函数与倒数

函数与倒数
函数与倒数

函数单调性与导数

1.证明:x x f 2)(=在R 上是增函数

2.证明:

x x f 5)(-=在R 上是增函数

3.讨论函数)0()(≠=a ax x f 的单调性

4.求32)(2--=x x x f 的单调递增区间

5.求183)(2

--=x x x f 的单调递减区间

6.已知3)(2--=ax x x f 在),1(+∞是增

函数,求a 的取值范围.

7.求x x x x f 33

1

)(23--=的单调递增区

间 8.求x x x x f --=23)(的单调减增区间

9.已知3)(23--+=ax x x x f 在R 是增函

数,求a 的取值范围.

10.已知bx ax x x f ++=23)(的图像过点P

(1,6),且在P 处的切线斜率为10.

(1)求)(x f 的解析式. (2)求)(x f 的单调区间

函数单调性与导数

3.证明:x x f 2)(=在R 上是增函数

4.证明:

x x f 5)(-=在R 上是增函数

3.讨论函数)0()(≠=a ax x f 的单调性

4.求32)(2--=x x x f 的单调递增区间

5.求183)(2--=x x x f 的单调递减区间

6.已知3)(2--=ax x x f 在),1(+∞是增

函数,求a 的取值范围.

7.求x x x x f 33

1)(23

--=

的单调递增区间 8.求x x x x f --=23)(的单调减增区间

9.已知3)(23--+=ax x x x f 在R 是增函

数,求a 的取值范围.

11.已知bx ax x x f ++=23)(的图像过点P

(1,6),且在P 处的切线斜率为10.

(3)求)(x f 的解析式. (4)求)(x f 的单调区间

函数的单调性、极值与最值问题

函数的单调性、极值与最值问题 典例9 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审 题 路 线 图 求f ′(x ) ――――――→讨论f ′(x ) 的符号 f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.

评分细则(1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.

跟踪演练9(优质试题·天津)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间; (2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2, g(x2))处的切线平行,证明x1+g(x2)=-2ln ln a ln a; (3)证明当a≥1e e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. (1)解由已知得h(x)=a x-x ln a, 则h′(x)=a x ln a-ln a. 令h′(x)=0,解得x=0. 由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表: 所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)证明由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处 的切线斜率为1x a ln a.由g′(x)= 1 x ln a,可得曲线y=g(x)在点

倒数在函数中的应用

导数在函数中的应用 有关导数在函数中的应用主要类型有:求函数的切线,判断函数的单调性,求函数的极值和最值,利用函数的单调性证明不等式,这些类型成为近两年最闪亮的热点,是高中数学学习的重点之一。 一、用导数求函数的切线 例1.已知曲线y=x3-3x2-1,过点(1,-3)作其切线,求切线方程。 分析:根据导数的几何意义求解。 解:y′ = 3x2-6x,当x=1时y′= - 3,即所求切线的斜率为-3.故所求切线的方程为y 3 = -3(x-1),即为:y = -3x. 【点评】函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0, y=f(x0))处的切线的斜率。既就是说,曲线y=f(x)在点P(x0, y=f(x0))处的切线的斜率是f′(x0) ,相应的切线方程为y-y0= f′(x0)(x-x0)。 二、用导数判断函数的单调性 例2.求函数y=x3-3x2-1的单调区间。 分析:求出导数y′,令y′>0或y′<0,解出x的取值范围即可。 解:y′= 3x2-6x,由y′>0得3x2-6x﹥0,解得x﹤0或x ﹥2。 由y′<0得3x2-6x﹤0,解得0﹤x<2。

故所求单调增区间为(-≦,0)∪(2,≦),单调减区间为(0 ,2 )。 【点评】利用导数判断函数的单调性的步骤是:(1)确定f(x)的定义域;(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)确定f(x)的单调区间.若在函数式中含字母系数,往往要分类讨论。 三、用导数求函数的极值 例3.求函数f(x)=(1/3)x3-4x 4的极值 解:由 f′(x)=x2-4=0,解得x=2或x=-2. 当x变化时,y′、y的变化情况如下: 当x=-2时,y有极大值f(-2)=-(28/3),当x=2时,y 有极小值f(2)=-(4/3). 【点评】求可导函数极值的步骤是:(1)确定函数定义域,求导数f′(x);(2)求f′(x)= 0的所有实数根;(3)对每个实数根进行检验,判断在每个根(如x0)的左右侧,导函数f′(x)的符号如何变化,如果f′(x)的符号由正变负,则f(x0)是极大值;如果f′(x)的符号由负变正,则f(x0)是极小值.。注意:如果f′(x)= 0的根x = x0的左右侧符号不变,则f(x0)不是极值。f′(x)= 0只是f(x0)是极值的必要条件。 四、用导数求函数的最值 函数在闭区间上的最值是比较所有极值点与端点的函数值所得结果,因此函数在闭区间[a,b]上的端点函数值一定不是极值,但它可能是函数的最值.同时,函数的极值不一定是函数的最值,最值也不一定是极值.另外求解函数的最值问题,还可以

函数极值与导数解析

函数的极值与导数练习 基础篇 1.函数f(x)的定义域为开区间(a,b),其导函数f′(x)在(a,b)内的图象如图1-3-10所示,则函数f(x)在开区间(a,b)内的极大值点有() 图1-3-10 A.1个B.2个 C.3个D.4个 【答案】B[依题意,记函数y=f′(x)的图象与x轴的交点的横坐标自左向右依次为x1,x2,x3,x4,当a<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x2<x<x4时,f′(x)≥0;当x4<x<b时,f′(x)<0.因此,函数f(x)分别在x=x1,x=x4处取得极大值,选B.] 2.函数y=x3-3x2-9x(-2<x<2)有() A.极大值5,极小值-27 B.极大值5,极小值-11 C.极大值5,无极小值 D.极小值-27,无极大值 【答案】C[由y′=3x2-6x-9=0,得x=-1或x=3. 当x<-1或x>3时,y′>0;由-1<x<3时,y′<0. ∴当x=-1时,函数有极大值5;3?(-2,2),故无极小值.] 3.已知a是函数f(x)=x3-12x的极小值点,则a=() A.-4 B.-2 C.4 D.2

【答案】D [∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12,令f ′(x )=0,则x 1=-2,x 2=2. 当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.] 4.当x =1时,三次函数有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( ) 过(1,4)f ′(1)=0 过(3,0)f ′(3)=0 A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9x D .y =x 3+6x 2-9x 【答案】B [∵三次函数过原点,故可设为 y =a x 3+bx 2+cx , ∴y ′=3x 2+2bx +c . 又x =1,3是y ′=0的两个根, ∴????? 1+3=-2b 31×3=c 3 ,即????? b =-6, c =9 ∴y =x 3-6x 2+9x , 又y ′=3x 2-12x +9=3(x -1)(x -3) ∴当x =1时,f (x )极大值=4 , 当x =3时,f (x )极小值=0,满足条件,故选B.] 5.函数f (x )=x 3-3bx +3b 在(0,1) ) A .00 D .b <1 2 【答案】A [f ′(x )=3x 2 -3b ,要使f (x )在(0,1)内有极小值,则? ?? ?? f ′(0)<0, f ′(1)>0,

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

6函数的极值与导数讲义

函数的极值与导数讲义 :点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值. (2)极大值点与极大值:点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y x 0)=0时: (1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是. f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是. 一点附近的大小情况. (2)由函数极值的定义知道,函数在一个区间的端点处一定不可能取得极值,即端点一定不是函数的极值点. (3)极大值不一定比极小值大,极小值也不一定比极大(1)可导函数的极值点一定是导数为0的点,但导数为0的点不一定是函数的极值点. 如y =x 3,y ′(0)=0,x =0不是极值点. 问题1如图观察,函数y =f (x )在d 、e 、f 、g 、h 、i 等点处的函数值与这些点附近的函数值有什 么关系?y =f (x )在这些点处的导数值是多少?在这些点附近,y =f (x )的导数的符号有什么规律? 思考函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有________个极小值点. 【例1】求下列函数的极值. (1)f (x )=3x +3ln x ; (2)f (x )=2x x 2+1 -2. 【例2】已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值. 【变式】已知函数f (x )=x 3+ax 2+bx +c ,且知当x =-1时取得极大值7,当x =3时取得极小值,试求函数f (x )的极小值,并求a 、b 、c 的值. 【例3】 (12分)设a 为实数,函数f (x ) =-x 3+3x +a .(1)求f (x )的极值;(2)是否存在实数a ,使得方程f (x )=0恰好有两个实数根?若存在,求出实数a 的值;若不存在,请说明理由.

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

函数与倒数

函数单调性与导数 1.证明:x x f 2)(=在R 上是增函数 2.证明: x x f 5)(-=在R 上是增函数 3.讨论函数)0()(≠=a ax x f 的单调性 4.求32)(2--=x x x f 的单调递增区间 5.求183)(2 --=x x x f 的单调递减区间 6.已知3)(2--=ax x x f 在),1(+∞是增 函数,求a 的取值范围. 7.求x x x x f 33 1 )(23--=的单调递增区 间 8.求x x x x f --=23)(的单调减增区间 9.已知3)(23--+=ax x x x f 在R 是增函 数,求a 的取值范围. 10.已知bx ax x x f ++=23)(的图像过点P (1,6),且在P 处的切线斜率为10. (1)求)(x f 的解析式. (2)求)(x f 的单调区间 函数单调性与导数 3.证明:x x f 2)(=在R 上是增函数 4.证明: x x f 5)(-=在R 上是增函数 3.讨论函数)0()(≠=a ax x f 的单调性 4.求32)(2--=x x x f 的单调递增区间 5.求183)(2--=x x x f 的单调递减区间 6.已知3)(2--=ax x x f 在),1(+∞是增 函数,求a 的取值范围. 7.求x x x x f 33 1)(23 --= 的单调递增区间 8.求x x x x f --=23)(的单调减增区间 9.已知3)(23--+=ax x x x f 在R 是增函 数,求a 的取值范围. 11.已知bx ax x x f ++=23)(的图像过点P (1,6),且在P 处的切线斜率为10. (3)求)(x f 的解析式. (4)求)(x f 的单调区间

二次函数最值问题与解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于 x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长 最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值 3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的 面积来得到

(完整word版)函数的极值与导数导学案

§1.3.2函数的极值与导数 教学目标: 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤; 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 一.复习与思考 已知函数 3 2 ()267f x x x =-+ (1)求f(x)的单调区间,并画出其图象; (2)函数f(x)在x=0和x=2处的函数值与这两点附近的函数值有什么关系? 二.新课讲授 1、极值点与极值 (1)极小值点与极小值: 若函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )= ,而且在点x =a 附近的左侧 ,右侧 ,就把 叫做函数y =f (x )的极小值点, 叫做函数y =f (x )的极小值. (2)极大值点与极大值: 若函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )= , 而且在点x =b 附近的左侧 ,右侧 ,就把 叫做函数y =f (x )的极大值点, 叫做函数y =f (x )的极大值. (3)极大值点、极小值点统称为 ;极大值、极小值统称为 2.关于极值概念的几点说明 (1)极值是一个局部概念,反映了函数在某一点附近的大小情况; (2)极值点是自变量的值,极值指的是函数值 (3)函数的极大(小)值可能不止一个,而且函数的极大值未必大于极小值; (4)函数的极值点一定在区间的内部,区间的端点不能成为极值点。 (5)函数y=f(x)在一点的导数为0是函数在这点取极值的 条件。 3.函数的极值与单调性有什么联系? 【提示】 极值点两侧单调性必须相反,欲研究函数的极值,需先研究函数的单调性. 函数极值的求法 解方程f ′(x )=0,当f ′(x 0)=0时: (1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. 求下列函数的极值. (1)3 1()443 f x x x =-+

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

导数与函数的极值、最值

导数与函数的极值、最值 【题型突破】 利用导数解决函数的极值问题 ?考法1根据函数图象判断函数极值的情况 【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是() A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) D ?考法2求已知函数的极值 【例2】已知函数f(x)=(x-2)(e x-ax),当a>0时,讨论f(x)的极值情况.[解]∵f′(x)=(e x-ax)+(x-2)(e x-a) =(x-1)(e x-2a), ∵a>0,由f′(x)=0得x=1或x=ln 2a. ①当a=e 2时,f′(x)=(x-1)(e x-e)≥0,∴f(x)单调递增,故f(x)无极值. ②当0<a<e 2时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln 2a)ln 2a (ln 2a,1)1(1,+∞) f′(x)+0-0+ f(x)极大值极小值 ③当a>e 2时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,1)1(1,ln 2a)ln 2a (ln 2a,+∞) f′(x)+0-0+ f(x)极大值极小值

综上,当0<a <e 2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ; 当a =e 2 时,f (x )无极值; 当a >e 2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2. ?考法3 已知函数极值求参数的值或范围 【例3】 (1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________. (2)若函数f (x )=e x -a ln x +2ax -1在(0,+∞)上恰有两个极值点,则a 的取值范围为( ) A .(-e 2,-e) B .? ? ???-∞,-e 2 C .? ? ???-∞,-12 D .(-∞,-e) (1)-7 (2)D [方法总结] 1.利用导数研究函数极值问题的一般流程 2.已知函数极值点和极值求参数的两个要领 (1)列式:根据极值点处导数为0和极值列方程组,利用待定系数法求解. (2)验证:因为一点处的导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性. A .2或6 B .2 C .23 D .6 (2)(2019·广东五校联考)已知函数f (x )=x (ln x -ax )有极值,则实数a 的取值范围 是( )

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

《函数的极值与导数》教学设计

3.3.2 函数的极值与导数教学设计 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单 调性的关系是什么? (提问学生回答)

2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象,回答以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: (1)函数y=f(x)在a.b 点的函数值与这些点附近的函数值有什么关系? (2) 函数y=f(x)在a.b.点的导数值是多少? (3)在a.b 点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢? a o h t

高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值 【学习目标】 1. 理解极值的概念和极值点的意义。 2. 会用导数求函数的极大值、极小值。 3. 会求闭区间上函数的最大值、最小值。 4. 掌握函数极值与最值的简单应用。 【要点梳理】 要点一、函数的极值 (一)函数的极值的定义: 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 由函数的极值定义可知: (1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值. (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. (二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';

导数与函数的极值、最值

导数与函数的极值、最值 最新考纲了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次). 知识梳理 1.函数的极值与导数 (1)判断f(x0)是极值的方法 一般地,当函数f(x)在点x0处连续且f′(x0)=0, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)≤0,右侧f′(x)≥0,那么f(x0)是极小值. (2)求可导函数极值的步骤: ①求f′(x); ②求方程f′(x)=0的根; ③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 2.函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是连续不断的曲线,那么它必有最大值和最小值.

(2)设函数f(x)在[a,b]上连续且在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 诊断自测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 (1)函数在某区间上或定义域内极大值是唯一的.(×) (2)函数的极大值不一定比极小值大.(√) (3)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×) (4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√) 2.函数f(x)=-x3+3x+1有() A.极小值-1,极大值1 B.极小值-2,极大值3 C.极小值-2,极大值2 D.极小值-1,极大值3 解析因为f(x)=-x3+3x+1,故有y′=-3x2+3,令y′=-3x2+3=0,解得x =±1,于是,当x变化时,f′(x),f(x)的变化情况如下表:

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.