形状误差可达28nm, 圆度和平面度可达12.5nm, 表面粗糙度Ra可达4.2nm。另一台是立式大型光学金刚石车床LODTM, 机床主轴系采用液体静压轴承, 位置测量系统采用分辨率为0.625nm 的7路双频激光测量系统, 50r/m in时的主轴回转精度小于51nm, 加工精度可达28nm, 可加工直径1.65m、高0.5m、质量1 360kg 的工件。现在仍被公认为世界上精度最高的超精密机床。

图1 美国LLNL实验室研制的LODTM车床

美国Moore Nanotechnology System 公司生产的超精密金刚石车床Nanotech 250UPL, 代表着纳米级加工机床的发展水平。机床床身采用天然黑花岗岩结构, 控制系统采用激光全息式直线移动的全闭环控制系统, 分辨率高达0.034nm, 采用了基于PC 和Windows的运动控制系统, 线性编程精度为1nm、旋转编程精度为01000 01°, 高纯度铝合金加工试件的加工精度P-V 值小于等于0.125μm, 表面粗糙度Ra2.0 nm。

图2 Nanosys300 非球面复合加工系统

欧洲的许多国家也进行了超精密机床的开发研究。荷兰PHILPHS公司于1978年研制成功了CNC超精密金刚石车床COLATH, 主要用于非球面塑料透镜的加工, 加工精度在0.5μm 以下, 表面粗糙度Ra< 0.02μm。英国Cranfield精密加工中心于1991年研制成功OAGM 2500 多功能三坐标联动数控磨床, 其工作台尺寸为2 500mm *2 500mm。该机床采用油膜轴承技术, 有利于减小振动, 实现运动的平稳控制。其无损磨削速度可达100~ 300mm3 /min,加工表面粗糙度为10~ 50nm, 形状误差小于5μm /m,亚表面损伤小10μm。Cranfield大学Paul Shore 等人设计制造了新型超精密磨床BOX, 机床主轴采用油膜轴承, 功率可达10kW, 材料切削速度可达200mm3 / s。该机床具有较好的动静态特性, 其静态刚度大于100N, 运动件质量小于750kg, 共振频率大于100Hz。亚表面损伤P-V 值小于1μm。

日本TOYOTA公司生产的AHNIO型高效专用超精密车床, 机床主轴采用空气轴承, 最大加工直径为100mm, 刀架设计成滑板结构。直线移动分辨率为

0.01μm, 采用激光测量反馈系统, 定位精度全行程0.03μm, B 轴回转分辨率为

1.3°。砂轮轴由气动透平驱动, 转速为100 000r/min。该机床加工的模具形状精度为0.05μm, 表面粗糙度Ra0.025μm。日本FANUC公司研制的ROBONANO A-0 iB超精密加工机床, 该机床利用了FANUC 公司的纳米级控制技术, 直线轴(X、Y、Z ) 分辨率可达1nm, 旋转轴(B、C ) 分辨率为0.000 01°。机床的运动部件全部采用空气静压支承结构(导轨、进给丝杆螺母副、驱动电机), 将系统的摩擦减小为0。机床的发热量仅为5W, 通过供给机床压缩空气可使温升控制在±0.01℃。利用该机床可实现铣削、车削和高速刻绘加工。

2.2国内超精密机床发展现状

北京机床研究所自主研发了一系列具有自主知识产权的超精密机床, 如SQUARE 系列超精密光学镜面铣床、SPHERE200 超精密球面镜加工机床、NANO-TM 500纳米级车铣复合加工机床和NAM-820超精密数控车床。这些机床的轴系精度小于等于0.05μm, 导轨精度达0.1μm /200mm, 加工件(有色金属) 表面粗糙度Ra≤0.002μm。其中NAM-820超精密数控车床, 采用具有自主知识产权、获得国家科技进步一等奖的超精密气体静压主轴, 确保主轴的回转精度小于0.05μm。X 轴、Z 轴采用高精度气体静压导轨, 位置反馈元件采用高精度双频激光干涉仪, 分辨率为0.01μm, 专用数控系统分辨率高达0.001μm。NANO-TM500纳米级车铣复合加工机床是目前我国最新一代的纳米级加工机床。机床溜板采用直线电机对称双驱动结构, 最小移动控制量为1nm,机床回转工作台采用空气静压轴承、高分辨率直接驱动结构, 回转精度为0.005μm, 机床主轴采用高精度空气静压轴承、整体电主轴结构, 回转精度为0.005μm, 加工件表面粗糙度Ra≤5nm。

哈尔滨工业大学研制的型号为HCM- I亚微米超精密加工车床, 主轴精度小于等于50nm, 径向刚度220N /Lm, 轴向刚度160N /Lm, 导轨Z 向(主轴) 直线度小于等于0.2μm /100mm, X 向(刀架)直线度小于等于0.2μm /100mm, 加工工件精度形面精度(圆度) 小于等于0.1μm。

三零三所研制的Nanosys-300、CJY-500和COMM等超精密机床已达到国际先进水平。C JY-500超精密研磨机的加工工件平面度为0.03μm /50×50mm,加工工件表面粗糙度Ra 为0.000 3μm。Nanosys-300非球面曲面超精密复合加工机床,

加工工件尺寸最大为<300×200mm, 测量、控制系统分辨率1.25~5nm, 非球面加工精度为0.3μm, 加工工件表面粗糙度Ra< 10nm。COMM 超精密万能外(内) 圆磨床的最大加工工件尺寸为<250×500mm, 加工工件圆度为0.1~ 0.3mm, 加工工件圆柱度为0.51mm, 加工工件表面粗糙度Ra为0.005~ 0.02mm。

3.超精密加工机床的关键部件

超精密机床的质量,取决于关键部件的质量。世界各国都投入大量的人力物力,对超精密机床关键部件和关键技术进行开发研究。精密部件包括有:精密主轴部件、微进给装置、机床运动部件位移的激光在线监测装置。

3.1精密主轴部件

精密主轴部件是超精密机床保证加工精度的核心。主轴要求达到最高的回转精度,转动平稳,无振动,其关键在于所用的精密轴承。早期采用的是超精密级的滚动轴承,采用这种轴承,美国、瑞士制造的超精密机床,加工精度可达1μm,加工的表面粗糙度达Ra0.04~0.02μm。制造如此高精度的滚动轴承很难办到,在液体静压轴承和空气静压轴承使用后,滚动轴承已经很少在超精密机床中使用了。

3.1.1液体静压轴承

液体静压轴承回转精度高,转动平稳,无振动,因此部分超精密机床主轴使用这种轴承。压力油通过节流孔进入轴承偶合面间的油隙,使轴在轴套内悬浮,不产生固体摩擦。当轴受力偏歪时,偶合面的油隙改变,造成相对油腔中油压不等,这油的压力差将推动轴回到原来的中心位置。液体静压轴承可达到较高的刚度。液体静压推力轴承,一般由两个相对的止推面做在轴的同一端。这是因为液体静压轴承工作转动时常产生较大的温升,如两个相对的止推面分别在轴的两端,当温度升高时轴的长度增加,造成推力轴承间隙的明显变化,使轴承的刚度和承载能力显著下降。

液体静压轴承主轴结构图

3.1.2空气静压轴承

空气静压轴承的工作原理和液体静压轴承类似,轴由压力空气浮在轴套内,轴的中心位置由相对面的静压空气压力差维持。由于空气的流动性好,因此轴承两耦合面间(轴与轴套之间)的空气泄气间隙很小。轴套中的空气腔面积很小,或在空气输入的节流孔端作一倒棱,或沿轴向作一窄槽,两端均留较长的无槽泄气面。由于这种轴承的轴与套之间的间隙很小,回转精度要求又高,故轴与轴套都要求很高的制造精度。空气静压轴承有很高的回转精度,在高速旋转时温升很小,因此造成的热变形误差很小,空气轴承的应用促进超精密加工机床的发展。空气静压轴承的主要问题是刚度低,只能承受较小的载荷。

最新的研究成果表明,在传统空气静压和液体静压轴承的基础上,通过控制节流量反馈方法来实现运动的主动控制从而提高轴承的刚度。磁悬浮主轴技术,永磁、电磁和气浮结合的控制方案也一直在研究中。多孔材料的气浮轴承可以提高气浮轴承的刚度。液体静压轴承具有刚度高、动态特性好等特点,但发热是其致命的弱点,水静压轴承的研制正是针对这一问题进行的。与油静压轴承相比,这种轴承的优点是轴承发热较小,适合于高速运转,而且没有污染,特别适合硅片加工等行业。

3.2进给驱动系统

超精密机床需要用力啊加工非球曲面,刀具相对于工件需要作精密的纵向(z 向)和横向(x向)运动,因此需要有z向和x向的精密进给系统。精密进给系统由精密数控系统和直线运动执行机组成。为加工出精度很高的非球镜面,要求数控系统为2轴(或3轴)联动并具有很高的分辨力,要求直线运动机构有很高

的直线运动精度和高分辨力的位移精度。

3.2.1精密数控系统

对超精密机床,刀具相对于工件需要纵向和横向的运动,因此需要有纵向和横向精密数控系统驱动。超精密机床都需要加工非球曲面,因此需要双坐标联动的精密数控系统。为了要加工出形状精度很高的非球曲面,要求精密数控系统要有好的分辨率,达到数控系统妹脉冲在纵向和横向的位移量为0.01μm。精密数控系统现在使用直流伺服电动机或交流伺服电动机,用精密的在线双频激光测量系统检测纵向和横向的位移,反馈给精密数控系统形成闭环控制系统,以达到位移精度。最近步进电机脉冲转角细分技术有了进一步的发展,实现了更小角度转动,提高了转角位移的分辨力,但是完全满足超精密机床精密位移分辨力的要求,步进电机尚需提高。

3.2.2滚珠丝杠副驱动

滚珠丝杠的滚珠在丝杠和螺母的螺纹槽中滚动,因此摩擦力小。丝杠的螺纹槽经过精密磨削,可以达到很高的精度。滚珠在螺母内有再循环通道,因此行程长度不受滚珠的限制。滚珠丝杠副要求正转和反转没有回程间隙,否则数控系统控制进给将得不到要求的精度,这要求滚珠丝杠和配合的螺母有一定的预载过盈。由于丝杠的螺母有一定的误差,故螺母在丝杠上不同的位置过盈量将会有变化。如预载应力太小则可能在丝杠的某位置出现间隙,如预载应力太大,在丝杠的某些位置可能转动不灵活。为能方便精确地调整预载应力,精密级和高精密级的滚珠丝杠的螺母常做成两段组合。现在高精密级的滚珠丝杠副可以做到相邻的螺距误差0.5~1μm,积累误差在3~5μm/300nm。

3.2.3摩擦驱动

为进一步提高导轨运动的平稳性和精度,现有些超精密机床的导轨驱动采用摩擦驱动,经实践应用,摩擦驱动使用的效果很好,优于滚珠丝杠副的驱动。和导轨运动相联的驱动杆夹在两个摩擦轮之间。上摩擦轮是用弹簧压板压在驱动杆上,当弹簧压板压力足够时,摩擦轮和驱动杆之间将无滑动。两个摩擦轮均有静压轴承支撑,可以无摩擦转动。下摩擦轮和电机相连,带动下摩擦轮旋转,靠摩擦力带动驱动杆,带动导轨做非常平稳的直线运动。

3.3误差建模和补偿技术

用变分法精度、多体动力学等分析误差建模理论,可以将刀具几何参数、加工工艺条件及机床运动误差三大因素对加工工件的精度影响准确的建立数学模型。近年来一些数学工具如微分几何、李代数和李群在复杂几何形状误差的评定和分析方面得到了一些应用,并有望在超精密机床误差分析中得到运用。在机床运动精度和工件形状精度处于同一数量级时,多传感器误差分离方法是分离误差最有效的方法之一。例如,对主轴运动误差和工件圆度误差的分离,溜板运动误差与工件直线度的分离等。圆度三点法技术己相当成熟,在直线度测量中,多传感器安装误差和测量加密算法已得到很好解决,因此,圆度和直线度误差分离技术可顺利地推广到圆柱度、平面度超精密误差测量与补偿控制领域。

3.4数控系统

超精密机床数控系统的特点是高编程分辨率(1nm)和高精度的伺服控制软硬环境。在高编程分辨率条件下满足高质量切削条件,意味着需要高的控制速度,例如插补周期小1ms ( 普通数控为10ms左右),伺服闭环采样周期小于0.1ms。

4.结论

随着航空、航天、生物化学、地球物理等学科技术的迅猛发展,对精密和超精密加工技术的发展提出了更高的要求,精密和超精密加工机床的需求也越来越高。相关领域研发人员应充分将人、组织、技术有机结合起来,研制并生

产出各个领域所需的精密和超精密加工机床,提高我国整体工业水平,为国防与尖端技术的发展打下坚实的基础。

参考文献

[1] 袁哲俊. 纳米科学与技术[M]. 哈尔滨:哈尔滨工业大学出版社,2005:150-156.

[2] 伍娜. 世界机床生产及消费情况[J]. 数控机床市场,2006(1):110-113.

[3] 秦树国. 2007 年的中国机床市场[J]. 数控机床市场,2007(2):44-47.

[4] 袁哲俊,王先逵. 精密和超精密加工技术[M]. 2 版. 北京:机械工业出版社,2007:180-200.

[5] 王立鼎,凌四营,马勇,等. 精密、超精密圆柱渐开线齿轮的加工方法[J]. 光学精密工程,2009,17(2):

[6] 北京机床研究所.主要产品[EB/OL].[2008-11-15]. https://www.360docs.net/doc/0d4506618.html,/

[7] 北京航空精密机械研究所.主要产品[EB/OL].[2008-11-10]. https://www.360docs.net/doc/0d4506618.html,

精密和超精密加工的应用和发展趋势

精密和超精密加工的应用和发展趋势 [摘要]本文以精密和超精密加工为研究对象,对世界上精密和超精密加工的应用和发展趋,势进行了分析和阐释,结合我国目前发展状况,提出今后努力方向和发展目标。 【关键词】精密和超精密加工;精度;发展趋势 精密和超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。 美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在20世纪50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件¢2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。 在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。 日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,是以民品应用为主要对象。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。 我国的精密、超精密加工技术在20世纪70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超

超精密加工的机床设备

超精密加工的机床设备 摘要:超精密加工技术的发展直接影响整个国家的制造业发展,影响尖端技术和国防工业的发展。机床是实现超精密加工的重要载体,机床的制造水平和研究水平便显得非常的重要。本文在论述目前国内外超精密加工机床的现状的同时,介绍了国内外有代表性的几种超精密加工机床,并介绍分析了超精密机床的精密主轴部件、进给驱动系统、误差建模和补偿技术和数控技术。 关键词:超精密加工机床发展关键技术 1.引言 制造业是一个国家或地区国民经济的重要支柱,其竞争能力最终体现在新生产的工业产品市场占有率上,而制造技术则是发展制造业并提高其产品竞争力的关键。精密和超精密加工技术是制造业的前沿和发展方向。精密和超精密加工技术的发展直接影响到一个国家尖端技术和国防工业的发展,世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅猛发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平面、曲面和复杂形状的加工需求日益迫切。目前,国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。 最近几年,我国的机床制造业虽然发展很快,年产量和出口量都明显增加,成为世界机床最大消费国和第一大进口国,在精密机床设备制造方面取得不小进展,但仍和国外有较大差距。我国还没有根本扭转大量进口昂贵的数控和精密机床、出口廉价中低档次机床的基本状况。由于国外对我们封锁禁运一些重要的高精度机床设备和仪器,而这些精密设备仪器正是国防和尖端技术发展所迫切需要的,我们必须投入必要的人力物力,自主发展精密和超精密加工机床,使我国的国防和科技发展不会受制于人。

精密和超精密加工论文

精密和超精密加工论文 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,

精密和超精密加工技术复习思考题答案

精密和超精密加工技术复习思考题答案 第一章 1.试述精密和超精密加工技术对发展国防和尖端技术的重要意义。 答:超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。制造惯性仪表,需要有超精密加工技术和相应的设备。 尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。 2.从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工。 答:通常将加工精度在0.1-lμm,加工表面粗糙度在Ra 0.02-0.1μm之间的加工方法称为精密加工。而将加工精度高于0.1μm,加工表面粗糙度小于Ra 0.01μm的加工方法称为超精密加工。 3.精密和超精密加工现在包括哪些领域。 答:精密和超精密加工目前包含三个领域: 1)超精密切削,如超精密金刚石刀具切削,可加工各种镜面。它成功地解决了高精度陀螺仪,激光反射镜和某些大型反射镜的加工。 2)精密和超精密磨削研磨。例如解决了大规模集成电路基片的加工和高精度硬磁盘等的加工。 3)精密特种加工。如电子束,离子束加工。使美国超大规模集成电路线宽达到0.1μm。 4.试展望精密和超精密加工技术的发展。 答:精密和超精密加工的发展分为两大方面:一是高密度高能量的粒子束加工的研究和开发;另一方面是以三维曲面加工为主的高性能的超精密机械加工技术以及作为配套的三维超精密检测技术和加工环境的控制技术。 5.我国的精密和超精密加工技术和发达国家相比情况如何。 答:我国当前某些精密产品尚靠进口,有些精密产品靠老工人于艺,因而废品率极高,例如现在生产的某种高精度惯性仪表,从十几台甚至几十台中才能挑选出一台合格品。磁盘生产质量尚未完全过关,激光打印机的多面棱镜尚不能生产。1996年我国进口精密机床价值达32亿多美元(主要是精密机床和数控机床)。相当于同年我国机床的总产值,某些大型精密机械和仪器国外还对我们禁运。这些都说明我国必须大力发展精密和高精密加工技术。 6.我目要发展精密和超精密加工技术,应重点发展哪些方面的内容。

精密和超精密加工现状与发展趋势

精密和超精密加工现状与发展趋势 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1μ;m,表面粗糙度为Ra0.1~0.01μ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μ;m,最好可到Ra0.025μ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 e. 抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。手工或机械抛光加工后工件表面粗糙度Ra≤0.05μ;m,可用于平面、柱面、曲面及模具型腔的抛光加工。超声波抛光加工精度0.01~0.02μ;m,表面粗糙度Ra0.1μ;m。化学抛光加工的表面粗糙度一般为Ra≤0.2μ;m。电化学抛光可提高到Ra0.1~0.08μm。 超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。 超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对

浅析超精密加工机床现状及展望

浅析超精密加工机床现状及展望 张建锋学号:11309017 (汕头大学机械工程学院广东) 摘要:本文主要讨论超精密加工以及加工机床的发展历程、国内外现状、关键技术要点以及展望。通过对超精密加工机床的现状和难点分析,总结了未来超精密加工机床的发展趋势,并且具体给出了超精密加工机床的重点需要突破革新的要点和对策。 关键字:超精密加工、超精密加工机床、精度、效率。 0 前言 超精密加工技术是20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的一种加工技术。超精密加工技术是现代制造技术之一,它与传统加工在加工方法、加工精度等方面有着本质的区别,是零件加工精度和质量的飞跃。超精密加工是世界科技发展的重要前沿领域,主要包含有超精密制造、超精密检测、超精密环境控制及其各类辅助研究分支。大部分仪器系统和设备都是通过机床加工出来的,如隐形眼镜就是用超精密数控车床加工而成的。目前隐形眼镜的加工工艺主要有三种:分别是旋转成型工艺、切削成型工艺和模压成型工艺。计算机硬盘驱动器、光盘和复印机等高技术产品的很多精密零件都是用超精密加工手段制成。当现有加工设备不能满足零件加工要求时,必然要设计新设备,这就是我们经常提起的超精密机床的研究,而超精密加工机床的结构设计是其中最关键的技术之一。一个高精密机床的设计不仅仅是机械部门一个单元能完成的,它受到材料、物理、设计和工艺水平等多个环节和整个系统的综合影响。本文主要从超精密加工的起源、内涵、影响因素、研究方向和对策等方面来阐述超精密加工机床结构。 1 超精密加工相关知识概述 超精密加工目前尚没有统一的定义,在不同历史时期,不同的科学技术发展水平的情况下,有不同的理解。通常我们认为一定尺寸的被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术为超精密

精密与超精密加工试题和答案

1.精密和超精密加工的精度范围分别为多少?超精密加工包括哪些领域? 答:精密与超精密加工的精度随着科学技术的发展不断提高,以目前的加工能力而言,精密加工的精度范围是0.1~1μm,加工表面精度Ra在0.02~0.1μm之间。超精密加工的精度高于0.1μm,加工表面精度Ra小于0.01μm。 超精密加工领域: 1)超精密切削, 2)超精密磨削, 3)超精密研磨和抛光。 2.超精密切削对刀具有什么要求?天然单晶金刚石、人造单晶金刚石、人造聚 晶金刚石和立方氮化硼刀具是否适用于超精密切削? 答:超精密切削对刀具的要求: 1) 刀具刃口锋锐度ρ 刀具刃口能磨得极其锋锐,刃口圆弧半径ρ极小,能实现超薄切削厚度,减小切削表面弹性恢复和表面变质层。ρ与切削刃的加工方位有关,普通刀具5~30μm,金刚石刀具<10nm;从物理学的观点,刃口半径ρ有一极限。 2) 切削刃的粗糙度。 切削时切削刃的粗糙度将决定加工表面的粗糙度。普通刀刃的粗糙度Ry0.3~5 μm,金刚石刀具刀刃的粗糙度Ry0.1~0.2 μm,特殊情况Ry1nm,很难。 3) 极高的硬度、极高的耐磨性和极高的弹性模量,保证长的刀具寿命。 4) 刀刃无缺陷,足够的强度,耐崩刃性能。 5) 化学亲和性小、与工件材料的抗粘结性好、摩擦系数低,能得到极好的加工表面完整性。 单晶金刚石硬度极高。自然界最硬的材料,比硬质合金的硬度高5~6倍。摩擦系数低。除黑色金属外,与其它物质的亲和力小。能磨出极锋锐的刀刃。最小刃口半径1~5nm。耐磨性好。比硬质合金高50~100倍。导热性能好,热膨胀系数小,刀具热变形小。因此,天然单晶金刚石被一致公认为理想的、不能代替的超精密切削刀具。人造单晶金刚石已经开始用于超精密切削,但是价格仍然很昂贵。金刚石刀具不适宜切黑色金属,很脆,要避免振动而且价格昂贵,刃磨困难。 人造聚晶金刚石无法磨出极锋锐的切削刃,切削刃钝圆半径ρ很难达到<1μm,它只能用于有色金属和非金属的精切,很难达到超精密镜面切削。立方氮化硼现在用于加工黑色金属,但还达不到精密镜面切削。 3.超精密磨削主要用于加工哪些材料?为什么超精密磨削一般多采用超硬磨 料砂轮? 答:超精密磨削主要用于加工难加工材料,如各种高硬度、高脆性金属材料,其中有硬质合金、陶瓷、玻璃、半导体材料及石材等。 这主要是由超硬磨料砂轮的特点决定的 超精密磨削是一种极薄切削,切屑厚度极小,磨削深度可能小于晶粒的大小,磨削就在晶粒内进行,因此磨削力一定要超过晶体内部非常大的原子、分子结合力,从而磨粒上所承受的剪切应力就急速地增加,可能接近被磨材料的剪切强度极限。磨粒切削刃处受到高温和高压作用,要求磨粒材料有很高的高温强度和高温硬度。普通磨料,在高温高压和高剪切应力的作用下,磨粒将会很快磨损或崩裂,以随机方式不断形成新切削刃,虽然使连续磨损成为可能,但得不到高精度低表面粗糙度的磨削质量。因此,在超精密磨削时,一般采用人造

精密和超精密加工

1、精密和超精密加工的三大领域:超精密切削、精密和超精密磨削研磨、精密特种加工。 2、金刚石刀具进行超精密切削时,适合加工铝合金、无氧铜、黄铜、非电解镍等有色金属 和某些非金属材料。 3、最硬的刀具是天然单晶金刚石刀具。金刚石刀具的的寿命用切削路程的长度计算。 4、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性 能状态、切削时的环境条件等直接相关。 5、影响超精密切削极限最小切削厚度最大的参数是切削刃钝圆半径r n。 6、金刚石晶体有3个主要晶面,即(100)、(110)、(111),(100)晶面的摩擦因数曲线有 4个波峰和波谷,(110)晶面有2个波峰和波谷,(111)晶面有3个波峰和波谷。 以摩擦因数低的波谷比较,(100)晶面的摩擦因数最低,(111)晶面次之,(110)晶面最高。 比较同一晶面的摩擦因数值变化,(100)晶面的摩擦因数差别最大,(110)次之,(111)晶面最小。 7、实际金刚石晶体的(111)晶面的硬度和耐磨性最高。 推荐金刚石刀具的前面应选(100)晶面。 8、(110)晶面的磨削率最高,最容易磨;(100)晶面的磨削率次之,(111)晶面磨削率最 低,最不容易磨。 9、金刚石的3个主要晶面磨削(研磨)方向不同时,磨削率相差很大。现在习惯上把高磨 削率方向称为“好磨方向”,把低磨削率方向称为“难磨方向”。 10、金刚石磨损本质是微观解离的积累;破损主要产生于(111)晶面的解离。 11、金刚石晶体定向方法:人工目测定向、X射线晶体定向、激光晶体定向。其中激光晶体 定向最常用。 12、金刚石的固定方法有:机械夹固、用粉末冶金法固定、使用粘结或钎焊固定。 13、精密磨削机理包括:微刃的微切削作用,微刃的等高切削作用,微刃的滑挤、摩擦、 抛光作用。 14、超硬磨料砂轮修整的方法有:车削法、磨削法、滚压挤轧法、喷射法、电加工法、超 声波振动修整法。电解在线修锐法(ELID—electrolytic in—process dressing),原理是利用电化学腐蚀作用蚀出金属结合剂。. 15、砂带磨削的方式包括闭式砂带磨削和开式砂带磨削,又称为“弹性”磨削、“冷态”磨 削、“高效”磨削、“廉价”磨削、“万能”磨削。 16、超精密机床主轴的驱动方式主要有:电动机通过带传动驱动机床主轴、电动机通过柔 性联轴器驱动机床主轴、采用内装式同轴电动机驱动机床主轴。 17、今年生产的中小超精密机床多采用T形机床总体布局。 18、保证零件加工精度的途径: ○1靠所用的机床来保证,即机床的精度要高于工件所要求的精度,这是“蜕化”原则,也称之为“母性”原则。 ○2在精度比工件要求较低的机床上,利用误差补偿技术,提高加工精度,使加工精度比机床原有精度高,这是“进化”原则,也称之为“创造性”原则。 19、提高现有设备加工精度的途径:误差的隔离和消除和误差的补偿。 20、加工精度的检测分为:离线检测、在位检测和在线检测。 21、误差补偿的形式或方法包括:误差的修正、校正、抵消、均匀化、钝化、分离等。 22、误差补偿系统的组成:误差信号的检测、误差信号的处理、误差信号的建模、补偿控 制和补偿执行机构。

精密加工技术期末复习资料

1.精密加工研究包括哪些主要内容? 精密加工机床,金刚石刀具,精密切削机理,稳定的加工环境,误差补偿,精密测量技术二.实现精密与超精密加工应具备哪些条件?试结合金刚石刀具精密切削简述切削用量对加工质量的影响及主要控制技术? ①精密加工机床-精密机床主轴轴承要求具有很高的回转精度,转动平稳,无振动,其关键在于主轴轴承 ②金刚石刀具-金刚石刀具的刀口半径只能达到0.1-0.3/um。当刃口半径小于0.01um时,必须解决测量上的难题。金刚石晶体的晶面选择。金刚石刀具刃口的锋利性 ③精密切削机理-掌握其变化规律 ④稳定的加工环境-包括恒温防振和空气净化 ⑤误差补偿-通过消除或抵消误差本身的影响,达到提高加工精度的目的 ⑥精密测量技术-精密加工要求测量精度比加工精度高一个数量级 3.试述常用几种主轴轴承的特点,并说明为什么目前大部分精密和超精密机床采用空气轴承? ①液体静压轴承-特点:转动平稳无振动,达到较高的刚度 空气轴承-特点:刚度低,承受载荷小 ②空气轴承造成的热变形小,刚度低,只能承受较小的载荷,超精密切削时切削力小,空气轴承能满足要求 4.试述在线检测和误差补偿技术在精密加工中的作用 精密和超精密加工的精度是依靠检测精度来保证的,而为了消除误差进一步提高加工精度,必须使用误差补偿技术 5.常用微量进给装置有哪些种类与作用? ①机械传动或液压传动式②弹性变形式③热变形式④流体膜变形式⑤磁致伸缩式⑥电致伸缩式作用:为了实现精密与超精密加工 6.金刚石刀具破损形式 ①裂纹:结构缺陷可产生裂纹,另外当切屑经过刀具表面时,金刚石收到循环应力的作用也可产生裂纹②碎裂:由于金刚石材料较脆,在切削过程中收到冲击和振动都会使金刚石刀刃产生细微的解理形成碎裂③解理:金刚石晶面方面选择不当,切削力容易引起金刚石的解理,刀具寿命下降 7.金刚石刀具磨损形式 ①机械磨损②破损③碳化磨损 8.微量进给机构的作用及类型 ①电致伸缩微量进给装置,作用:用于误差在线补偿②机械结构弹性变形微量进给装置,作用:用于手动操作③压电或电致伸缩微量进给装置,作用:用于实现自动微量进给 9.导轨类型 ①滚动导轨②液体静压导轨③气浮导轨和空气静压导轨 10.为什么精密切削加工会产生碾压作用? 在刃口圆弧处,不同的切削深度,刀具的实际前角是变化的,实际前角为较大的负前角,在刀具刃口圆弧处将产生很大的挤压摩擦作用,被加工表面将产生残余压应力 1.精密磨削加工按磨料加工大致分为哪几类?试述其特点及适用场合 ①磨料加工,固结磨料加工:磨削,砂轮磨削,砂带磨削研磨等 游离磨料加工:抛光,研磨:干式研磨,湿式研磨,磁式研磨。滚磨:回转式,振动式,离心式,主轴式,涡流式,衍密等②特点磨削除可以加工铸铁、碳钢。合金钢等一些一般结构材料外,还能加工一般刀具难以切削的高硬度材料如淬火钢,但不宜精加工塑性

精密和超精密加工基础试题

《精密超精密加工技术》期末试题 1~6题为必答题(每题10分)。 1.精密和超精密加工的精度范围分别为多少?超精密加工包括哪些领 域? 答:精密加工的精度范围为1μm~0.1μm、表面粗糙度为0.1μm~0.025μm;超精密加工的精度范围为高于0.1μm、表面粗糙度小于0.025μm。 超精密加工领域包括: (1)超精密切削加工。如采用金刚石刀具进行超精密切削,可进行各种镜面、反射镜、透镜等大型器件的精密加工。它成功地解决了激光核聚变系统和天体望远镜中地大型抛物面加工。 (2)超精密磨削和研磨抛光加工。如高密度硬磁盘地涂覆表面加工和大规模集成电路基片的加工,以及高等级的量块加工等。 (3)精密特种加工。如在大规模集成电路芯片上,采用电子束、离子束的刻蚀方法制造图形,目前可以实现0.1μm线宽。 2.超精密切削对刀具有什么要求?天然单晶金刚石、人造单晶金刚石、人 造聚晶金刚石和立方氮化硼刀具是否适用于超精密切削? 答:超精密切削对刀具性能的要求:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和尺寸耐用度。2)切削刃钝圆半径要极小,这样才能实现超薄切削厚度。3)切削刃无缺陷,因为切削时刃形将复印在加工表面上,切削刃无缺陷能得到超光滑的镜面。4)和工件材料的抗粘结性好、化学亲和性小、摩擦因数低,能得到极好的加工表面完整性。 天然单晶金刚石有着一系列优异的特性,如硬度强度耐磨性极高导热性好,与有色金属摩擦因数低,刀具钝圆半径极小等。虽然价格昂贵,仍被公认为理想不能替代的超精密切削刀具材料。 人造单晶金刚石现在已能工业生产,并已开始用于超精密切削,但它的价格仍很昂贵。 人造聚晶金刚石无法磨出极锋锐的切削刃,钝圆半径很难小于1微米,因此它只能用于有色金属和非金属的精切,很难达到超精密镜面切削。

精密和超精密加工现状与发展趋势

精密和超精密加工现状与发展趋势 核心提示:当前精密和超精密加工精度从微米到亚微米,乃至纳米,在汽车、家电、IT电子信息高技术领域和军用、民用工业有广泛应用。同时,精密和超精密加工技术的发展也促进了机械、模具、液压、电子、半导体、光学、传感器和测量技术及金属加工工业的发展。 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度 Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 e. 抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。手工或机械抛光加工后工件表面粗糙度Ra≤0.05μm,可用于平面、柱面、曲面及模具型腔的抛光加工。超声波抛光加工精度0.01~0.02μm,表面粗糙度Ra0.1μm。化学抛光加工的表面粗糙度一般为Ra≤0.2μm。电化学抛光可提高到Ra0.1~0. 08μm。

超精密加工技术的发展现状与趋势

超精密加工技术的发展现状与趋势 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但 这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加 工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 1.1砂带磨削 用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 1.2精密切割 也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 1.3珩磨 用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、 韧性好的有色金属。 1.4精密研磨与抛光 通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求 的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方 法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配 偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 二、精密加工的发展现状 2.1精密成型加工的发展现状与应用 精密成型加工的发展现状与应用精密铸造成形、精密模压成形、塑性加工、薄板精密成形 技术在工业发达国家受到高度重视,并投入大量资金优先发展。70年代美国空军主持制

《精密与超精密加工技术》知识点总结

《精密与超精密加工技术》知识点总结 1.加工的定义:改变原材料、毛坯或半成品的形状、尺寸及表面状态,使之符合规定要求的各种工作的统称。规定要求:加工精度和表面质量。 2.加工精度:是指零件在加工以后的几何参数(尺寸、形状、位置)与图纸规定的理想零件的几何参数相符合的程度。符合程度越高,加工精度则越高。 3.表面质量:指已加工表面粗糙度、残余应力及加工硬化。 4.精密加工定义:是指在一定时期,加工精度和表面质量达到较高程度的加工技术(工艺)。 5.超精密加工:是指在一定时期,加工精度和表面质量达到最高程度的加工技术(工艺)。 6.加工的划分普通加工(一般加工)、精密加工和超精密加工。普通加工:加工精度在1μm 以上(粗加工IT13~IT9、半精加工IT8~IT7、精加工IT6~IT5),粗糙度Ra0.1-0.8μm。加工方法:车、铣、刨、磨等。适用于:普通机械(汽车、拖拉机、机床)制造等。 精密加工:加工精度在1~0.1μm ,粗糙度Ra0.1μm 以下(一般Ra0.1~0.01μm )的加工方法。加工方法:车削、磨削、研磨及特种加工。适用于:精密机床、精密测量仪器等中的关键零件的制造。 超精密加工:加工精度在0.1~0.01μm ,粗糙度小于Ra0.01μm(Ra0.01~Ra0.001μm)的加工方法。 加工方法:金刚石刀具超精密切削、超精密磨削、超精密特种加工。适用于:精密元件的制造、计量标准元件、集成电路等的制造。 7.精密加工影响因素 8.切削、磨削加工:精密切削和磨削、超精密切削与磨削。 9.特种加工:是指一些利用热、声、光、电、磁、原子、化学等能源的物理的,化学的非传统加工方法。 10.精密加工和超精密加工的发展趋势:向高精度方向发展、向大型化,微型化方向发展、向加工检测一体化发展、研究新型超精密加工方法的机理、新材料的研究。 11.精密加工和超精密加工的特点:形成了系统工程它是一门多学科的综合高级技术;它与特种加工关系密切传统加工方法与非传统加工方法相结合;加工检测一体化在线检测并进行实时控制、误差补偿;与自动化技术联系密切依靠自动化技术来保证;与产品需求联系紧密加工质量要求高、技术难度大、投资大、必须与具体产品需求相结合。 12.金刚石刀具是超精密切削中的重要关键。金刚石刀具有两个比较重要的问题:一是晶面的选择,因为金刚石晶体各向异性;二是研磨质量,也就是刃口半径,因为影响变形和最小切削厚度。 13.检测技术是超精密切削中一个极为重要的问题。超精密加工要求测量精度比加工精度高一个数量级。 14.超精密加工必须在超稳定的加工环境条件下进行:恒温条件、防振条件。恒温:20℃±(1~0.02)℃恒湿:35﹪~45﹪空气净化、防振等。 15.金刚石分类:天然金刚石和人造金刚石两大类(碳的同素异形体)。 16.金刚石晶体的三种晶面晶体——原子具有规则排列的物体。晶体中各种方位上的原子面 叫晶面。晶体中各种方位上的原子列叫晶向。金刚石晶格中有三种重要晶面,(100),(110),(111)。 17.金刚石晶体具有强烈的各向异性不同晶面,不同方向性能有明显差别;金刚石刀具的晶面选择直接影响切削变形和加工表面质量;金刚石晶体和铝合金、紫铜间的摩擦系数在0.06~0.13之间,而

精密与超精密加工

摘要: Cu,Al 这两种金属及其合金对我们来说并不陌生,在我们的日常生活用品中,工厂,工件工艺品以及国家电力电网,航空航天等领域都有铜,铝的身影。不可否认的是,这两种金属对我们的生活生产有着很重要的影响。但就这两种金属而言,在自然界中总是以他们的化合物形式存在。随着工业化的推进,Cu化合物,Al化合物的形式越来越多样化,精度要求也越来越高,于是,对这些金属化合物的加工方法逐渐向着精密与超精密方向发展。 正文: Cu,Al及合金的精密与超精密加工方法的新展 Cu更Al在自然界是广泛分布的,而 Al是自然界中分布第二广的金属,由于其化学性质比较活泼,在外界总是以化合物的形式存在,Al2Co3,AlCl3,...都是其广泛存在的形式。Al还具有密度轻,导电性良好的特点,因此应用范围很大。在轻工业,有日用五金,家用电器;在电气行业,有高压输电线,变压器线圈,感应电动机;在电子行业的电视机,收音机,机械制造业、汽车行业、冶金行业、建筑行业、包装材料也有很多应用。 而Cu的化学性质不活泼,接近于惰性金属,但在自然界中也总是以化合物的形式存在。在空气中放一段时间,和铝一样,在其表面也有一层致密的氧化膜。Cu以其很好的导电性,良好的延展性以及耐腐蚀性,在输电线,印刷版,船舶上有很大的应用。 正是由于这些金属合金的广泛运用,因此其材料加工的精密程度就备

受关注。 一直以来,像铜,铝这样的金属材料可以用金刚石刀具切削,电化学加工法来溶解,氧化金属氧化物表面,使金属及其合金表面获得更高的加工精度。众所周知,精密加工通常是指加工精度在0.1~1um,加工表面粗糙度Ra在0.02~0.1um之间的加工方法称为精密加工,而将加工精度高于0。1um,加工表面粗糙度Ra小于0.01um的加工方法称为超精密加工。 比如铜及其合金的加工已经高度自动化,称为现代化大工业的重要组成部分。在现代生产中,铜的真空熔炼与铸锭方法可以生产电真空无氧铜、镍合金、含有易氧化烧损的铜合金。非真空感应熔炼、卧式连续铸造加工技术近十年来有巨大发展,主要表现为卧式连铸锡磷青铜的生产工艺。在特殊加工技术中,高精度异形铜带,内氧化弥散强化无氧铜,大面积杂断面异形铸造技术的发展就是现代铜加工技术精密化方向的展现。 纵观国内外40多年超精密机床发展史,可以总结出两大特点:一是大学和研究所保持着对超精密机床研究的持续热情,对高技术进行超前研究,对超精密机床产业化和商品化起着推动的作用;二是超精密机床的模块化、系统化是其进入市场的重要技术手段。 当今超精密机床技术的发展趋势是:技术上不断朝着加工的极限方向发展,向更高精度、更高效率方向发展,向大型化、微型化方向发展;功能上向加工检测补偿一体化方向发展;结构上向多功能模块化方向发展;功能部件上向新原理、新方法、新材料应用方面发展,总体来

浅析-超精密加工机床现状及展望

浅析超精密加工机床现状及展望 X建锋学号:11309017 (XX大学机械工程学院XX) 摘要:本文主要讨论超精密加工以及加工机床的发展历程、国内外现状、关键技术要点以及展望。通过对超精密加工机床的现状和难点分析,总结了未来超精密加工机床的发展趋势,并且具体给出了超精密加工机床的重点需要突破革新的要点和对策。 关键字:超精密加工、超精密加工机床、精度、效率。 0 前言 超精密加工技术是20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的一种加工技术。超精密加工技术是现代制造技术之一,它与传统加工在加工方法、加工精度等方面有着本质的区别,是零件加工精度和质量的飞跃。超精密加工是世界科技发展的重要前沿领域,主要包含有超精密制造、超精密检测、超精密环境控制及其各类辅助研究分支。大部分仪器系统和设备都是通过机床加工出来的,如隐形眼镜就是用超精密数控车床加工而成的。目前隐形眼镜的加工工艺主要有三种:分别是旋转成型工艺、切削成型工艺和模压成型工艺。计算机硬盘驱动器、光盘和复印机等高技术产品的很多精密零件都是用超精密加工手段制成。当现有加工设备不能满足零件加工要求时,必然要设计新设备,这就是我们经常提起的超精密机床的研究,而超精密加工机床的结构设计是其中最关键的技术之一。一个高精密机床的设计不仅仅是机械部门一个单元能完成的,它受到材料、物理、设计和工艺水平等多个环节和整个系统的综合影响。本文主要从超精密加工的起源、内涵、影响因素、研究方向和对策等方面来阐述超精密加工机床结构。

1 超精密加工相关知识概述 超精密加工目前尚没有统一的定义,在不同历史时期,不同的科学技术发展水平的情况下,有不同的理解。通常我们认为一定尺寸的被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术为超精密加工技术。被加工尺寸大小不同,超精密加工的界别也会不同,通常认为精度与加工尺寸之比(精度比)达到10-6量级也称为超精密加工[1]。 超精密加工的发展经历了如下三个阶段。 (1)20世纪50年代至80年代为技术开创期。20世纪50年代末,出于航天、国防等尖端技术发展的需要,美国率先发展了超精密加工技术,开发了金刚石刀具超精密切削——单点金刚石切削,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等[2]。这一时期,金刚石车床主要用于铜、铝等软金属的加工,也可以加工形状较复杂的工件,但只限于轴对称形状的工件例如非球面镜等。 (2) 20世纪80年代至90年代为民间工业应用初期。20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。美国LLL国家实验室研制出的大型光学金刚石车床称为超精密加工史上的经典之作。这是一台最大加工直径为1.625m的立式车床,定位精度可达28nm,借助在线误差补偿能力,可实现长度超过1m、而直线度误差只有±25nm的加工[2]。 (3) 20世纪90年代至今为民间工业应用成熟期。从1990年起,由于汽车、

精密和超精密加工论文

精密和超精密加工论文(6000个字) 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,

精密和超精密加工

精密和超精密加工 1、微细加工:指制造微小尺寸零件的生产加工技术 2、电子束加工:利用电子束的高能量密度进行钻孔,切槽,光刻等工作 3、空气洁净度:指空气中含尘埃量多少的程度 4、恒温精度:指相对于空气平均温度所允许的偏差值 5、镜面磨削:一般指加工表面粗糙度达到Ra0.02-0.01um,表面光泽如镜的磨削方法 6、解理现象:是某些晶体特有的现象,晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象。 7、进化原则:即在精度比工件要求较低的机床上,利用误差补偿技术,提高加工精度,使加工精度比机床原有精度高。也称创造性原则。 8、研磨加工:是指利用硬度比被加工材料更高的微米级磨粒,在硬质研磨盘作用下产生的微切削和滚扎作用实现被加工表面的微量材料去除,使工件的形状,尺寸精度达到要求值,并降低表面粗糙度、减小变质层的加工方法。 1、最近出现的隧道扫描显微镜的分辨率是0.01nm,是目前世界上精度最高的测量仪,可用于测量金属和半导体零件表面的原子分布的形貌。最新研究,在扫描隧道显微镜下可移动原子实现精密工程最终目标--原子的精密加工 2、用金刚石刀具进行超精密切削,用于加工铝合金,无氧铜,黄铜,非电解镍等有色金属和某些非金属材料 3、使用切削液后,以消除了积屑瘤对加工表面粗糙度的影响,这时切屑速度已和加工表面粗糙度无关,这种情况和普通切削时钢的规律不同 4、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度,使用的超精密机床的机能状态,切削的环境条件等都直接有关 4、金刚石有较大的热容量和良好的导热性,不适宜磨削,钢铁材料,不能加工黑色金属材料 5、无论是正电压或者负电压,传感器的伸长量是相同的 6、保证零件加工精密途径 1)靠所用机床保证即机床精度高于工件所要求精度,{蜕化原则母性原则}2)精度比工件要求较低的机床利用误差补偿技术提高加工精度,使加工精度化机床原有精度高{进化原则,创造性原则} 1、精度和超精度的三个领域 1)超精密切削 2)精密和超精密磨削研磨 3)精密特种加工 2、金刚石具有两个比较重要的问题 1)晶面的选择 2)金刚石刀具的研磨质量--切削刀钝圆半径rn

精密和超精密加工机床的现状及发展对策

精密和超精密加工机床的现状及发展对策 摘要:精密和超精密加工技术的发展直接影响尖端技术和国防工业的发展。精密和超精密加工机床是精密和超精密加工技术的基础,本文在论述目前国内外超精密加工机床的现状的同时,介绍了国内外有代表性的几种超精密加工机床,并通过对比说明提出了我国应重视超精密加工机床的研究、加大投入的观点,对精密超精密加工机床的发展对策给出了几条建议。 关键词:精密;超精密;机床;发展 正文:1精密和超精密加工机床发展的意义 精密和超精密加工技术的发展直接影响到一个国家尖端技术和国防工业的发展,因此,世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅猛发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平而、曲而和复杂形状的加工需求日益迫切。目前,国外己开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。 制造业是一个国家或地区国民经济的重要支柱.其竞争能力最终体现在新生产的工业产品市场占有率上,而制造技术则是发展制造业并提高其产品竞争力的关键。随着高技术的蓬勃发展和应用,发达国家提出了“先进制造技术”(AMT)新概念。所谓先进制造技术,就是将机械工程技术、电子信息技术(包括微电子、光电子、计算机软硬件、现代通信技术)和自动化技术,以及材料技术、现代管理技术综合应用于产品的计划、设计、制造、检测、管理、供销和售后服务全过程的综合集成生产技术。先进制造技术追求的目标就是实现优质、精确、省料、节能、清洁、高效、灵活生产,满足社会需求。 从先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域,前者追求加工上的精度和表而质量极限.后者包括了产品设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是保证产品质量的有效举措。两者有密切关系,许多精密和超精密加工要依靠自动化技术得以达到预期指标,而不少制造自动化有赖于精密加工才能准确可靠地实现。两者具有全局的、决定性的作用,是先进制造技术的支柱。 最近几年,我国的机床制造业虽然发展很快,年产量和出口量都明显增加,成为世界机床最大消费国和第一大进口国,在精密机床设备制造方而取得不小进展,但仍和国外有较大差距。我国还没有根本扭转大量进口昂贵的数控和精密机床、出口廉价中低档次机床的基本状况。 由于国外对我们封锁禁运一些重要的高精度机床设备和仪器,而这些精密设备仪器正是国防和尖端技术发展所迫切需要的,因此,我们必须投入必要的人力物力,自主发展精密和超精密加工机床,使我国的国防和科技发展不会受制于人。 2我国精密和超精密加工机床的现状及发展趋势 超精密加工目前尚没有统一的定义,在不同的历史时期、不同的科学技术发展水平情况下,有不同的理解。目前,工业发达国家的一般工厂己能稳定掌握3um的加工精度(我国为5um )。因此,通常称低于此值的加工为普通精度加工,而高于此值的加工则称之为高精度加工。在高精度加工的范畴内,根据精度水平的不同。分为3个档次:

相关文档
最新文档