聚羧酸减水剂

聚羧酸减水剂
聚羧酸减水剂

聚羧酸高效减水剂及其工程应用

摘要:作为高性能混凝土第五组分的高效减水剂主要经历了三种形式:第一代高效减水剂是20世纪60年代初开发出来的萘基高效减水剂和密胺树脂基高效减水剂又被称为超塑化剂;第二代高效减水剂是氨基磺酸盐;第三代减水剂是聚羧酸高效减水剂。本文以前人对聚羧酸高效减水剂的研究为基础,借鉴他们的研究成果从其分子特点、合成方法、作用机理、对混凝土性能的改善、工程应用与实践应用中存在的问题六个方面对聚羧酸减水剂做了介绍。关键字:聚羧酸减水剂、高效减水剂、高性能混凝土

1.聚羧酸减水剂的分子结构

聚羧酸系高性能减水剂采用不饱和单体共聚合而成,而不是传统减水剂使用的缩聚合成,合成原料非常多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应。

2.合成方法

2.1可聚合单体直接共聚法

单体直接共聚是先制备具有活性的大单体(一般是甲氧基聚乙二醇甲基丙烯酸酯) ,再聚合一定配比的单体(如丙烯酸、甲基丙烯酸、甲基丙烯磺酸钠等),采用溶液共聚的手段得到成品,即先酯化再聚合。该方法合成减水剂分子结构的可设计性好,可根据实际需要进行结构调整,产品质量稳定,目前很多聚羧酸的生产都采用此方法。但缺点是生产甲氧基聚乙二醇甲基丙烯酸酯大单体存在酯化控制难度,大单体酯化率和质量就直接影响了后续的共聚反应程度。同时中间分离纯化过程比较繁琐,生产成本较大。

2.2聚合后功能化法

聚合后功能化法是利用现有的聚合物进行改性,采用已知分子量的聚羧酸在催化剂和较高温度下聚醚通过酯化反应进行接枝。但现成的聚羧酸产品种类和规格有限,调整组成和分子量困难;同时聚羧酸和聚醚适应性不好,酯化实际操作困难,另外,随着酯化的不断进行,水分不断逸出,会出现相分离,如果能找到

一种与聚羧酸相溶性好的聚醚这些问题也可迎刃而解,但可信的是目前还未能找

到这种聚醚。

2.3原位聚合与接枝法

原位聚合与接枝是避免聚羧酸与聚醚相溶性不好的问题,该方法是以羧酸类不饱和单体(如丙烯酸、聚乙二醇等)为反应介质,集聚合和酯化于一体,这种方法工艺简单,生产成本低,同时可以控制聚合物的分子量。但缺点是聚羧酸的主链一般只能选择含羧基(一C00H)基团的单体,否则接枝难度大;在反应体系中有大量的水存在且这种接枝反应是个可逆平衡反应,所以聚合度不会很高且难以控制,分子设计比较困难。

3.作用机理

3.1吸附分散作用

水泥在加水搅拌之后,会产生絮凝结构,这样就造成了大量拌合水被絮凝状水泥包裹在内部,不能为水泥浆体的流动度做出贡献,导致施工过程中为获得一定流动性必须增加拌合水掺量,此举无疑会导致混凝土硬化之后的一系列物理力学性能和耐久性能的下降,包括降低强度、抗渗性变差、增大收缩开裂的危害、耐久性下降等等。但是减水剂的加入使得水泥在加水初期形成的絮凝结构分散、解体,从而将絮凝状结构体内被包裹的游离水释放出来,使其达到塑化或减水的目的。

3.2静电斥力作用

外加一定量的减水剂后,减水剂的憎水性基团团会定向吸附在水泥颗粒表面,而亲水性基团则指向水溶液,构成单分子或者多分子吸附膜。减水剂分子在水泥颗粒表面形成定向吸附,使得水泥颗粒表面上带有相同符号的电荷,一方面,在电性斥力的作用下,水泥颗粒体系能处于相对稳定的悬浮状态;另一方面,因为减水剂的加入,可以使水泥颗粒表面的动电位增大。根据爱德华公式,水泥浆体中水泥颗粒间的排斥力与电位的平方成正比,可知,减水剂的加入可以增大水泥颗粒之间的排斥力,进而阻止水泥颗粒产生凝聚。

3.3空间位阻学说

Mackor熵效应理论作为基础,认为空间位阻效应取决于减水剂的结构、吸附形态或者吸附层厚度等。减水剂吸附在水泥颗粒表面,在水泥颗粒表面形成一层具有一定厚度的聚合物加强水化膜,水化膜层的强度取决于聚合物的亲水能力和亲水侧链的长度和亲水基团的浓度。当水泥颗粒靠近吸附层开始重叠,即在颗粒之间产生斥力作用,重叠越多斥力越大。这种由于聚合物吸附层靠近重叠而产生的阻止水泥颗粒接近的机械分离作用力,称为空间位阻斥力。聚羧酸系减水剂吸附在水泥颗粒表面,虽然静电斥力较小,但是由于其主链与水泥颗粒表面相连,支链则延伸进入液相形成较厚的聚合物分子吸附层,从而具有较大的空间位阻斥

力,所以在掺量较小的情况下便对水泥颗粒具有显著的分散作用。

3.4润滑作用

高效减水剂的极性亲水基团定向吸附于水泥颗粒表面,多以氢键形式与水分子缔合,再加上水分子之间的氢键缔合,构成了水泥微粒表面的一层稳定的水膜,水膜阻止水泥颗粒间的直接接触,增加了水泥颗粒间的滑动能力,起到润滑作用,从而进一步提高浆体的流动性。另一方面,减水剂是一种阴离子型表面活性剂,掺入水泥浆体系后能够使体系的表面自由能降低,也同时也降低了水溶液与空气界面的界面张力,使得混凝土在搅拌过程中,会引入一定量的微小的气泡。减水剂分子则被定向吸附在气泡膜上,形成了憎水基一端指向空气,而亲水基一端指向水溶液的单分子或多分子吸附膜的情况。减水剂分子的亲水基一端在电离后会带有一定量的相同电荷,这相当于气泡液膜上也带有同种电荷,与水泥颗粒表面所带的电荷电性相同。因此在掺有减水剂的混凝土浆体体系中,水泥与微气泡、水泥与水泥、微气泡与微气泡之间都因同性电荷相互排斥而表现出较好的分散性。而且,对于水泥颗粒来说,极细微气泡的存在,可以看作是“滚珠轴承”,增加了水泥颗粒相互滑动的能力。

4.对混凝土性能的影响研究

以下总结了前人所做的一些实验的研究成果,研究发现聚羧酸高效减水剂有如下一些优点:

4.1提高混凝土早期强度。

4.2相对碳化深度小,提高了耐久性。

4.3降低氯离子渗透性。

4.4较其他减水剂干湿循环抗压强度损失比小。

4.5干湿循环相对动弹性模量影响较小。

4.6干湿循环质量损失比较小。

4.7同水灰比、同流动度下与萘系和脂肪族减水剂相比,聚羧酸系减水剂能减少砂浆收缩。

4.8在合成过程中不使用甲醛,属绿色环保产品。

5.聚羧酸减水剂在工程的应用举例。

随着近几年我国高速铁路的迅猛发展,聚羧酸减水剂也得到了广泛的应用。聚羧酸系高效减水剂从分子结构和减水作用机理上都不同于传统的萘系、氨基磺酸盐系减水剂,具有极强的分散能力的优点,具体表现为掺量低、减水率高、含碱量低、氯离子含量低、收缩小、保塑性好和体积稳定性好等。利用聚羧酸系高效减水剂产品分子结构和分子量的可调性和可设计性,可获得不同功效的减水剂产品,从而可以满足特殊工程的需要

5.1聚羧酸减水剂在高速铁路预制箱梁中的应用

京沪高铁某段用的预应力混凝土箱梁采用C55混凝土。 原料:

水泥:琉璃河P.O 42.5低碱水泥;掺合料:乐宇英泰CCM 复合掺合料;粉煤灰:兴达Ⅰ级;砂:江砂,细度模数2.8,含泥量<1.5%;石子:5~10,10~25mm

两级配成5~25mm 连续级碎石;外加剂:早强型聚羧酸减水剂(Z-TGC ),保塑型聚羧酸减水剂(H-TGC ),以及消泡剂、引气剂、葡钠等。

配合比设计如下表:

表1:设计配合比

预制箱梁混凝土要求流动性大,且一车混凝土的浇筑时间较长,所以为了满足施工顺利,要求混凝土坍落度保持要好,含气量在3%~4%,蒸养强度为42Mpa,达到76.3%。为降低混凝土的水化热,减少箱梁出现裂缝的现象,对外加剂提出了更高的要求。经过试验研究最终确定外加剂的添加比例为D6:

表2:外加剂掺量对混凝土性能的研究

5.2聚羧酸减水剂在使用中存在的一些问题

(1)同任何事物都有相对性一样,聚羧酸减水剂对水泥的相容性比也是相对的,由于水泥的品种多,品质不一,掺合料复杂,聚羧酸减水剂对水泥的相容稳定性较差。对于同一水泥品种,不同批号的水泥相容性甚至也有差异。需要不断探索和总结,进一步提升聚羧酸减水剂的品质。

(2)聚羧酸减水剂减水率高,在其有效掺量区间内拌和物流动度对掺量比较敏感,因此外加剂掺量要适当,计量精度要高。如果外加剂掺量过多会使砼表面产生很多气泡,感观太差。聚羧酸系减水剂的使用时也有它的饱和点,对于不同品种的水泥、不同的水泥用量,该外加剂在混凝土中的饱和点是不同的。

(3)聚羧酸减水剂同萘系减水剂相比,其与其它外加剂的选择性较强,匹配性较差,不能很好的与多种外加剂一块使用。其次不同厂家和批号的聚羧酸系高效减水剂也不能同时用于同一部位施工。因为不同厂家和原料生产的的外加剂,其生产工艺和方法都不一定相同,配制的混凝土因凝结时间不同,收缩量的差异导致混凝土工作性能极差。

(4)聚羧酸减水剂配置的混凝土黏性比较强,对于衬砌混凝土(泵送),泵压比较高。

6.结语:

聚羧酸减水剂可以改善混凝土的诸多性能,推动了高性能混凝土的发展和工程应用,为我国建设事业的发展作出了巨大贡献。相信以后可以开发出满足多种施工需求,具有更多优异性能的高效减水剂,大大提高混凝土结构的强度、耐久性和工作性。

参考文献

[1]赵晖,吴晓明,孙伟等.高效减水剂对结构混凝土长期性能影响.应用基础与工程科学学报,[J]2012,20(3)

[2]李世华,管宗甫,毋雪梅等.高效减水剂对砂浆自收缩和干燥收缩的影响[J].实验研究,2013

[3]师海霞,龙俊余. 聚羧酸减水剂在高速铁路构件混凝土中的应用[J].技术交流,2010

[4]赵宝龙.聚羧酸高性能外加剂(聚羧酸系减水剂)在客运专线工程中的应用[J].工程技术,2011

[5]张海波.聚羧酸减水剂在耐久性混凝土中的应用[J].四川建材,2011,37(6)

[6]金皓轩. 聚羧酸高效减水剂的合成和性能[D].合肥工业大学:金皓轩,2010

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺 一、引言 一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。 与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。 但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。因此,本文在此予以简介之。 二、聚羧酸系高性能减水剂合成工艺简介。 聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。 (一)、聚酯类聚羧酸系高性能减水剂合成工艺。 1、合成工艺简图 冷凝器去离子水

聚乙二醇过硫酸铵↓ →→→→→→酯化→→→→→计量槽→→聚合中和成 甲基丙烯酸→→→→ →→→→→→反应→→→→→计量槽→→反应反应品 ↑↑ ↑↑ 去离子水氢氧化钠 2、反应过程如下: (1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。(经减压蒸馏脱水,酸化反应更为完全)。 (2)、聚合反应:采用过硫酸铵引发、水溶液聚合法。计量酯化产物即聚乙二醇单甲基丙烯酸酯1545kg,丙烯酸77.3kg,分子量调节剂十二烷基硫醇21.3kg,配以130 kg去离子水,泵入滴定罐A备用,是为A料。计量过硫酸铵34.5kg,配以950kg去离子水,泵入滴定罐B备用,是为B料。加去离子水1425kg 入釜,升温至85℃,同时滴定A、B料。A料3小时滴定完,B料3.5小时滴定完,保温1.5小时。(温度控制:90±2℃)。 (3)、中和反应,将反应好的聚合物降温至50℃以下,边搅拌边加入片碱100kg,调节PH值6—7,反应完成,得到含固量为30%的聚酯类聚羧酸系高性能减水剂成品。

聚羧酸减水剂

聚羧酸高效减水剂及其工程应用 摘要:作为高性能混凝土第五组分的高效减水剂主要经历了三种形式:第一代高效减水剂是20世纪60年代初开发出来的萘基高效减水剂和密胺树脂基高效减水剂又被称为超塑化剂;第二代高效减水剂是氨基磺酸盐;第三代减水剂是聚羧酸高效减水剂。本文以前人对聚羧酸高效减水剂的研究为基础,借鉴他们的研究成果从其分子特点、合成方法、作用机理、对混凝土性能的改善、工程应用与实践应用中存在的问题六个方面对聚羧酸减水剂做了介绍。关键字:聚羧酸减水剂、高效减水剂、高性能混凝土 1.聚羧酸减水剂的分子结构 聚羧酸系高性能减水剂采用不饱和单体共聚合而成,而不是传统减水剂使用的缩聚合成,合成原料非常多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应。 2.合成方法 2.1可聚合单体直接共聚法 单体直接共聚是先制备具有活性的大单体(一般是甲氧基聚乙二醇甲基丙烯酸酯) ,再聚合一定配比的单体(如丙烯酸、甲基丙烯酸、甲基丙烯磺酸钠等),采用溶液共聚的手段得到成品,即先酯化再聚合。该方法合成减水剂分子结构的可设计性好,可根据实际需要进行结构调整,产品质量稳定,目前很多聚羧酸的生产都采用此方法。但缺点是生产甲氧基聚乙二醇甲基丙烯酸酯大单体存在酯化控制难度,大单体酯化率和质量就直接影响了后续的共聚反应程度。同时中间分离纯化过程比较繁琐,生产成本较大。 2.2聚合后功能化法 聚合后功能化法是利用现有的聚合物进行改性,采用已知分子量的聚羧酸在催化剂和较高温度下聚醚通过酯化反应进行接枝。但现成的聚羧酸产品种类和规格有限,调整组成和分子量困难;同时聚羧酸和聚醚适应性不好,酯化实际操作困难,另外,随着酯化的不断进行,水分不断逸出,会出现相分离,如果能找到

聚羧酸减水剂生产环保说明

聚羧酸外加剂生产说明 1、项目由来 随着我国城镇化进程进程和基础设施建设的步伐逐渐加快,混凝土的需求量不断增多,同时也大大推动混凝土外加剂的需求量。 从全国范围来看,掺有外加剂的混凝土约占混凝土总量的40%,与国外先进国家60%~80%的比例相比,我国在使用量上还存在较大差距,即外加剂的生产还有较大的发展空间。根据相关市场调查,我国每年对减水剂、助磨剂及多功能粉体材料的需求量高达几百万吨,由此可见,该类材料仍具有较大前景和市场需求。目前,聚羧酸减水剂在发达国家的使用率已占绝对优势,相比而言,我国的使用量并不客观,但该材料的使用在我国的高速铁路建设、公路桥梁建设、水利工程及高层建筑中已得到广泛的认可,其用量正以每年20%~30%的速度递增。 传统的萘系、三聚氰胺系以及木质素减水剂虽然能使新拌砂浆或混凝土具有较好的工作性,但塌落度经时变化大,运至施工现场时,必须重新加入减水剂来增加其流动性,这样会产生噪音并排放大量工业废气,而且这类减水剂大多采用有毒的甲醛,通过缩聚反应(有时还采用强腐蚀性的发烟硫酸或浓硫酸进行磺化反应)制备而成,这不可避免会对环境造成污染,不利于可持续发展。合成萘系磺酸盐减水剂的主要原料是精萘或工业萘,价格较贵,很难满足工程实际需要,萘被认为是致癌物质,限制了其发展。于是人们把目光转向了羧酸类聚合物——称之为第三代新型聚合物减水剂,聚羧酸减水剂不仅减水效果好,其成品本身也无毒性,生产加工过程中也无工艺性废水产生,无工艺性废气产生,属于绿色环保型材料。 聚羧酸减水剂是一种高性能减水剂,是水泥混凝土运用中的一种水泥分散剂,广泛应用于公路、桥梁、大坝、隧道、高层建筑等工程。该产品绿色环保,不易燃,不易爆,可安全使用火车和汽车运输。 2、工艺流程 从原料库房领取原材料,按照配方准确称量后加入去离子水、甲基烯丙基聚氧乙烯醚,配置成原材料溶液,;搅拌并升至18~24℃。按照配方把维生素C、巯基丙酸、去离子水投入预混罐中配制溶液成A,搅拌均匀后打入滴加罐A里;按

聚羧酸高性能减水剂标准型说明书

聚羧酸高性能减水剂标 准型说明书 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

森普牌S P Y J-1型聚羧酸系高性能减水剂(标准型) 产品说明书 森普牌SPYJ-1型聚羧酸系高性能减水剂(标准型)是目前国内外最新的引领产品。它与常用的聚羧酸系高性能减水剂相比,具有减水率高、掺量低、与水泥适应好、坍落度损失小和无污染等特点。同时具有改善新拌混凝土各种性能指标和提高工作性等多种作用。本产品为无色透明液体,无毒、无腐蚀性、不易燃、对钢筋无锈蚀作用、对人体健康无害。 本产品目前参照执行GB/T8076-2008《混凝土外加剂》、GB/T8077-2012《混凝土外加剂匀质性试验方法》、TB/T3275-2011《铁路混凝土》、GB18582-2008《室内装饰装修材料内墙涂料中有害物质限量》标准。 一、技术性能 1.增强效果:与基准混凝土同坍落度和等水泥用量的前提下,减水率≥25%,混凝土各龄期强度均有显着提高,1天抗压强度比≥170%,3天抗压强度比≥160%,7天抗压强度比≥150%,28天抗压强度比≥140%。 2.泵送性能:具有显着的可泵性。与基准混凝土相比,在同水灰比的前提下,净增坍落度≥100mm,1小时坍落度经时变化量(用于配制泵送混凝土时)≤80mm。 3.工作性能:具有改善新拌混凝土的和易性、保水性和泌水性等操作性能。 4.表面光洁:掺用本产品的混凝土,具有粘聚性强、含气量少和泌水率小等特点,能有效改善高架、高速公路、桥梁等各类清水混凝土表面光洁美观。 5.特效功能:在配制高强混凝土时,其弹性模量、抗渗性、抗收缩、抗徐变和耐久性等高性能指标均可满足指标要求 二、匀质指标 根据产品的性能指标和用户的要求,符合国家、行业及企业标准。 三、应用范围 本产品适用于各类泵送混凝土、大体积混凝土、高层建筑、高架、高速公路、桥梁、水工混凝土及地下、水下灌注混凝土等。特别适应于重点工程和有特殊要求的混凝土。 四、使用方法 1.本产品掺量范围1.0~1.2%(以胶凝材料量计),可根据与水泥的适应性、气温的变化和混凝土坍落度等要求,在推荐范围内调整确定最佳掺量。 2.按计量,直接掺入混凝土搅拌机中使用。 3.在计算混凝土用水量时,应扣除液剂中的水量。 4.在使用本产品时,应按混凝土试配事先检验与水泥的适应性。 五、注意事项 1.在水泥变更品种或新进水泥时,应做与水泥兼容性检验。 2.对于要求缓凝的混凝土,应按混凝土试配事先检验凝结时间。 3.必须按试验配合比正确掺量,浇筑混凝土时,应严格按施工规范操作。 4.在与其他外加剂合用时,宜先检验其兼容性。 5.在冬季施工期间,为了提高混凝土早期强度,应适当调整混凝土的水泥用量。 6.与常规混凝土工程一样,必须按施工规范加强养护。 7.使用本产品,应提前1~3天通知厂方。 六、包装贮存

聚羧酸减水剂实验室合成工艺

聚羧酸减水剂实验室合成工艺 聚羧酸类减水剂是继以木钙为代表的普通减水剂和以萘系为代表的高 效减水剂之后发展起来的第三代高性能化学减水剂,其综合性能优异,不仅具有高减水率,而且还可以有效的抑制坍落度损失,目前有较好的应用前景。日本首先于80年代初开发出聚羧酸系高效减水剂,1985年开始逐渐应用于混凝土工程。1995年以后,聚羧酸盐系减水剂在日本的使用量超过了萘系减水剂。目前国内对萘系、三聚氰胺系等高效减水剂的研究和应用已日趋完善,不少科研机构已开始转向对聚羧酸系高性能减水剂的开发与研究。聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大, 高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。本文在合成聚醚甲基丙烯酸酯大单体的基础上,采用水溶液共聚的方法合成出了聚羧酸系高效减水剂,通过因素试验确定最佳的合成工艺,并研究了其应用性能。 2 实验 2.1 实验原料及试验设备 聚醚(分子量为1200,上海台界化工有限公司) ; 对甲苯磺酸(国药集团化学试剂厂) ; 对苯二酚(天津市大茂化学试剂厂) ; 甲基丙烯磺酸钠(余姚市东泰精细化工有限公司) ; 甲苯(天津市大茂化学试剂厂) ; 甲基丙烯酸(成都科龙化工试剂厂) ; 过硫酸铵(天津市大茂化学试剂厂)等。 聚羧酸系减水剂:进口聚羧酸(p s1, 60% ) ; 国内聚羧酸(p s2, 40% ) ; 自制聚羧酸(p s3, 20% ) 。 水泥:炼石P·O 42.5 级普通硅酸盐水泥;建福P ·O42.5级普通硅酸盐水泥。 500ml三颈烧瓶;集热式恒温磁力搅拌器;温度计; 250ml滴液漏斗;旋转蒸发器等。

萘系高效减水剂与聚羧酸系 减水剂的性能比较

萘系高效减水剂与聚羧酸系减水剂的性能比较 一、混凝土减水剂概述及作用机理 减水剂是一种重要的混凝土外加剂,能够最大限度地降低混凝土水灰比,提高混凝土的强度和耐久性。减水剂分为普通减水剂和高效减水剂,减水率大于5%小于10%的减水剂称为普通减水剂,如松香酸钠、木质素磺酸钠和硬脂酸皂等;减水率大于10%的减水剂称为高效减水剂,如三聚氰胺系、萘系、氨基磺酸系、改性木质素磺酸系和聚羧酸系等。在众多高效减水剂中,具有梳形分子结构的聚羧酸系高效减水剂因其减水率高、坍落度保持性能良好、掺量低、不引起明显缓凝等优异性能,成为近年来国内外研究和开发的重点。 减水作用是表面活性剂对水泥水化过程所起的一种重要作用。减水剂是在不影响混凝土工作性的条件下,能使单位用水量减少;或在不改变单位用水量的条件下,可改善混凝土的工作性;或同时具有以上两种效果,又不显著改变含气量的外加剂。目前,所使用的混凝土减水剂都是表面活性剂,属于阴离子表面活性剂。 水泥与水搅拌后,产生水化反应,出现一些絮凝状结构,它包裹着很多拌和水,从而降低了新拌混凝土的和易性(又称工作性,主要是指新鲜混凝土在施工中,即在搅拌、运输、浇灌等过程中能保持均匀、密实而不发生分层离析现象的性能)。施工中为了保持所需的和易性,就必须相应增加拌和水量,由于水量的增加会使水泥石结构中形成过多的孔隙,从而严重影响硬化混凝土的物理力学性能,若能将这些包裹的水分释放出来,混凝土的用水量就可大大减少。在制备混凝土的过程中,掺入适量减水剂,就能很好地起到这样的作用。 混凝土中掺入减水剂后,减水剂的憎水基团定向吸附于水泥颗粒表面,而亲水基团指向水溶液,构成单分子或多分子层吸附膜。由于表面活性剂的定向吸附,使水泥胶粒表面带有相同符号的电荷,于是在同性相斥的作用下,不但能使水泥-水体系处于相对稳定的悬浮状态,而且,能使水泥在加水初期所形成的絮凝状结构分散解体,从而将絮凝结构内的水释放出来,达到减水的目的。减水剂加入后,不仅可以使新拌混凝土的和易性改善,而且由于混凝土中水灰比有较大幅度的下降,使水泥石内部孔隙体积明显减少,水泥石更为致密,混凝土的抗压强度显著提高。减水剂的加入,还对水泥的水化速度、凝结时间都有影响。这些性质在实用中都是很重要的。但是,减水剂在有效地破坏水泥浆体的絮凝结构释放出内部的自由水的同时也削弱了水泥颗粒与水之间的作用。从这个角度来说,它总是会不同程度地加剧拌合物的泌水和沉降离析现象,这是现今混凝土浇注后常在表面出现花斑,严重时则形成蜂窝麻

聚酸酸减水剂合成工艺

1 实验 1.1 原材料 丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。 1.2 聚羧酸减水剂的合成方法 将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。 1.3 正交试验设计 采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体总质量的百分比。表2为不同实验组数对应的各因素水平。 1.4 掺减水剂水泥净浆流动度测试方法 水泥净浆初始流动度按GB8077-2000《混凝土外加剂匀质性试验方法》中测定水泥净浆初始流动度的方法进行测试,W/C为0.29。 水泥净浆流动度经时损失的测试方法为:保持一定水灰比,加入一定量的聚羧酸减水剂,按GB8077-2000《混凝土外加剂匀质性试验方法》每隔一定时间测试水泥净浆的流动度。 2 结果与分析 2.1 减水剂掺量对水泥净浆初始流动度的影响 表3为对在表2中1~9组的3种聚羧酸减水剂(JH9、JH23、JH35)在不同掺量时对水泥净浆初始流动度的影响。 由表3可知,当减水剂掺量大于0.5%以后,增加减水剂掺量,水泥净浆初始流动度增大变缓。表明该聚羧酸减水剂的饱和掺量为水泥质量的0.5~0.8%。 2.2 聚羧酸减水剂合成配方的确定 通过对表3的实验结果计算分析,可看出减水剂掺量为0.5%时四因素对水泥净浆初始流动度影响的显著程度。聚羧酸减水剂合成时各因素对水泥净浆初始流动度影响的极差分析见表)(减水剂掺量为0.5%)。 2.2.1 聚羧酸减水剂JH9合成配方的确定 由表4可知:(1)在设计的原料用量范围内,掺JH9的水泥净浆初始流动度随MAS、AA用量的增加而增加,随PA和APS用量的增加而下降;(2)由极差R可知,四因素对水泥净浆初始流动度影响均较显著,影响程度从大到小依次为:PA、APS、AA、MAS;(3)JH9的较佳合成配方为:MAS:AA:PA(摩尔)=1.5:(5.0~7.0):(1.0~1.25),APS的用量为15%。 图1为四因素在三水平下所合成的JH9聚羧酸减水剂对水泥净浆流动度经时损失的影响。图1中的水泥净浆流动度为各因素分别在三水平下的算术平均值,减水剂掺量为水泥质量的0.8%(图2和图3与此相同)。 由图1可知,MAS用量对水泥净浆的初始流动度影响不大,但增大MAS用量有利于水泥净浆流动度的保持,MAS用量为1.0~1.5mol时,水泥净浆流动度经时损失曲线基本接近,因此,MAS用量取1.0~1.5mol为宜;增大AA用量对水泥净浆初始流动度有利,但PA用量过大对水泥净浆的流动度保持不利,AA用量取5.0mol为宜;PA用量对水泥净浆流动度的保

JG∕T223-2007聚羧酸系高性能减水剂

JG∕T223-2007聚羧酸系高性能减水剂JG 中华人民共和国建筑工业行业标准 JG/T 223—2007 聚羧酸系高性能减水剂 Polycarboxylates high performance water-reducing admixture 2007—08—01发布 2007—12—01实施 中华人民共和国建设部发布 JG/T 223-2007 前言 本标准为首次制定。 本标准由建设部标准定额研究所提出。 本标准由建设部建筑工程标准技术归口单位中国建筑科学研究院归口。 本标准负责起草单位:中国建筑科学研究院。 本标准参加起草单位:巴斯夫(中国)有限公司、广州富斯乐有限公司、江苏省建筑科学研究院、淘正化工(上海)有限公司、上海建研建材科技有限公司、上海麦斯特建材有限公司、上海申立建材有限公司、上海市建筑科学研究院、深圳市迈地砼外加剂有限公司、同济大学、中冶集团建筑研究总院北京冶建特种材料有限公司、四川柯帅外加剂有限公司、北京市建筑材料质量监督检验站、浙江科威工程材料有限公司。 本标准主要起草人:郭延辉、赵霄龙、郭京育、薛庆、顾涛、朱艳芳、张艳玲、冉千平、王豪源、宣怀平、王绍德、马明元、姚利君、陈伟国、蒋正武、孙振平、梅名虎、帅希文、宋作宝、方兴中。 JG/T 223-2007

聚羧酸系高性能减水剂 1 范围 本标准规定了用于水泥混凝土中的聚羧酸系高性能减水剂的术语和定义、分类与标记、要求、试验方法、检验规则、包装、出厂、贮存等。 本标准适用于在水泥混凝土中掺用的聚羧酸系高性能减水剂。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 8076 混凝土外加剂 GB/T 8077 混凝土外加剂匀质性试验方法 GB 18582 室内装饰装修材料内墙涂料中有害物质限量 GB/T 50080 普通混凝土拌合物性能试验方法标准 GB/T 50081 普通混凝土力学性能试验方法标准 GBJ 82 普通混凝土长期性能和耐久性能试验方法 JC 473 混凝土泵送剂 JC 475—2004 混凝土防冻剂 JGJ 52 普通混凝土用砂、石质量及检验方法标准 JGJ 63 混凝土用水标准 3术语和定义 3(1 聚羧酸系高性能减水剂 polycarboxylates high performance water-reducing admixture

聚羧酸减水剂的优势

推广聚羧酸减水剂的重要意义 (1)节约能源、资源 目前我国正处于高速发展、建设时期,能源资源相对紧缺是制约快速发展的重要问题。一方面聚羧酸减水剂与掺合料具有良好的匹配性,促进了工业副产品的应用,另一方面以其高减水率,可以节约大量的水泥,这就意味着一个工程可以节约成千上万吨的水泥,缓解目前资源和能源紧缺的问题,同时减少熟料烧成带来的环境污染方面有着重要的作用,符合绿色建材的发展方向。 (2)低环境负荷,促进绿色建材发展 甲醛为较高毒性的物质,在我国有毒化学品优先控制名单上甲醛高居第二位。甲醛已经被世界卫生组织确定为致癌和致畸形物质,是公认的变态反应源,也是潜在的强致突变物之一。研究表明,甲醛具有强烈的致癌和促癌作用。甲醛对人体健康的影响主要表现在嗅觉异常、刺激、过敏、肺功能异常、肝功能异常和免疫功能异常等方面。其浓度与危害性见表1-1。 表1 甲醛对人体健康的影响 萘系减水剂为萘磺酸甲醛缩合物,采用工业萘经浓硫酸磺化后,再用一定量

的甲醛与萘磺酸反应生成甲醛缩合物,最后用碱来中和,得到萘的磺化甲醛缩合物的钠盐和硫酸钠的混合物,即萘系减水剂。合成分为四个反应步骤,即磺化反应、水解反应、缩合反应及中和反应。其中缩合反应需要用到大量的甲醛,对环境造成污染。如果生产时合成工艺控制不当,产品很容易带有大量的游离甲醛,在运输和使用过程中对环境造成二次污染。 为了进一步控制室内环境污染,提高民用建筑工程的室内环境质量,目前国家建设部及有关部门提出:加强对混凝土外加剂的甲醛污染控制,提出了在控制混凝土外加剂里面的氨气污染同时,控制混凝土外加剂里面的甲醛污染,从而有效避免毛坯房室内空气中甲醛超标。聚羧酸减水剂合成采用水溶液自由基聚合,整个过程无甲醛及其他有害释放物,无废水废气排放,符合绿色建材的发展方向。 同时,聚羧酸减水剂的使用,有利于缓解CO2温室效应。2008年中国水泥产量13.9亿吨,CO2排放量为62亿吨,超过美国,位居世界第一。聚羧酸减水剂以其高减水率,可降低10~15%的水泥,可减少1~2亿吨CO2排放。 (3)提高混凝土耐久性,促进混凝土高性能化发展 混凝土工程因其工程量大,耐久性不足对未来社会造成非常沉重的负担。美国有调查表明,美国的混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。美国50万座公路桥梁中20万座已有损坏,平均每年有150-200座桥梁部分或完全坍塌,寿命不足20年;美国共建有混凝土水坝3000座,平均寿命30年,其中32%的水坝年久失修。美国对二战前后兴建的混凝土工程,在使用30-50年后进行加固维修所投入的费用,约占建设总投资的40%-50%以上。目前,我国的基础设施建设工程规模宏大,每年高达2万亿元人民币以上,约30-50年后,这些工程也将进入维修期,所需的维修费或重建费将更为巨大。因此,提高混凝土的耐久性对于当前实现可持续发展战略,更好地利用资源、节约能源和保护环境,都具有十分重要的意义。 众所周知,碱是诱发混凝土碱-骨料反应[23]的主要因素之一,是影响混凝土耐久性的重要因素。而由于碱-骨料反应导致大坝损毁的在国内外屡见不鲜,如巴西的Moxoto大坝和法国的Chambon大坝,前者在工程完工3年后便出现了碱-骨料反应,后者在建成后50~60年发生了碱-骨料反应。混凝土中碱主要来源于水泥、粉煤灰、减水剂等原材料。世界上对于碱含量的控制也非常重视,南非

聚羧酸减水剂配方

聚羧酸减水剂配方 摘要:采用自由基水溶液共聚方法合成聚羧酸减水剂。通过正交试验考察不同配方时所合成的聚羧酸减水剂对水泥净浆流动度及经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳合成配方。 关键词:聚羧酸减水剂;水泥净浆;流动度;配方 聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。 本文采用聚合度分别约为9、23、35的自制聚氧乙烯基烯丙酯大单体(PA)分别与丙烯酸、甲基丙烯磺酸钠在引发剂过硫酸铵作用下进行自由基水溶液共聚反应,得到不同侧链长度的聚羧酸减水剂,分别记为JH9、JH23、JH35。通过正交试验分析考察单体及引发剂用量不同时所合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳配方。并分析在最佳合成配方下合成的不同侧链长度的聚羧酸减水剂对水泥净浆的初始流动度及经时损失的影响。 1 实验 1.1 原材料

丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。 1.2 聚羧酸减水剂的合成方法 将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。 1.3 正交试验设计 采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流 动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体

聚羧酸高性能减水剂缓凝型说明书

森普牌SPYJ-3型聚羧酸系高性能减水剂(缓凝型) 产品说明书 森普牌SPYJ-3型聚羧酸系缓凝高性能减水剂是目前国内外最新的引领产品。它与常用的聚羧酸系高性能减水剂缓凝型相比,具有减水率高、掺量低、与水泥适应性好、坍落度损失小和无污染等特点。同时具有改善新拌混凝土各种性能指标和提高工作性等多种作用。本产品为无色透明液体,无毒、无腐蚀性、不易燃、对钢筋无锈蚀、对人体健康无害。 本产品目前参照执行GB/T8076-2008《混凝土外加剂》、GB/T8077-2012《混凝土外加剂匀质性试验方法》、TB/T3275-2011《铁路混凝土》、GB18582-2008《室内装饰装修材料内墙涂料中有害物质限量》标准。 一、技术性能 1.增强效果:与基准混凝土同坍落度和等水泥用量的前提下,减水率≥25%,混凝土各龄期强度均有显着提高,7天抗压强度比≥140%,28天抗压强度比≥130%。 2.泵送性能:具有显着的可泵性。与基准混凝土相比,在同水灰比的前提下,净增坍落度≥100mm,1小时坍落度经时变化量(用于配制泵送混凝土时)≤60mm。 3.缓凝效果:能显着增大混凝土的流动性,改善操作性,可延缓水泥水化放热峰值,避免施工结合层冷缝现象,有效提高其抗裂防水性能。 4.工作性能:具有显着改善新拌混凝土的和易性、保水性和泌水性等操作性能。 5.表面光洁:掺用本产品的混凝土,具有粘聚性强、含气量少和泌水率小等特点,能有效改善高架、高速公路、桥梁等各类清水混凝土表面的光洁和美观 6.张拉抗折:本产品具有先缓凝后早强的功能,在确保掺量的前提下,可满足混凝土的3d (除凝结时间) 张拉和28d抗折强度的要求 7.特效功能:在配制高强混凝土时,其弹性模量、抗渗性、抗收缩、抗徐变和耐久性等高性能指标均可满足要求。 二、匀质指标 根据产品的性能指标和用户的要求,符合国家、行业及企业标准。 三、应用范围 本产品适用于各类泵送混凝土、大体积混凝土、高架、高速公路、桥梁、水工混凝土。特别适用于重点工程和有特殊要求的混凝土。 四、使用方法 1.本产品掺量范围~%(以胶凝材料量计),可根据与水泥的适应性、气温的变化和混凝土坍落度等要求,在推荐范围内调整确定最佳掺量。 2.按计量,直接掺入混凝土搅拌机中使用。 3.在计算混凝土用水量时,应扣除液剂中的水量。 4.在使用本产品时,应按混凝土试配事先检验与水泥的适应性。 五、注意事项 1.在水泥变更品种或新进水泥时,应做与水泥兼容性检验。 2.对于要求缓凝的混凝土,应按混凝土试配事先检验凝结时间。 3.必须按试验配合比正确掺量,浇筑混凝土时,应严格按施工规范操作。 4.在与其他外加剂合用时,宜先检验其兼容性。 5.在冬季施工期间,为了提高混凝土早期强度,应适当调整混凝土的水泥用量。 6.与常规混凝土工程一样,必须按施工规范加强养护。 7.使用本产品,应提前1~3天通知厂方。 六、包装贮存 1.可采用灌车运装;塑料桶1000kg/桶;也可根据用户要求做特殊包装。 2.本产品质保期壹年,在质保期内如有沉淀,经搅匀后使用,不影响效果。

聚羧酸高效外加剂的技术性能指标

聚羧酸高效外加剂的技术性能指标 一、技术性能 PC聚羧酸系高性能减水剂匀质性指标 PC聚羧酸系高性能减水剂混凝土性能指标

二、使用说明 1、PC聚羧酸系高性能减水剂的掺量为胶凝材料总重量的0.1%~1.5%,常用掺量为0.8%~2.5%。使用前应进行混凝土试配试验,以求最佳掺量。 2、PC聚羧酸系高性能减水剂不可与萘系高效减水剂混合使用,使用PC聚羧酸系高性能减水剂时必须将使用过萘系高效减水剂的搅拌机和搅拌车冲洗干净否则可能会失去减水效果。 3、使用PC聚羧酸系高性能减水剂时,可以直接以原液形式掺加,也可以配制成一定浓度的溶液使用,并扣除PC聚羧酸系高性能减水剂自身所带入的水量。 4、由于掺用PC聚羧酸系高性能减水剂混凝土的减水率较大,因此坍落度对用水量的敏感性较高,使用时必须严格控制用水量。 5、PC聚羧酸系高性能减水剂与绝大多数水泥有良好的适应性,但对个别水泥有可能出现减水率偏低,坍落度损失偏大的现象。另外,水泥的细度和储存时间也可能会影响PC聚羧酸系高性能减水剂的使用效果。此时,建议通过适当增大掺量或复配其它缓凝组分等方法予以解决。 6、掺用PC聚羧酸系高性能减水剂后,混凝土含气量有所增加(一般为2%~5%)有利于改善混凝土的和易性和耐久性. 7、由于PC聚羧酸系高性能减水剂掺量小、减水率高,使用PC聚羧酸系高性能减水剂配制C45以上的各类高性能混凝土,可以大幅度降低工程成本,具有显著的技术经济效益;用于配制 C45以下等级混凝土,虽然PC聚羧酸系高性能减水剂的成本偏高,但可以通过增加矿物掺合料用量,降低混凝土的综合成本,同样具有一定的技术经济效益。 三、作用机理 减水作用是表面活性剂对水泥水化过程所起的一种重要作用。减水剂是在不影响混凝土工作性的条件下,能使单位用水量减少;或在不改变单位用水量的条件下,可改善混凝土的工作性;或同时具有以上两种效果,又不显著改变含气量的外加剂。目前,所使用的混凝土减水剂都是表面活性剂,属于阴离子表面活性剂。 水泥与水搅拌后,产生水化反应,出现一些絮凝状结构,它包裹着很多拌和水,从而降低了新拌混凝土的和易性(又称工作性,主要是指新鲜混凝土在施工中,即在搅拌、运输、浇灌等过程中能保持均匀、密实而不发生分层离析现象的性能)。施工中为了保持所需的和易性,就必须相应增加拌和水量,由于水量的增加会使水泥石结构中形成过多的孔隙,从而严重影响硬化混凝土的物理力学性能,若能将这些包裹的水分释放出来,混凝土的用水量就可大大减少。在制备混凝土的过程中,掺入适量减水剂,就能很好地起到这样的作用。 混凝土中掺入减水剂后,减水剂的憎水基团定向吸附于水泥颗粒表面,而亲水基团指向水溶液,构成单分子或多分子层吸附膜。由于表面活性剂的定向吸附,使水泥胶粒表面带有相同符号的电荷,于是在同性相斥的作用下,不但能使水泥-水体系处于相对稳定的悬浮状态,而且,能使水泥在加水初期所形成的絮凝状结构分散解体,从而将絮凝结构内的水释放出来,达到减水的目的。减水剂加入后,不仅可以使新拌混凝土的和易性改善,而且由于混凝土中水灰比有较大幅度的下降,使水泥石内部孔隙体积明显减少,水泥石更为致密,混凝土的抗压强度显著提高。减水剂的加入,还对水泥的水化速度、凝结时间都有影响。这些性质在实用中都是很重要的。 四、包装

聚羧酸高效减水剂多少钱

价格取决于成本,性能好的,价格相对就高。整体价格范围在几十元到几百元一袋不等。大家可以到具体的厂家去了解最新价格。 说完价格,再为大家介绍一下常见的减水剂的作用,方便大家在购买时做出选择。 1.分散作用:水泥加水拌合后,由于水泥颗粒分子引力的作用,使水泥浆形成絮凝结构,使10%~30%的拌合水被包裹在水泥颗粒之中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性。当加入减水剂后,由于减水剂分子能定向吸附于水泥颗粒表面,使水泥颗粒表面带有同一种电荷(通常为负电荷),形成静电排斥作用,促使水泥颗粒相互分散,絮凝结构破坏,释放出被包裹部分水,参与流动,从而有效地增加混凝土拌合物的流动性。 2.减水剂的作用之润滑:减水剂中的亲水基极性很强,因此水泥颗粒表面的减水剂吸附膜能与水分子形成一层稳定的溶剂化水膜,这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而使混凝土流动性进一步提高。

3.空间位阻也是减水剂的作用之一:减水剂结构中具有亲水性的聚醚侧链,伸展于水溶液中,从而在所吸附的水泥颗粒表面形成有一定厚度的亲水性立体吸附层。当水泥颗粒靠近时,吸附层开始重叠,即在水泥颗粒间产生空间位阻作用,重叠越多,空间位阻斥力越大,对水泥颗粒间凝聚作用的阻碍也越大,使得混凝土的坍落度保持良好。 4.接枝共聚支链的缓释作用:新型的减水剂如聚羧酸减水剂在制备的过程中,在减水剂的分子上接枝上一些支链,该支链不仅可提供空间位阻效应,而且,在水泥水化的高碱度环境中,该支链还可慢慢被切断,从而释放出具有分散作用的多羧酸,这样就可提高水泥粒子的分散效果,并控制坍落度损失。

聚羧酸减水剂作用机理简述

广东复特聚羧酸减水剂作用机理简述 关键词:聚羧酸减水剂 编制:广东复特新型材料科技有限公司 广东新业混凝土有限公司 聚羧酸减水剂是20世纪80年代中期开发出的一种新型高效混凝土减水剂,最先是在日本研制成功的。聚羧酸减水剂可明显提高混凝土的流动性和耐久性强度,因此近年来已成为世界许多国家混凝土工程界与材料界关注的热点。聚羧酸减水剂也是目前世界上公认的研究与应用前景最好和综合性能最优的减水剂。其作用机理简述如下: 1. 分散作用:水泥加水拌合以后,由于水泥颗粒分子引力的作用,使水泥浆形成絮凝结构,使10-30%的拌合水被包裹在水泥颗粒中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性。当加入聚羧酸减水剂以后,由于聚羧酸减水剂分子能定向吸附于水泥颗粒的表面,使水泥颗粒表面带上同一种电荷(一般为负电荷),形成静电排斥作用,使水泥颗粒相互分散,破坏絮凝结构,释放出被包裹的水,参与流动,从而有效地增加了混凝土拌合物的流动性。 2. 润滑作用:聚羧酸减水剂中的亲水基极性非常强,因此水泥颗粒表面的聚羧酸减水剂吸附膜能与水分子形成一层稳定的溶剂化水膜,这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而进一步提高混凝土的流动性。 3. 空间位阻作用:聚羧酸减水剂结构中具有亲水性支链,其伸展于水溶液中,可在所吸附的水泥颗粒表面形成有一定厚度的亲水性立体吸附层。当水泥颗粒相互靠近时,吸附层开始重叠,即在水泥颗粒间产生空间位阻作用,重叠越多,空间位阻斥力越大,对水泥颗粒间凝聚作用的阻碍也越大,使得混凝土的坍落度保持良好。 4. 接枝共聚支链的缓释作用:聚羧酸减水剂在制备的过程中,会在减水剂分子上接枝一些支链,这些支链不仅可以提供空间位阻效应,而且在水泥水化的高碱度环境中,这些支链还可以逐渐被切断,从而释放出具有分散作用的多羧酸,这样就可以提高水泥颗粒的分散效果,并控制坍落度损失。

聚羧酸系高效减水剂

聚羧酸系高效减水剂 一一现代混凝土设计和施工的神兵利器国内外的工程实践证明,混凝土外加剂的应用是混凝土发展史上继钢筋混凝土和预应力混凝土后的第三次重大飞跃。用它可以方便的改变混凝土的质量和性能,提高施工速度和质量,改善工艺和劳动条件,节省水泥和能源。具有投资少,见效快,推广应用简单,经济效益和社会效益显著的特点。外加剂在混凝土材料中占据了举足轻重的地位,已成为现代混凝土不可或缺的组成部分,是混凝土改性的主要技术途径"在近七十多年混凝土外加剂发展过程中,减水剂作为混凝土外加剂中一个重要的品种广泛应用于混凝土中,是目前国际公认的能显著改善新拌混凝土的工作性和匀质性,大大提高混凝土性能的最有效材料,是大幅度提高混凝土综合耐久性的外加剂。它对改善混凝土的性能赋予了诸多的非同寻常的特殊功效。 混凝土外加剂起源于20世纪30年代,为了提高混凝土路面质量,美国开始使用引气剂,并于20世纪40年代,首先制定了引气混凝土的施工规范,与此同时美国材料试验学会(ASTM)也制订了相关标准。美国北部地区和加拿大所有露天使用的混凝土规定要掺用引气剂,已改善混凝土的耐久性,开创了人类使用混凝土外加剂的先河。随后出现了第一代减水剂—木质素磺酸盐减水剂;1962年,德国的SKW Trostberg和日本的Kao Soap各自同时独立地发明了甲醛缩聚物,分别是以三聚氰胺为原料聚磺化三聚氰胺高效减水剂和以焦化厂副产品工业奈为原料的奈磺酸盐缩甲醛高效减水

剂,其对水泥以及石膏浆体具有强力的分散性能。这两个产品构成了第二代高效减水剂,并延用至今,成为今天混凝土减水剂主要构成,近代来又陆续出现了氨基磺酸盐高效减水剂、脂肪族高效减水剂、聚梭酸系高效减水剂。聚羧酸系高效减水剂是最近出现的一种全新型的高性能减水剂,该高效减水剂主要通过不饱和单体在引气剂作用下发生共聚,将带有活性基因的侧链接枝到聚合物的主链上,因此具有一系列独特的优点:低掺量、高减水率,强分散性,与不同的水泥具有相对较好的适应性,低坍落度损失,更好地解决混凝土的引气、缓凝、泌水等问题,混凝土后期强度较高等。掺加量一般只是奈系减水剂的1/5—1/10,减水率却可达到30%以上。由于掺量大幅度降低,一者带入混凝土的有害成分幅度减少,二者单方混凝土中由高效减水剂引入的成本增加完全可达到与奈系或与其他高效减水剂相当,因而该类产品完全具备取代奈系高效减水剂的技术与经济条件。此类减水剂特别适合用于高性能混凝土,是21世纪国内外推广应用的主要外加剂。 现代混凝土设计和施工要求混凝土具备高强度、高耐久性、高工作性。在现化混凝土的设计上,英国DunStan的工作可以称得上是一个典范。针对粉煤灰在混凝土中的作用特点,他提出:"粉煤灰应该看作为混凝土的第四组分,即除了水泥、水与骨料外的一个独立成分,而不是作为水泥的替代品"。"将粉煤灰看作一种替代水泥的成分,往往得不到最为经济的混凝土配比。因为这样设计的配合比,是在一个己经确定的拌合长期的—不掺粉煤灰的混凝土—的

聚羧酸减水剂合成工艺

1 前言混凝土减水剂可以较好地分散水泥颗粒,减少达到规定工作度的用水量,它既可以用来提高混凝土强度,也可以用来提高混凝土的工作性能,是混凝土材料中的关键组分之一。目前广泛使用的混凝土减水剂主要有 4 大类,即萘系、密胺系、聚羧酸系和氨基磺酸盐系。其中聚梭酸系高性能混凝土减水剂在1985 年由日本研发成功后, 20 世纪90 年代中期己正式工业化生产,是继木钙和萘系减水剂后发展起来的第三代高性能混凝土减水剂,以高减水率、高保坍、高增强、与水泥适应性强等特点,以及超分散性和超稳定性引起了人们的密切关注,目前在欧美一些发达国家得到了广泛应用[ 1 ]。聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。本文在合成聚醚甲基丙烯酸酯大单体的基础上, 采用水溶液共聚的方法合成出了聚羧酸系高效减水剂,通过因素试验确定最佳的合成工艺, 并研究了其应用性能。 2 实验2.1 实验原料及试验设备聚醚(分子量为1200,上海台界化工有限公司) ;对甲苯磺酸(国药集团化学试剂厂) ;对苯二酚(天津市大茂化学试剂厂) ;甲基丙烯磺酸钠(余姚市东泰精细化工有限公司) ;甲苯(天津市大茂化学试剂厂) ;甲基丙烯酸(成都科龙化工试剂厂) ;过硫酸铵(天津市大茂化学试剂厂) 等。聚羧酸系减水剂:进口聚羧酸(p s1, 60% ) ;国内聚羧酸(p s2, 40% ) ;自制聚羧酸(p s3, 20% ) 。水泥:炼石P·O 42.5 级普通硅酸盐水泥;建福P ·O42.5 级普通硅酸盐水泥。500ml 三颈烧瓶;集热式恒温磁力搅拌器;温度计; 250ml 滴液漏斗;旋转蒸发器等。2.2 合成方法2.2.1 大单体的合成将一定量的聚醚、甲基丙烯酸、阻聚剂对苯二酚和催化剂对甲苯磺酸加到装有温度计的三颈瓶中,以甲苯为带水剂,在130℃下酯化8h。反应结束后,真空除去其中的带水剂和少量杂质,得到所需的大单体。在130℃下反应即是为减少甲基丙烯酸的挥发,又能提高了酯交换反应的安全度。2.2.2 聚羧酸盐减水剂的合成将预定的水和甲基丙烯磺酸钠加入到三颈瓶中, 90℃下分别滴加制备的大单体、甲基丙烯酸混合液和引发剂水溶液,约 1.5h 滴完并保温搅拌 2.5h。反应结束后冷却至70℃用NaOH 水溶液(30% )中和pH 值为6~7,得到黄色或棕红色的水溶液(浓度为20% ) 。2.2. 3 水泥净浆及混凝土性能试验按照GB8077 - 2000 和GB8076 - 1997 对聚羧酸型减水剂进行净浆和混凝土性能测试。3 结果与讨论3.1 反应温度对聚羧酸性能的影响本聚合反应是吸热反应,聚合温度影响了反应的进程及产物的性能。如果温度选择过低, 则引发剂的半衰期过长,在一般的聚合时间内,引发剂残留分率大,单体的转化率就底;而温度过高,则半衰期过短,早期即有大量分解,聚合后期将无足够的引发剂来保持适当的聚合速率, 造成聚合产物的分子结构不均匀。同时温度愈高,聚合速率愈大,同时聚合物分子量愈低[ 2 ]。聚合温度对反应的影响如表1 所示。 随着温度的升高,水泥净浆分散性先增大,后随之降低,100℃时所合成的减水剂对水泥净浆分散性最差。这可能是因为一方面温度升高,分子量减小,从而影响它对水泥净浆流动度的保持,另一方面,主链上的侧链因为是酯类化合物,在高温下发生可逆反应,部分侧链发生脱落从而造成分散性保持的降低。3.2 反应时间对减水剂性能的影响随着反应的进行,单体浓度逐步降低,聚合物浓度则相应提高,延长反应时间主要是为了提高转化率,对产物性能的影响较小。反应时间对聚羧酸系减水剂的分散性能的影响如表2。 如果聚合时反应时间较短,则共聚体系中单体的转化率较低,溶液中还存在着一定的单体,这对于水泥净浆流动度的保持不利。反应的时间越长,侧链脱落的数目就越多,以致于难以“屏蔽”主链上的发挥减水作用的功能基团如羧基、磺酸基,从而引起水泥净浆流动度保持能力的下降。3.3 引发剂用量的影响在聚合反应过程中,引发剂用量对产物的分子量大小、分子量分布和单体的转化率有十分重要的影响。其中分子量的大小和分子量分布影响着减水率和混凝土的保坍性能单体;而单体转化率关系到聚羧酸聚合物的产率和有效含量。具体数据如表3 所示。

相关文档
最新文档