高中物理模块三牛顿运动定律考点2牛顿运动定律的综合运用21瞬时加速度问题习题1

高中物理模块三牛顿运动定律考点2牛顿运动定律的综合运用21瞬时加速度问题习题1
高中物理模块三牛顿运动定律考点2牛顿运动定律的综合运用21瞬时加速度问题习题1

考点2 牛顿运动定律的综合应用

考点2.1 瞬时加速度问题

(多选)质量均为m 的A 、B 两个小球之间连接一个质量不计的弹簧,放在光滑的台面上.A 球紧靠墙壁,如图所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间( BD )

A.A 球的加速度为F 2m

B.A 球的加速度为0

C.B 球的加速度为F 2m

D.B 球的加速度为F m

如图所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( B )

A .0 B.233g C. g D.33

g 儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳.质量为m 的小明如图所示,静止悬挂时两橡皮绳的拉力大小均恰为mg ,若此时小明左侧橡皮绳在腰间断裂,则小明此时( B )

A .加速度为零

B .加速度a =g ,沿原断裂绳的方向斜向下

C .加速度a =g ,沿未断裂绳的方向斜向上

D .加速度a =g ,方向竖直向下

如图所示,完全相同的三个木块,A 、B 之间用轻弹簧相连,B 、C 之间用不可伸长的轻杆相连,在手的拉动下,木块间达到稳定后,一起向上做匀减速运动,加速度大小为5 m/s 2.某一时刻突然放手,则在手释放的瞬间,下列关于三个木块的加速度的说法正确的是(以向上为正方向,g 取10 m/s 2)( B )

A .a A =0,a

B =a

C =-5 m/s 2

B .a A =-5 m/s 2,a B =a

C =-12.5 m/s 2

C .a A =-5 m/s 2,a B =-15 m/s 2,a C =-10 m/s 2

D .a A =-5 m/s 2,a B =a C =-5 m/s 2

如图所示,A 、B 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( D )

A .两图中两球加速度均为g sin θ

B .两图中A 球的加速度均为0

C .图乙中轻杆的作用力一定不为0

D .图甲中B 球的加速度是图乙中B 球加速度的2倍

如图所示,两个质量分别为m 1=1 kg 、m 2=4 kg 的物体置于光滑的水平面上,中间用轻质弹簧秤连接.两个大小分别为F 1=30 N 、F 2=20 N 的水平拉力分别作用在m 1、m 2上,则达到稳定状态后,下列说法正确的是( C ).

A .弹簧秤的示数是25 N

B .弹簧秤的示数是50 N

C .在突然撤去F 2的瞬间,m 2的加速度大小为7 m/s 2

D .在突然撤去F 1的瞬间,m 1的加速度大小为13 m/s 2

在动摩擦因数μ=0.2的水平面上有一个质量为m =2kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零。当剪断轻绳的瞬间,取g =10 m/s 2,以下说法错误的是 ( A )

A .此时轻弹簧的弹力大小为20 N

B .小球的加速度大小为8 m/s2,方向向左

C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右

D .若剪断弹簧,则剪断的瞬间小球的加速度为0

如图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( D )

A .都等于g 2 B.g 2

和0 C.M A +M B M B ·g 2和0 D .0和M A +M B M B ·g 2

(多选)如图所示,质量为m 的小球,a 、b 是两个完全相同的轻弹簧,且两弹簧的长度相等,作用力大小均为mg .c 为一轻杆,a 、b 、c 之间的夹角均为120°,现将c 杆突然剪断,则剪断瞬间小球的加速度大小可能为( AC )

A .a =0

B .a =g

C .a =2g

D .a =3g

如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态.设拔去销钉M 瞬间,小球加速度的大

小为12 m/s 2.若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(取g =10 m/s 2)( BC )

高中物理向心加速度练习题

向心加速度练习题 1.一个拖拉机后轮直径是前轮直径的2倍,当前进且不打滑时,前轮边缘上某点A的线速度与后轮边缘上某点月的线速度之比V A:V B=_________,角速度之比ωA:ωB=_________,向心加速度之比a A:a B=_________。 2.甲、乙两个物体都做匀速圆周运动.转动半径比为3:4,在相同的时间里甲转过60圈时,乙转过45圈,则它们所受的向心加速度之比为……………………( ) A.3:4 B.4;3 C.4:9 D.9:16 3.下列关于向心加速度的说法中,正确的是………………………( ) A.向心加速度的方向始终与速度的方向垂直 B.向心加速度的方向保持不变 C.在匀速圆周运动中,向心加速度是恒定的 D.在匀速圆周运动中,向心加速度的大小不断变化 4.小球做圆锥摆运动时,摆线与竖直方向的夹角大小不变,下列说法中正确的是( ) A.小球受重力、摆线拉力和向心力作用 B.小球运动过程中线速度是恒定的 C. 小球运动过程中向心加速度是恒定的 D.小球向心加速度的大小,决定于摆线偏离竖直方向的角度 5.如图6.6—8的皮带传动装置中………………………( ) A.A点与C点的角速度相同,所以向心加速度也相同 B.A点半径比C点半径大,所以A点向心加速度大于C点向心加速度 C.A点与B点的线速度相同,所以向心加速度相同 D.B点与C点的半径相同,所以向心加速度也相同 6.如图6.6—9所示,质量为m的小球用长为L的悬绳固定于O点,在O点的正下方L/3处有一颗钉子,把悬绳拉直与竖直方向成一定角度,由静止释放小球,则小球从右向左摆的过程中悬绳碰到钉子的前后.小球的向心加速度之比为多少? 7.如图6.6—10所示,长度为L=0.5m的轻杆,一端固定质量为M=1.0kg的小球A(小球的半径不计),另一端固定在一转动轴O上.小球绕轴在水平面上匀速转动的过程中,每隔0.1s杆转过的角度为30°.试求:小球运动的向心加速度. 参考答案 1.1: 1 2:l 2: 1 2.B 3.A 4.D 5.B 6.2:3 7.14 m/S2

牛顿运动定律专题精修订

牛顿运动定律专题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

牛顿运动定律专题 一、基础知识归纳 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。 理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ??=,有速度变化就一定有加速度,所以 可以说:力是使物体产生加速度的原因。(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); (3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. 理解要点:

高中物理公式推导(匀速圆周运动向心加速度、向心力)word版本

V t ΔV 高中物理公式推导二 圆周运动向心加速度的推导 1、作图分析: 如图所示,在0t 、 t 时刻的速度位置为: 2、推导过程: 第一,对于匀速圆周运动而言,速度的大小是不发生变化的,变化的只是速度的方向,如图所示,速度方向的变化量为 v ,则有: R ? V 0 V 0

θ θ?=?≈?t v v v 0 第二,根据加速度的定义: t v a ??= 则有: t v t v a n ??= ??=θ0 第三,根据圆周运动的相关关系知: R v t = ??=θω 是故,圆周运动的向心加速度为: R v a n 2 = 第四,圆周运动的向心力的大小为:

R v m ma F n 2 == 3、意外收获: 第一,对于圆周运动,我们应该理解速度、角速度、周期之间的关系。具体为: R v =ω T πω2= v R πω2= 第二,我们应该掌握极限的相关知识,合理利用极限来解决相关问题。 第三,如果我们谈论的不是匀速圆周运动,我们同样可以利用此

方法进行谈论。对于非匀速圆周运动(或者叫做曲线运动),不仅速度的方向发生了变化,而且速度的大小也发生了变化,所以, 不仅有向心加速度之外,应该也有使物体速度大小变化的加速度。但是,在这种情况下,我们的向心加速度,叫做径向加速度,速度大小变化的加速度,叫做切向加速度。故有: (1)向心加速度为: R v a n 2 = (2) (3)切向加速度为: t v a t ??= (注意:这里的v ?是指切向速度方向速度的变化量,并不是指 图上的v ?。) 4、注意事项:

3牛顿运动定律

第三章 牛顿运动定律 一、牛顿第一定律 一切物体总保持匀速运动状态或静止状态,直到有外力迫使它改变这种状态为止。 1.牛顿第一定律导出了力的概念 力是改变物体运动状态的原因。(运动状态指物体的速度)又根据加速度定义:t v a ??= , 有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。) 2.牛顿第一定律导出了惯性的概念 一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 静止的物体有惯性,运动的物体也有惯性。同一个物体,放在光滑水平面上用水平力推能推动;放在粗糙水平面上用同样大小的水平力推没推动。能不能说该物体在光滑水平面上时的惯性小,在粗糙水平面上时的惯性大?不能,这里的力应该理解为合外力。 3.牛顿第一定律描述的是理想化状态 牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的。物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例。 二、牛顿第三定律 两个物体间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。 1.区分一对作用力反作用力和一对平衡力 一对作用力反作用力和一对平衡力的共同点有:大小相等、方向相反、作用在同一条直线上。不同点有:作用力反作用力作用在两个不同物体上,而平衡力作用在同一个物体上;作用力反作用力一定是同种性质的力,而平衡力可能是不同性质的力;作用力反作用力一定是同时产生同时消失的,而平衡力中的一个消失后,另一个可能仍然存在。 2.一对作用力和反作用力的冲量和功 一对作用力和反作用力在同一个过程中(同一段时间或同一段位移)的总冲量一定为零,但作的总功可能为零、可能为正、也可能为负。这是因为作用力和反作用力的作用时间一定是相同的,而位移大小、方向都可能是不同的。 三、牛顿第二定律 物体的加速度跟所受的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同。即F =ma 。 特别要注意表述的第三句话。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。 1.对应性 若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。 2.重要意义 牛顿第二定律确立了力和运动的关系,明确了物体的受力情况和运动情况之间的定量关

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

高中物理向心力、向心加速度精品公开课优质课教案

向心力、向心加速度 教学目标: 一、知识目标: 1、理解向心加速度和向心力的概念 2、知道匀速圆周运动中产生向心加速度的原因。 3、掌握向心力与向心加速度之间的关系。 二、能力目标: 1、学会用运动和力的关系分析分题 2、理解向心力和向心加速度公式的确切含义,并能用来进行计算。 三、德育目标: 通过a 与r 及ω、v 之间的关系,使学生明确任何一个结论都有其成立的条件。 教学重点: 1、理解向心力和向心加速的概念。 2、知道向心力大小r v m mrw F 22==,向心加速的大小r v r w Q 22==,并能用 来进行计算。 教学难点: 匀速圆周运动的向心力和向心加速度都是大小不变,方向在时刻改变。 教学方法: 实验法、讲授法、归纳法、推理法 教学用具: 投影仪、投影片、多媒体、CAI 课件、向心力演示器、钢球、木球、细绳 教学步骤: 一、引入新课 1:复习提问(用投影片出示思考题)

(1)什么是匀速圆周运动 (2)描述匀速圆周运动快慢的物理量有哪几个? (3)上述物理量间有什么关系? 2、引入:由于匀速云的速度方向时刻在变,所以匀速圆周运动是变速曲线运动。而力是改变物体运动状态的原因。所以做匀速圆周运动的物体所受合外力有何特点?加速度又如何呢?本节课我们就来共同学习这个问题。 二、新课教学 (一)用投影片出示本节课的学习目标: 1、理解什么是向心力和向心加速度 2、知道向心力和向心加速度的求解公式 3、了解向心力的来源 (二)学习目标完成过程 1:向心力的概念及其方向 (1)在光滑水平桌面上,做演示实验 a:一个小球,拴住绳的一端,绳的另一端固定于桌上,原来细绳处于松驰状态 b:用手轻击小球,小球做匀速直线运动 c:当绳绷直时,小球做匀速圆周运动 (2)用CAI课件,模拟上述实验过程 (3)引导学生讨论、分析: a:绳绷紧前,小球为什么做匀速圆周运动? b:绳绷紧后,小球为何做匀速圆周运动?小球此时受到哪些力的作用?合外力是哪个力?这个力的方向有什么特点?这个力起什么作用? (4)通过讨论得到: a:做匀速圆周运动的物体受到一个指向圆心的合力的作用,这个力叫向心力。 b:向心力指向圆心,方向不断变化。 c:向心力的作用效果——只改变运动物体的速度方向,不改变速度大小。

3牛顿运动定律(07-13年高考真题汇编)

考点3 牛顿运动定律 1 .(2008·新课标全国卷·T20)(6分)一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于图示状态.设斜面对小球的支持力为N ,细绳对小球的拉力为T ,关于此时刻小球的受力情况,下列说法正确的是 ( ) A .若小车向左运动,N 可能为零 B .若小车向左运动,T 可能为零 C .若小车向右运动,N 不可能为零 D .若小车向右运动,T 不可能为零 【解析】本题考查牛顿运动定律。对小球受力分析,当N 为零时,小球的合外力水平向右,加速度向右,故小车可能向右加速运动或向左减速运动,A 对C 错;当T 为零时,小球的合外力水平向左,加速度向左,故小车可能向右减速运动或向左加速运动,B 对D 错。解题时抓住N 、T 为零时受力分析的临界条件,小球与车相对静止,说明小球和小车只能有水平的加速度,作为突破口。所以正确答案为AB 。 【答案】:AB 。 2.(2009·新课标全国卷·T14)(6分)在力学理论建立的过程中,有许多伟大的科学家做出了贡献。关于科学家和他们的贡献,下列说法正确的是 A. 伽利略发现了行星运动的规律 B. 卡文迪许通过实验测出了引力常量 C .牛顿最早指出力不是维持物体运动的原因 D .笛卡尔对牛顿第一定律的建立做出了贡献 【解析】行星运动定律是开普勒发现的A 错误;B 正确;伽利略最早指出力不是维持物体运动的原因,C 错误;D 正确。 【答案】:BD 。 3.(2009·新课标全国卷·T20)(6分)如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后 木板和物块相对于水平面的运动情况为 A.物块先向左运动,再向右运动 B.物块向右运动,速度逐渐增大,直到做匀速运动 C.木板向右运动,速度逐渐变小,直到做匀速运动 D.木板和物块的速度都逐渐变小,直到为零 【解析】对于物块由于运动过过程中与木板存在相对滑动,且始终相对木板向左运动,因此木板对物块的摩擦力向右,所以物块相对地面向右运动,且速度不断增大,直至相对静止而做匀速直线运动,B 正确;对于木板由作用力与反作用力可知受到物块给它的向左的摩擦力作用,则木板的速度不断减小,知道二者相对静止,而做直线运动,C 正确;由于水平面光滑,所以不会停止,D 错误。 【答案】:BC 。 4.(2009·新课标全国卷·T24)(14分) 冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意如图。比赛时,运动员从起滑架处推着冰壶出发,在投掷线AB 处放手让冰壶以一定的速度滑出,使冰壶的停止位置尽量靠近圆心O.为使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小。设冰壶与冰面间的动摩擦因数为1 =0.008,用毛刷擦冰面后动 左 右

上海高三物理复习牛顿运动定律专题

第三章牛顿运动定律专题 考试内容和要求 一.牛顿运动定律 1.牛顿第一定律 (1)第一定律的内容:任何物体都保持或的状态,直到有迫使它改变这种状态为止。牛顿第一定律指出了力不是产生速度的原因,也不是维持速度的原因,力是改变的原因,也就是产生的原因。 (2)惯性:物体保持的性质叫做惯性。牛顿第一定律揭示了一切物体都有惯性,惯性是物体的固有性质,与外部条件无关,因此该定律也叫做惯性定律。 【典型例题】 1.(2005广东)一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是() (A)车速越大,它的惯性越大

(B)质量越大,它的惯性越大 (C)车速越大,刹车后滑行的路程越长 (D)车速越大,刹车后滑行的路程越长,所以惯性越大 2.(2006广东)下列对运动的认识不正确的是() (A)亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动 (B)伽利略认为力不是维持物体速度的原因 (C)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动 (D)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 3.(2003上海理综)科学思维和科学方法是我们 认识世界的基本手段。在研究和解决问题过程中, 不仅需要相应的知识,还要注意运用科学的方法。 理想实验有时更能深刻地反映自然规律。伽利略 设想了一个理想实验,如图所示,其中有一个是经验 事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度; ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面; ③如果没有摩擦,小球将上升到原来释放的高度; ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动。 请将上述理想实验的设想步骤按照正确的顺序排列(只要填写序号即可)。在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。 下列关于事实和推论的分类正确的是() (A)①是事实,②③④是推论 (B)②是事实,①③④是推论 (C)③是事实,①②④是推论 (D)④是事实,①②③是推论 2.牛顿第二定律 (1)第二定律的内容:物体运动的加速度同成正比,同成反比,而且加速度方向与力的方向一致。ΣF=ma (2)1牛顿=1千克·米/秒2

人教版高中物理必修二向心加速度教案

5.6向心加速度 三维教学目标 1、知识与技能 (1)理解速度变化量和向心加速度的概念; (2)知道向心加速度和线速度、角速度的关系式; (3)能够运用向心加速度公式求解有关问题。 2、过程与方法:体会速度变化量的处理特点,体验向心加速度的导出过程,领会推导过程中用到的数学方法,教师启发、引导,学生自主阅读、思考、讨论、交流学习成果。 3、情感、与价值观:培养学生思维能力和分析问题的能力,培养学生探究问题的热情,乐于学习的品质。特别是“做一做”的实施,要通过教师的引导让学生体会成功的喜悦。 教学重点:理解匀速圆周运动中加速度的产生原因,掌握向心加速度的确定方法和计算公式。 教学难点:向心加速度方向的确定过程和向心加速度公式的推导与应用。 教学方法:探究、讲授、讨论、练习 教具准备:多媒体辅助教学设备等 教学过程: 第六节向心加速度 (一)新课导入 通过前面的学习,我们已经知道,做曲线运动的物体速度一定是变化的。即使是我们上一堂课研究的匀速圆周运动,其方向仍在不断变化着。换句话说,做曲线运动的物体,一定有加速度。圆周运动是曲线运动,那么做圆周运动的物体,加速度的大小和方向如何确定呢?——这就是我们今天要研究的课题。 (二)新课教学 1、感知加速度的方向 请同学们看两例:(展示多媒体动态投影图6.6—1和图6.6—2)并提出问题。 (1)图6.6—1中的地球受到什么力的作用?这个力可能沿什么方向?(感觉上应该受到指向太阳的引力作用) (2)图6.6—2中的小球受到几个力的作用?这几个力的合力沿什么方向?(小球受到重力、支持力和绳子的拉力三个力的作用,其合力即为绳子的拉力,其方向指向圆心。) 可能有些同学有疑惑,即我们这节课要研究的是匀逮圆周运动的加速度,可是上两个例题却在研究

牛顿运动定律专题(一)

牛顿运动定律专题(一) 知识达标: 1、下列说法正确的是…………………………………() A、甲主动推乙,甲对乙的作用力的发生先于乙对甲的作用力 B、施力物体必然也是受力物体 C、地球对人的吸引力显然要比人对地球的吸引力大得多 D、以卵击石,卵破碎,说明石块对卵的作用力大于卵对石块的作用力 2、关于惯性下列说法中正确的是…………………………………………() A、物体不受力或所受的合外力为零才能保持匀速直线运动状态或静止状态,因此只有此时物体才有惯性 B、物体加速度越大,说明它的速度改变得越快,因此加速度大的物体惯性小; C、行驶的火车速度大,刹车后向前运动距离长,这说明物体速度越大,惯性越大 D、物体惯性的大小仅由质量决定,与物体的运动状态和受力情况无关 3、一小球用一细绳悬挂于天花板上,以下几种说法正确的是………………………() A、小球所受的重力和细绳对它的拉力是一对作用力和反作用力 B、小球对细绳的拉力就是小球所受的重力 C、小球所受的重力的反作用力作用在地球上 D、小球所受重力的反作用力作用在细绳上 4、当作用在物体上的合外力不为零时,下面结论正确的是……………………() A、物体的速度大小一定发生变化 B、物体的速度方向一定发生变化 C、物体的速度不一定发生变化 D、物体的速度一定发生变化 5、关于超重和失重的说法中正确的是…………………………………() A、超重就是物体受到的重力增加了 B、失重就是物体受到的重力减少了 C、完全失重就是物体的重力全部消失了 D、不论超重、失重还是完全失重,物体所受重力不变 6、在升降机内,一人站在磅秤上,发现自己的体重减少了20%,于是他作出了下列判断,你认为正确的是() A、升降机以0.8g的加速度加速上升 B、升降机以0.2g的加速度加速下降 C、升降机以0.2g的加速度减速上升 D、升降机以0.8g的加速度减速下降 7、2001年1月,我国又成功进行“神舟二号”宇宙飞船的航行,失重实验是至关宇宙员生命安全的重要实验,宇宙飞船 在下列哪种状态下会发生失重现象………………………() A、匀速上升 B、匀速圆周运动 C、起飞阶段 D、着陆阶段 经典题型: 一、牛顿第二定律结合正交分解 例:1、细线悬挂的小球相对于小车静止,并与竖直方向成θ角,求小车运动的加速度。 2、如图,斜面固定,物体在水平推力F作用下沿斜面上滑,已知物体质量m,斜面倾角 θ,动摩擦因数μ和物体小球加速度a,求水平推力F的大小。 练习:1、如图,已知θ=300,斜杆固定,穿过斜杆的小球质量m=1kg,斜杆与小球动摩擦因数μ= √3/6,竖直向上的力F=20N,求小球的加速度a=?

新人教版高中物理必修二《向心加速度》精品教案

新人教版高中物理必修二《向心加速度》精品教案 (1)图6.6—1中的地球受到什么力的作用 (2)图6.6—2中的小球受到几个力的作用 1.2请同学们阅读教材“速度变化量”部分,同时在练习本上画出物体加速运动和减速 运动时速度变化量△v的图示,思考并回答问题: 速度的变化量△v是矢量还是标量? 如果初速度v1和末速度v2不在同一直线上,如何表示速度的变化量△ 2.1认真阅读教材,思考问题,在练习本上画出物体加速运动和减速运动时速度变化量的 图示.每小组4人进行交流和讨论:如果初速度 表示速度的变化量△v?

(1)在A、B两点画速度矢量vA和vB时,要注意什么? (2)将vA的起点移到B点时要注意什么? (3)如何画出质点由A点运动到B点时速度的变化量△V? (4)△v/△t表示的意义是什么? (5)△v与圆的半径平行吗?在什么条件下.△v与圆的半径平行? 学生按照思考提纲认真阅读教材,思考问题,在练习本上独立完成上面的推导过程,得出结论:当△t很小很小时,△v指向圆心.

1、下列关于向心加速度的说法,正确的是( ) A 、向心加速度是表示做圆周运动的物体速率改变的快慢的 B 、向心加速度是表示角速度变化快慢的 C 、向心加速度是描述线速度变化快慢的 D 、匀速圆周运动的向心加速度是恒定不变的 2.小球做匀速圆周运动,以下说法正确的是( ) A .向心加速度与半径成反比,因为a =r v 2 B .向心加速度与半径成正比,因为a =ω2r C .角速度与半径成反比,因为ω=r v D .角速度与转速成正比,因为ω=2πn 3、甲、乙两质点绕同一圆心做匀速圆周运动,甲的转动半径是乙的 4 3,当甲转60周时,乙转45周,甲、乙两质点的向心加速度之比为 。 4、AB 是竖直平面内的四分之一圆弧轨道, 在下端B 与水平直轨道相切,如图5.6-1所示, 一小球自A 点由静止开始沿轨道下滑,已知 圆轨道半径为R ,小球到达B 点时的速度为 V 。则小球在B 点受 个力的作用,这几个 力的合力的方向是 ,小球在B 点的 加速度大小为 ,方向是 。(不计一切阻力) 5 、做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,下列关系式中正确的是( ) A 、线速度aR v = B 、角速度R a w = C 、转速R a n π2= D 、周期a R T π2= 6、如图3所示,在皮带传动中,两轮半径不等,下列说法哪些是正确的? A .两轮角速度相等 B .两轮边缘线速度的大小相等 C .大轮边缘一点的向心加速度大于小轮边缘一点的向心加速度 D .同一轮上各点的向心加速度跟该点与中心的距离成正比 7、一物体在水平面内沿半径 R =20 cm 的圆 形轨道做匀速圆周运动,线速度V =0.2m/s , 那么,它的向心加速度为______m/s 2,它的角 速度为_______ rad/s ,它的周期为______s 。 图5-6-1 图5 图3

大学物理题库第二章牛顿运动定律.doc

第二章牛顿运动定律 一、填空题(本大题共16小题,总计48分) 1.(3分)如图所示,一个小物体A靠在一辆小车的竖直前壁上,A和车壁间静摩擦系数是丛,若要使物体A不致掉下来,小车的加速度的最小值应为1=. J A i 疽 3.(3分)如果一个箱子与货车底板之间的静摩擦系数为〃,当这货车爬一与水平方向 成。角的平缓山坡时,若不使箱了在车底板上滑动,车的最大加速度%域=. 4.(3分)质量m = 40kg的箱子放在卡车的车厢底板上,巳知箱子与底板之间的静摩擦系数为从=0.40,滑动摩擦系数为角=0.25,试分别写出在下列情况下,作用在箱了上的摩擦力的大小和方向. (1)卡车以。=2m/s2的加速度行驶,/ =,方向. (2)卡车以a = -5m/s2的加速度急刹车,/ =,方向? 5.(3分)一圆锥摆摆长为/、摆锤质量为在水平面上作匀速圆周运动,摆线与铅直线夹角。,则 (1)摆线的张力§= 2 (3分)质量相等的两物体A和B,分别固定在弹簧的两端,竖直放在光滑水平支持面C 上,如图所示.弹簧的质量与物体A、B的质量相比,M以忽略不计.若把支持面C迅速移走,则在移开的一瞬间,A的加速度大小心= ,B的加速度的大小% = .

⑵ 摆锤的速率V= I 6.(3分)质量为m的小球,用轻绳AB. BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比F T:E;=. 7.(3分)有两个弹簧,质量忽略不计,原长都是10 cm,第一个弹簧上端固定,下挂一个质量为m的物体后,长为11 cm,而第二个弹簧上端固定,下挂一质量为m的物体后,R为13 cm,现将两弹簧串联,上端固定,下面仍挂一质量为〃,的物体,则两弹簧的总长为 . 8.(3分)如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们的质量分别为 = 2kg , = 1kg .今用一水平力F = 3N推物体B,则B推A的力等于.如 用同样大小的水平力从右边推A,则A推B的力等于? 9.(3分)一物体质量为M,置于光滑水平地板上.今用一水平力斤通过一质量为m的绳拉动物体前进,贝U物体的加速度但=,绳作用于物体上的力. 10.(3分)倾角为30°的一个斜而体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑, 下滑的加速度为3.0m/s2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力

牛顿运动定律试题及标准答案

高一物理牛顿运动定律测试 一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。 1.下列说法正确的是 A.力是物体运动的原因B.力是维持物体运动的原因 C.力是物体产生加速度的原因D.力是使物体惯性改变的原因 2.下列说法正确的是 A.加速行驶的汽车比它减速行驶时的惯性小 B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大 C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性 3.在国际单位制中,力学的三个基本单位是 A.kg 、m 、m / s2 B.kg 、 m / s 、 N C.kg 、m 、 s D.kg、 m / s2 、N 4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比 B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比 C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比 D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得 5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是 A.1 m / s2和7 m / s2 B.5m / s2和8m / s2 C.6 m / s2和8 m / s2 D.0 m / s2和8m / s2 6.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升 C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降 7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 ) A.是物体重力的0.3倍 B.是物体重力的0.7倍 C.是物体重力的1.7倍 D.物体质量未知,无法判断

高中物理向心力向心加速度典型例题

向心力向心加速度典型例题解析【例1】如图37-1所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S离转动轴的距离是半径的1/3.当大轮边缘上的P点的向心加速度是0.12m/s2时,大轮上的S点和小轮边缘上的Q点的向心加速度各为多大? 解析:P点和S点在同一个转动轮子上,其角速度相等,即ωP=ωS.由向心加速度公式a=rω2可知:a s/a p=r s/r p,∴a s=r s/r p·a p=1/3× 0.12m/s2=0.04m/s2. 由于皮带传动时不打滑,Q点和P点都在由皮带传动的两个轮子边缘,这两点的线速度的大小相等,即v Q=v P.由向心加速度公式a=v2/r可知:a Q/a P =r P/r Q,∴a Q=r P/r Q×a P=2/1×0.12m/s2=0.24 m/s2. 点拨:解决这类问题的关键是抓住相同量,找出已知量、待求量和相同量之间的关系,即可求解. 【问题讨论】(1)在已知a p的情况下,为什么求解a s时要用公式a=rω 2/r? 2、求解a Q时,要用公式a=v (2)回忆一下初中电学中学过的导体的电阻消耗的电功率与电阻的关系式:P=I2R和P=U2/R,你能找出电学中的电功率P与电阻R的关系及这里的向心加速度a与圆周半径r的关系之间的相似之处吗? 【例2】如图37-2所示,一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一个木块,当圆盘匀角速转动时,木块随圆盘一起运动,那么

[ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向指向圆盘中心 C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同 D.因为摩擦力总是阻碍物体的运动,所以木块所受到圆盘对它的摩擦力的方向与木块的运动方向相反 解析:从静摩擦力总是阻碍物体间的相对运动的趋势来分析:由于圆盘转动时,以转动的圆盘为参照物,物体的运动趋势是沿半径向外,背离圆心的,所以盘面对木块的静摩擦力方向沿半径指向圆心. 从做匀速圆周运动的物体必须受到一个向心力的角度来分析:木块随圆盘一起做匀速圆周运动,它必须受到沿半径指向圆心的合力.由于木块所受的重力和盘面的支持力都在竖直方向上,只有来自盘面的静摩擦力提供指向圆心的向心力,因而盘面对木块的静摩擦力方向必沿半径指向圆心.所以,正确选项为B. 点拨:1.向心力是按效果命名的,它可以是重力、或弹力、或摩擦力,也可以是这些力的合力或分力所提供. 2.静摩擦力是由物体的受力情况和运动情况决定的. 【问题讨论】有的同学认为,做圆周运动的物体有沿切线方向飞出的趋势,静摩擦力的方向应该与物体的运动趋势方向相反.因而应该选取的正确答案为D.你认为他的说法对吗?为什么? 【例3】如图37-3所示,在光滑水平桌面上有一光滑小孔O;一根轻绳穿过小孔,一端连接质量为m=1kg的小球A,另一端连接质量为M=4kg的重物B.

(新课标)2020年高考物理考点汇总考点3牛顿运动定律

考点3牛顿运动定律 一、选择题 1. (2020 ?福建理综?T16)如图甲所示,绷紧的水平传送带始终以恒定速率v i 运行 初速度大小为V 2的小物块从与传送带等高的光滑水平地面上的 A 处滑上传送带。若 从小物块滑上传送带开始计时,小物块在传送带上运动的 v -t 图像(以地面为参考 系)如图乙所示。已知V 2 > V i ,则 A. t 2时刻,小物块离A 处的距离达到最大 B. t 2时刻,小物块相对传送带滑动的距离达到最大 C. 0?t 2时间内,小物块受到的摩擦力方向先向右后向左 D. 0?t 3时间内,小物块 始终受到大小不变的摩擦力作用 【思路点拨】解答本题时可按以下思路分析:由运动图像得小物块的运动情况;结合 传送带判断相对运动情况,根据相对运动情况分析物块的对地位移与相对位移及摩 擦力的情况。 【精讲精析】选B 。由图乙可知t 1时刻小物块向左运动最远,t 1?t 2这段时间物块 向右加速,但相对传送带还是向左滑动,因此 t 2时刻小物块相对传送带滑动的距离 达到最大,A 错,B 对;0?t 2这段时间小物块受到的摩擦力方向始终向右,t 2?t 3 小物块与传送带一起运动,摩擦力为零, C D 错。故选B 。 2. (2020 ?福建理综? T18)如图,一不可伸长的轻质细绳跨过定滑轮后,两端分别 悬挂质量为m 和的物体A 和B 。若滑轮有一定大小,质量为 m 且分布均匀,滑 4

轮转动时与绳之间无相对滑动,不计滑轮与轴之间的摩擦。设细绳对 大小分别为T i和T2。已知下列四个关于T i的表达式中有一个是正确的。请你根据所学的物理知识,通过一定的分析,判断正确的表达式是() A. T (m 2m2)m i g 1 m 2(mi m2) B. T (m 2m i)m2g 1 m 4(g m2) C. T (m 4m2)m i g 1 m 2(mi m2) D. T(m 4m x)m2g 1 m 4(g m2) 【思路点拨】解答本题利用牛顿第二定律,应用整体和隔离法、极值分析法等物理方法进行处理。 【精讲精析】选C。设滑轮的质量为零,即看成轻滑轮,若物体B的质量较大,由 整体法可得加速度a 匹一g,隔离物体A,据牛顿第二定律可得T i 2m,m2 g, m1 m2m m2 将m=0代入四个选项,可得选项C正确,故选Co 3. (2020 ?江苏物理? T9)如图所示,倾角为a的等腰三角形斜面固定在水平面上, 一 足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩擦。现将质量分别为M m(M>m的小物块同时轻放在斜面两侧的绸带上。两物块与绸带间的动摩擦因数相等,且最大静摩擦力与滑动摩擦力大小相等,在a角取不同值的情况下,下列说法正确的有 A.两物块所受摩擦力的大小总是相等 B?两物块不可能同时相对绸带静止 C. M不可能相对绸带发生滑动 D. m不可能相对斜面向上滑动 【思路点拨】解答本题时要明确两物块与绸带相对静止的条件,然后确定在不同条 A和B的拉力

牛顿运动定律图像专题一

牛顿运动定律图像专题一 1、一个质量为m的木块静止在光滑水平面上,某时刻开始受到如图所示的水平拉力的作用,下列说确的是() A.4t0时刻木块的速度为 B.4t0时刻水平拉力的瞬时功率为 C.0到4t0时间,木块的位移大小为 D.0到4t0时间,,木块的位移大小为5F0t02/m 1、【答案】D 【解析】 考点:牛顿第二定律;匀变速直线运动的位移与时间的关系. 专题:牛顿运动定律综合专题. 分析:根据牛顿第二定律求出加速度,结合运动学公式求出瞬时速度的大小和位移的大小,根据力和位移求出水平拉力做功大小. 解答:解:A、0﹣2t0的加速度,则2t0末的速度,匀减速 运动的加速度大小,则4t0末的速度v2=v1﹣a2?2t0=,则4t0时刻水平拉力的瞬时功率P=,故A、B错误. C、0﹣2t0的位移=,2t0﹣4t0的位移 =,则位移x=,故C错误. D、0到4t0时间,水平拉力做功,故D正确.

故选:D. 点评:本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁. 2、如右下图甲所示,一个质量为3kg的物体放在粗糙水平地面上,从零时刻起,物体在水平力F作用下由静止开始做直线运动.在0~3s时间物体的加速度a随时间t的变化规律如右下图乙所示.则( ) A.F的最大值为12 N B.0~1s和2~3s物体加速度的方向相反 C.3s末物体的速度最大,最大速度为8m/s D.在0~1s物体做匀加速运动,2~3s 物体做匀减速运动 【答案】C 【解析】【命题立意】旨在考查牛顿第二定律的理解,运动图象的理解和应用 A加速度最大为4 m/s2,合力最大为4N,但有摩擦力,B 0~1s和2~3s物体加速度都是正值,方向相同,C梯形的面积是最大速度,类比匀变速的面积相当于位移,D物体一直做加速做加速直线运动,但加速度先增大,又不变,最后减少 3、质点所受的合外力F随时间变化的规律如图所示,力的方向始终在一直线上.已知t=0时质点的速度为零.在图示的t1、t2、t3和t4各时刻中,质点的速度最大的时刻是() A.t1 B.t2 C.t3 D.t4 【答案】B 【解析】考点:牛顿第二定律;匀变速直线运动的速度与时间的关系. 专题:牛顿运动定律综合专题. 分析:通过分析质点的运动情况,确定速度如何变化. 解答:解:由力的图象分析可知: 在0∽t1时间,质点向正方向做加速度增大的加速运动. 在t1∽t2时间,质点向正方向做加速度减小的加速运动. 在t2∽t3时间,质点向正方向做加速度增大的减速运动.

高中物理向心加速度

§5.5 向心加速度 【学习目标】 1.知道匀速圆周运动是变速运动,具有指向圆心的加速度—向心加速度。 2.知道向心加速度的表达式,能根据问题情境选择合适向心加速度的表达式并会用来进行简单的计算。 3.会用矢量图表示速度变化量与速度之间的关系,理解加速度与速度、速度变化量的区别. 4.体会匀速圆周运动向心加速度方向的分析方法。 5.知道变速圆周运动的向心加速度的方向和加速度的公示。 【新知预习】 1.做匀速圆周运动的物体,加速度指向,这个加速度叫做 . 2.方向:总指向,即向心加速度的方向与速度方向 .大小:a n=错误!未找到引用源。 = = 。 3.物理意义:向心加速度是描述物体改变的物理量. 4. a n= 错误!未找到引用源。,当线速度v错误!未找到引用源。的大小不变时,a n与r成 . 5. a n= 错误!未找到引用源。,当角速度ω不变时,a n与r成 . 【导析探究】 一、引入: 1.右图,光滑桌面上一个小球由于细线的牵引,绕桌面上的图钉O做匀速 圆周运动.小球受几个力的作用?这几个力的合力沿什么方向,分别在A、 B两个位置画出小球的受力图. 2.(1)请举生活中两个做匀速圆周运动的例子.分析例子中物体的受力情况. (2)一个物体不受力而做匀速圆周运动,有这样的物体吗? 【例1】一质点做匀速圆周运动,其半径为2m,周期为3.14s,如图所示.求质点从 A转过90°到B点的速度变化量. 二、向心加速度: 1.向心加速度的方向: 2.用线速度v和半径r表达,表达式: 3.用加速度ω和半径r表达,表达式:

【例2】思考与讨论:向心加速度与圆周运动半径的关系有两种说法.说法一:从公式r v a n 2 =看,向心 r a n ?=2ω加速度与圆周运动半径成反比;说法二:从看,向心加速度与圆周运动半径成正比. (1)这两种说法各自成立的前提? (2)自行车的大齿轮、小齿轮、后轮三个轮子半径不一样,比较A 、B 两点加速度大小时,采用哪种说法?比较B 、C 两点加速度 大小时,采用哪种说法? 【例3】如图所示,O 1为皮带传动的主动轮的轴心,轮半径为r 1,O 2为从动轮的轴心,轮半径为r 2,r 3为固定在从动轮上的小轮半径,已知r 2=2r 1,r 3=1.5r 1。A 、B 和C 分别是3个轮边缘上的点,质点A、B、C的向心加速度之比是( ) A.1:2:3 B.2:4:3 C.8:4:3 D.3: 6:2 【课堂小结】 1.任何做匀速圆周运动的物体的加速度都指向圆心.这个加速度叫做向心加速度. 2.因为向心加速度方向总指向圆心,所以,匀速圆周运动的加速度方向时刻改变. 3.向心加速度大小用a n 表示.其常用的公式有三个: (1) r v a n 2 = (2)r a n ?=2ω (3) v a n ?=ω 【当堂检测】 1.下列关于向心加速度的说法中正确的是( ) A.向心加速度的方向始终与速度的方向垂直 B.向心加速度的方向不变 C.在匀速圆周运动中,向心加速度是恒定的 D.在匀速圆周运动中,向心加速度的大小不断变化 2.由于地球自转,比较位于赤道上的物体1与位于北纬60°的物体2,则( ) A.它们的角速度之比ω1:ω2=2:1 B.它们线速度之比v 1:v 2=2:1 C.它们的向心加速度之比a 1:a 2=2:1 D.它们向心加速度之比a 1:a 2=4:1 3.如图所示,为甲、乙两质点做匀速圆周运动的向心加速度随半径变化的 图像,其中甲为双曲线的一个分支。由图可知( ) A.甲物体运动的线速度大小不变 B.甲物体运动的角速度大小不变 C.乙物体运动的角速度大小不变 D.乙物体运动的线速度大小不变 4.撑开的雨伞半径为R ,让伞轴成竖直方向,伞边距地高为h .现以 角速 B C r 1 r 2 r 3 O 1 a r 甲 乙

相关文档
最新文档