风力发电机用专业英语中文对照

风力发电机用专业英语中文对照
风力发电机用专业英语中文对照

风力机 wind turbine

风电场 wind power station wind farm 风力发电机组 wind turbine generator system WTGS 水平轴风力机 horizontal axis wind turbine

垂直轴风力机 vertical axis wind turbine

轮毂(风力机) hub (for wind turbine)

机舱 nacelle

支撑结构 support structure for wind turbine

关机 shutdown for wind turbine

正常关机 normal shutdown for wind turbine

紧急关机 emergency shutdown for wind turbine

空转 idling

绝对湿度 absolute humidity

加速试验 accelerated test

加速 accelerating

加速度幅值 acceleration amplitude

验收试验 acceptance test

精度(风力发电机组) accuracy(for WTGS)

确认 acknowledgement

声的基准风速 acoustic reference wind speed

临界功率 activation power(for wind turbines)

临界转速 activation rotational speed

有功电流 active current

有功功率 active power

主动偏航 active yawing

齿轮的变位 addendum modification on gears

地址 address

可调钳 adjustable pliers

调整板 adjusting plate

风轮空气动力特性 aerodynamic characteristics of rotor 气动弦线 aerodynamic chord of airfoil

老化试验 ageing tests

空气制动系 air braking system

空气湿度 air humidity

透气性 air permeability

翼型 airfoil

接闪器 air-termination system

告警 alarm

交流电流 alternating current

交流电机 alternating current machine

交流电压 alternating voltage

海拔 altitude

环境温度 ambient temperature

放大器 amplifier

幅值 amplitude

模拟信号 analog signal

模拟盘 analogue board

模拟控制 analogue control

叶片几何攻角 angle of attack of blade

风轮仰角 angle of rotor shaft

年平均 annual average

年平均风速 annual average wind speed

年发电量 annual energy production

年最高日平均温度 annual extreme daily mean of temperature 年最高 annual maximum

年变化 annual variation

视在声功率级 apparent sound power level

灭弧装置 arc-control device

叶片展弦比 aspect ratio

异步电机 asynchronous generator

异步电机 asynchronous machine

衰减 attenuation

自耦变压器 auto-transformer

辅助电路 auxiliary circuit

辅助装置 auxiliary device

有效性 availability

可利用率(风力发电机组) availability(for WTGS)

平均噪声 average noise level

轴向齿距 axial pitch

球头挂环 ball-eye

球头挂钩 ball-hook

基准误差 basic error

波特 baud(Bd)

位;比特 bit

黑体 black body

叶片 blade

叶片损失 blade losses

锁定(风力机) blocking(for wind turbines)

等电位连接带 bonding bar

等电位连接导体 bonding conductor

刹车盘 brake disc

刹车油 brake fluid

闸衬片 brake lining

制动机构 brake mechanism

闸垫 brake pad

制动器闭合 brake setting

制动器(风力机) brake(for wind turbines)

制动器释放 braking releasing

制动系统 braking system

交流电动机的最初起动电流 breakaway starting current of an a.c. 击穿 breakdown

母线 busbar

母线伸缩节 bus-bar expansion joint

母线间隔垫 bus-bar separator

硬母线固定金具 bus-bar support

字节 byte

电缆剪 cable cutter

笼型 cage

电容 capacitance

电容器 capacitor

保护电容器 capacitor for voltage protection

牙嵌式联接 castellated coupling

严重故障(风力机) catastrophic failure(for wind turbines) 中心距 center distance

中心轮 center gear

集中控制 centralized control

换接 change-over switching

特性 characteristic

特性曲线 characteristic curves

化学腐蚀 chemical corrosion

断路器 circuit breaker

圆周侧隙 circumferential backlash

排除故障 clearance

挂板 clevis 7 tongue

气候 climate

闭合电路 closed circuit

代码 code

扭转刚度系数 coefficient of torsional rigidity

线圈 coil

集电环 collector ring

命令 command

投运试验 commissioning test

共用接地系统 common earthing system

换向 commutation

换向器 commutator

换向片 commutator segment

复杂地形带 complex terrain

导电性 conductivity

导体 conductor

卡线钳 conductor clamp

夹线器 conductor holder

联结 connection

等截面叶片 constant chord blade

触头 contact

接触器 contactor

大陆性气候 continental climate

持续运行 continuous operation

控制电器 control apparatus

控制柜 control cabinet

控制电路 control circuit

控制台 control desk

控制装置 control device

控制系统(风力机) control system(for wind turbines)

控制设备 controlgear

控制器 controller

变流器 converter

腐蚀 corrosion

金属腐蚀 corrosion of metals

耐腐试验 corrosion resistance tests

度电成本 cost per kilowatt hour of the electricity generated by W TGS

计量值 counted measured,metered measured,metered reading

重锤 counter weight

联轴器 coupling

临界阻尼 critical damping

弯度函数 curvature function of airfoil

切入风速 cut-in wind speed

切出风速 cut-out wind speed

圆柱齿轮 cylindrical gear

日平均值 daily mean

防振锤 damper

阻尼 damping

阻尼系数 damping coefficient

阻尼比 damping ratio

数据库 data base

数据电路 data circuit

数据终端设备 data terminal equipment(DTE)

数据组(测试功率特性) date set(for power performance measurement)

译码 decode

弯度 degree of curvature

三角形联结 delta connection

设计极限 design limits

设计工况 design situation

露 dew

直径和半径 diameter and radius

介质试验 dielectric test

数字控制 digital control

直流电流 direct current

直流电机 direct current machine

直接太阳辐射 direct solar radiation

直流电压 direct voltage

指向性(风力发电机组) directivity(for WTGS)

位移幅值 displacement amplitude

指示灯 display lamp

距离常数 distance constant

畸变 distortion

配电电器 distributing apparatus

日变化 diurnal variation

双卡头 double clamp

人字齿轮 double-helical gear

下风向 down wind

引下线 down-conductor

阻力系数 drag coefficient

泄油 drain

从动齿轮 driven gear

主动齿轮 driving;gear

干式变压器 dry-type transformer

双工传输 duplex transmission

耐久性 durability

防尘 dust-protected

负载比 duty ratio

齿啮式联接 dynamic coupling

接地线 earth conductor

接地体 earth electrode

地 earth;ground

接地电路 earthed circuit

接地基准点 earthing reference points(ERP) 接地开关 earthing switch

接地装置 earth-termination system

效率 efficiency

机组效率 efficiency of WTGS

弹性联接 elastic coupling

电的 electric

电荷 electric charge

电路 electric circuit

耦合器 electric coupling

电流 electric current

电能转换器 electric energy transducer

电机 electric machine

触电;电击 electric shock

电线电缆 electric wire and cable

电触头 electrical contact

电气元件 electrical device

放电 electrical discharge

电气寿命 electrical endurance

旋转电机 electrical rotating machine

电 electricity

电极 electrode

电磁制动系 electromagnetic braking system

电磁感应 electromagnetic induction

静电学 electrostatics

紧急制动系 emergency braking system

紧急关机(风力机) emergency shutdown(for wind turbines) 紧急停车按钮 emergency stop push-button

编码 encode

耐久性试验 endurance test

啮合 engagement;mesh

环境 environment

环境条件 environment condition

设备故障信息 equipment failure information

等电位连接 equipotential bonding

事件信息 event information

励磁响应 excitation response

励磁 excitation response

励磁机 exciter

外部条件(风力机) external conditions(for wind turbines) 外部条件 external conditions(for WTGS)

外齿轮 external gear

外部防雷系统 external lightning protection system

外部动力源 external power supply

外推功率曲线 extrapolated power curve

极端 extreme

极端最高 extreme maximum

极端风速 extreme wind speed

齿宽 face width

安全性 fail safe

失效 - 安全 fail-safe

失效 failure

故障 fault

故障接地 fault earthing

顺桨 feathering

现场数据 field data

现场可靠性试验 field reliability test

外联机试验 field test with turbine

滤波器 filter

闪烙 flashover

柔性齿轮 flexible gear

柔性滚动轴承 flexible rolling bearing

万向套筒扳手 flexible spanner hand

弯曲刚度 flexural rigidity

闪变 flicker

持续运行的闪变系数 flicker coefficient for continuous operation 闪变阶跃系数 flicker step factor

气流畸变 flow distortion

颤振 flutter

雾 fog

基础接地体 foundation earth electrode

独立式塔架 free stand tower

自由流风速 free stream wind speed

冻雨 freezing rain

频率 frequency

变频器 frequency converter

风速频率 frequency of wind speed

前置机 front end processor

满载 full load

熔断器 fuse

齿轮 gear

齿轮马达 gear motor

齿轮副 gear pair

平行轴齿轮副 gear pair with parallel axes

齿轮泵 gear pump

变位齿轮 gears with addendum modification

发电机 generator

几何弦长 geometric chord of airfoil

雨淞 glaze

均压环 grading ring 掠射角 grazing angle

直驱式和双馈式风力发电机组介绍

双馈式与直驱式风力发电机组介绍 1、双馈式发电机组 双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。双馈式风力发电机组系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕组直接与电网连接,转子绕组与频率、幅值、相位都可以按照要求进行调节的变流器相连。变流器控制电机在亚同步与超同步转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时变流器将直流侧能量馈送回电网。在亚同步发电时,通过定子向电网馈送能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。 双馈风力发电变速恒频机组示意图 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率与相位与电网相同,并且可根据需要进行有功与无功的独立控制。变流器控制双馈异步风力发电机实现并网,减小并网冲击电流对电机与电网造成的不利影响。提供多

种通信接口,用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。提供实时监控功能,用户可以实时监控风机变流器运行状态。 变流器采用三相电压型交-直-交双向变流器技术。在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形,改善双馈异步发电机的运行状态与输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功与无功的解耦控制,就是目前双馈异步风力发电机组的一个代表方向。 2、直驱式发电机组 直驱式风力发电机组的风轮直接驱动发电机,主要由风轮、传动装置、发电机、变流器、控制系统等组成。为了提高低速发电机效率,直驱式风力发电机组采用大幅度增加极对数(一般极数提高到100左右)来提高风能利用率,采用全功率变流器实现风力发电机的调速。 直驱风力发电变速恒频机组示意图 直驱发电机按照励磁方式可分为电励磁与永磁两种。电励磁直驱

直驱式风力发电机知识(技术研究)

是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数 以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了 直驱永磁风力发电机组特点 直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。 直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。随着近几年技术的发展,其优势才逐渐凸现。德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。 1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。 目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的2.5兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出1.5兆瓦直驱式风力发电机。 编辑本段直驱永磁风力发电机组特点 直驱永磁风力发电机有以下几个方面优点[1]: 1.发电效率高:直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

风力发电机文献综述

林内小型风力发电机风叶的设计 摘要:随着国民经济的持续发展,能源危机的阴影正日益困扰着人类的生产和生活,因此人们开始把目光风能这个取之不尽、用之不竭的清洁能源,若风力发电机跟森林中的监测传感器配合,则能有效利用自然资源,实现可持续发展。本文就林内小型风力发电机叶片原有的基础上进行优缺点分析,总结国内外风力发电机的发展和现状。 前言 本人毕业设计题目为《林内小型风力发电机叶片部件的设计》,主要针对垂直轴风力发电机叶片部件的设计进行研究,对现有风力发电机的叶片发展历史进行总结分析,探索其优越性和可行性。本文主要查询了2000年以来的有关小型风力发电文献期刊。 主体 风力发电机分为水平轴风机和垂直轴风机。 水平轴风机最为典型的代表是3个叶片的荷兰风车,也是目前阶段技术最成熟,应用最广泛,占据主流市场的产品。水平轴风机主要包括叶片技术、发电机和传动技术、并网技术三大部分。其中叶片技术是其核心部分,叶片除了靠叶素理论计算和设计外,还要靠经验对计算值进行修正,对操作人员的技术要求十分高。而我国是从20世纪80年代后期才涉足风力发电这一新兴行业,技术远远落后与世界发展水平,其研究主要是引进、吸收、消化叶片设计技术,没有自己的独立成果。到2006年底,中国进入或正在进入大型风机市场的厂商已超过20家1 ,从企业数量上看,中国的企业数量超过了全世界风机厂商数量的一倍以上,但均缺乏叶片这一核心技术的独创性。 垂直轴风机,即转轴垂直于地面的风机,其历史可以追溯到几千年前,人们利用垂直轴风车进行提水。而垂直轴风力发电机的发明则要比水平轴的晚很多,知道20世纪20年代才开始出现。由于人们普遍认为垂直轴风轮的尖速比不可能大于1,风能利用率低于水平轴风力发电机,因而导致垂直轴风机长期得不到重视。然而,随着科技日新月异和人类认识水平的不断提高,人们逐渐意识到垂直轴风机的尖速比不能大于1只适用于阻力型风机,而升力型风机的尖速比甚至可以达到6,并且其风能利用率也不低于水平轴,于是越来越多的人认识到垂直轴风机的发展前景,并大大提高了其研发技术,取得了突破性进展。 垂直轴风力发电机呈H型,与水平轴风力发电机相比较,其优越性体现在:设计方法先进,风能利用率高,启动风速低,无噪音;除了在风电场应用以外,还可以充分利用大型建筑物的集风作用和大型建筑物顶层的空间、高度,建造风电大楼和零能耗大楼;城市公共照明和高速公路亦可以通过风、光互补方式大量应用风力发电机;具有风资源条件的企事业单

永磁直驱式风力发电机的工作原理

你好,你的这个问题问的比较广。我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双 馈机和永磁直驱发电机。 永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。 总所周知,一般发电机要并网必须满足相位、幅频、周期同步。而我国电网频率为50hz这就表示发电机要发出50hz的交流电。学过电机的都知道。转速、磁极对数、与频率是有关系的n=60f/p。 所以当极对数恒定时,发电机的转速是一定的。所以一般双馈风机的发电机额定转速为1800r/min。而叶轮转速一般在十几转每分。这就需要在叶轮与发电机之间加入增速箱。 而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。而齿轮箱是风力发电机组最容易出故障的部件。所以,永磁直驱的可靠性要高于双馈。 对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。 风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。 不知道有木有解释清楚。 还有什么不清楚可以继续追问,知无不言。 风力发电机也在逐步的永磁化。采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。

风力机的直驱化也是当前的一个热点趋势。目前大多风电系统发电机与风轮 并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。在直驱风力发电系统中风机与发电机直接耦合,省去了传统风力发电系统中的国内难以自主生产且故障率较高的齿轮箱这一部件,减少了发电机的维护工作,并且降低了噪音。另外其不需要电励磁装置,具有重量轻、效率高、可靠性好的优点。 直驱永磁发电机与双馈异步发电机技术相比,由于不需要转子励磁,没有增速 齿轮箱,效率要比双馈发电机高出20%以上,年发电量要比同容量的双馈机型高;增 速齿轮箱故障较高,维护保养成本高,直驱永磁发电机不需要齿轮箱,易于维修保养;直驱永磁发电机采用全功率的交-直-交变频技术,与电网隔离,具有低电压穿越能力,对电网友好; 直驱永磁发电机的缺点是稀土永磁材料成本高,导致整机成本相对较高,永磁 材料在高温、震动和过电流情况下,有可能永久退磁,致使发电机整体报废,这是直驱永磁发电机的重大缺陷。

风力发电机的组成部件及其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

直驱风力发电机分类

直驱风力发电机分类 直驱式风力发电机组在我国是一种新型的产品,但在国外已经发展了很长时间。目前我国在直驱式风机中系统的研究相对传统机型较少,但开发直驱式风力发电机组也是我国日后风机制造的趋势之一。 直驱永磁风力发电机取消了沉重的增速齿轮箱,发电机轴直接连接到叶轮轴上,转子的转速随风速而改变,其交流电的频率也随之变化,经过置于地面的大功率电力电子变换器,将频率不定的交流电整流成直流电,再逆变成与电网同频率的交流电输出。另外一些无齿轮箱直驱风力发电机,沿用低速多极永磁发电机,并使用一台全功率变频器将频率变化的风电送入电网。直接驱动式风力发电机组由于没有齿轮箱,零部件数量相对传统风电机组要少得多。 我国主要的直驱型风力发电机组采用水平轴、三叶片、上风向、变桨距调节、直接驱动、永磁同步发电机并网的总体设计方案,相对于传统的异步发电机组其优点如下:(1)由于传动系统部件的减少,提高了风力发电机组的可靠性和可利用率; (2)永磁发电技术及变速恒频技术的采用提高了风电机组的效率; (3)机械传动部件的减少降低了风力发电机组的噪音; (4)可靠性的提高降低了风力发电机组的运行维护成本; (5)机械传动部件的减少降低了机械损失,提高了整机效率; (6)利用变速恒频技术,可以进行无功补偿; (7)由于减少了部件数量,使整机的生产周期大大缩短。

永磁式硅整流风力发电机设计 小型永磁式硅整流风力发电机,由于采用了永磁体励磁,省去了碳刷、滑环及励磁绕组,避免了碳刷与滑环引起的火花放电,且工艺简单、维护方便、效率较高。但由于永磁式发电机的磁场无法人工调节,在电机制成之后,输出电压随风速(转速)的变化而波动。而其所带负载—蓄电池及用电设备则要求供电电压恒定不变。当供电电压较低时,对蓄电池无法充电,用电设备无法长期工作,而当电压超过额定值较多时,则会造成蓄电池的过充损伤,降低使用寿命,严重的可能烧坏用电设备。图1表示风力发电机输出电压对12V灯泡发光强度及使用寿命的关系特性。 图1端电压相对光通量和使用寿命的关系

双馈式_直驱式风力发电机的对比

能源环境 双馈式、直驱式风力发电机的对比 哈电发电设备国家工程研究中心有限公司(黑龙江哈尔滨) 范磊 【摘 要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。 【关键词】齿轮箱;永磁电机;变速箱 前言 本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。 1、双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。这种形式的性价比和效率均较高,逆变器功率较小。调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC变频器向发电机的转子供电,提供交流励磁。但存在滑环和变速箱的问题,对电网的冲击较大。 由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。在变速恒频风力发电机中,跨越同步速是变速恒频双馈风力发电机励磁控制关键技术之一。这要求转子交流励磁电源不仅要有良好的变频输入、输出特性,而且要有能量双向流动的能力。现有的技术是采用IGBT器件(绝缘栅双极晶体管)构成的PWM(脉宽调制)整流—PWM逆变型式的AC-DC-AC变频器作为其励磁电源,向发电机的转子绕组提供励磁电流,对定子实现定向矢量控制。控制电流由滑环导入,实现亚同步、同步和超同步运行方式之间的转换,采用这种技术的双馈式异步发电机其转速控制范围可达到同步转速的60%。为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。 有刷双馈发电机存在滑环和变速箱的问题,运行可靠性差,需要经常维护,其维护保养费用远高于无齿轮箱变速永磁同步风力发电机,并且这种结构不适合运行在环境比较恶劣的风力发电系统中。近年来国内外风力发电机组故障率最高的部件当数齿轮箱,而齿轮箱的故障绝大多数是由于轴承的故障造成。 齿轮箱的效率可通过功率损失计算或在试验中实测得到。功率损失主要包括齿轮啮合、轴承摩擦、润滑油飞溅和搅拌损失、风阻损失、其它机件阻尼等。齿轮的效率在不同工况下是不一致的。风力发电齿轮箱的专业标准要求齿轮箱的机械效率应大于97%,是指在标准条件下应达到的指标。 2、直驱式永磁同步发电机 所谓“同步”发电机,就是指发电机转子磁场的转速(原动机产生)与定子磁场的转速(电力系统频率决定)相等。这种无齿轮箱变浆距变速的风力发电机组,其风轮轴直接与发电机联接。永磁同步发电机不需要励磁绕组和直流励磁电源,取消了容易出故障的转子上的集电环和电刷装置,成为无刷电机,不存在励磁绕组的铜损耗,比同容量的电励磁式的发电机效率高,结构简单,运行可靠。 这种风力发电机要求全功率变流器,在与电网合闸前,为避免电流冲击和转轴受到突然的扭矩,需要满足一定的并联条件,端电压、频率与电网必须相同。要求发电机具有高质量地将风能转化为频率、电压恒定的交流电,高效率地实现机电能量转换。 永磁直驱式风力发电机其特点是电机转速低,极数多,结构简单,无变速箱,可靠、长寿命,低噪声,大功率,无滑环,安装和维护费用低。但不足之处是体积大,有失磁之忧,且转子的制造难度比较大。同时这种风力发电机制造成本较高,是双馈变速恒频机的1.3倍。 德国埃纳康(Enercon GmbH)公司在1993年研制成功了直驱式风力发电机,1997年将产品推向了市场,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,已开发了容量为330kw、800kw、900kw、2000kw和2300kw的多种机型。2000年,瑞典ABB 公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Windformer,该机高约70米、风扇直径约90米。2003年,日本三菱重工完成MWT-S2000型风力发电机的研制工作,这种直驱式风力发电机组采用的是永磁同步电机。2004年德国西门子公司通过收购世界著名的丹麦Bonus Energy(柏纳斯)公司也开发了直驱式风力发电机。 目前,还有荷兰Wi ndbrokers公司,荷兰Emerg ya Wi nd Technologies NV(EWT)、德国Innovative 公司,德国Vensys公司、德国Avavtis公司、瑞典的ABB等公司,韩国Unison公司和国内的新疆金风科技股份有限公司、湖南湘电风能有限公司、东风汽轮机厂、上海万德风力发电股份有限公司、广西银河艾万迪斯风力发电有限公司、常州新誉风力发电设备有限公司、哈尔滨电站设备集团公司、中国运载火箭技术研究院、江西麦德风能股份有限公司等都在研制直驱式风力发电机。 新疆金凤科技股份公司已在2006年与德国Vensys公司合作研制出1.5兆瓦直驱式风力发电机。2007年湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,并在2007年11月成功完成了2兆瓦直驱式永磁风力发电整机机组试车;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合研制的2.5兆瓦直驱变桨风力发电也将于2008年下半年完成样机。永磁材料钕铁硼的最高工作温度较低。一般为80℃左右,在经过特殊处理的磁铁,其最高工作温度也只能是240℃。如果永磁同步发电机通风系统出现问题,过高的温度会造成永磁材料磁性能降低,甚至不可逆去磁。 尽管永磁电机已经过了几十年的研究,但其设计至今还没有一套系统的公式和经验曲线作为依据。变速恒频风力发电系统中的直驱永磁风力发电机的外形尺寸大、工作转速低,通常是一种扁平状的结构。 3、结论与展望 风电发展以来,直驱与双馈两种机型就一直是竞争关系。随着风电行业的继续发展,直驱与双馈两种机型的性能的优缺点会不断的显露出来,性能和成本会成为最主要的考核指标。

浓缩风能型风力发电机组的安装_使用与维护

浓缩风能型风力发电机组的 安装、使用与维护 董正茂田德王海宽魏玉通王丽丽胡学敏许明 内蒙古农业大学机电工程学院 [摘要]介绍了浓缩风能型风力发电机组的组成和具有的将稀薄的、呈湍流运动的自然风浓缩后利用,有效地对自然风进行了加速、整流,改善了风能密度低和不稳定性,提高了风力发电机工质的品位等特点。重点阐述了浓缩风能型风力发电机组的安装、使用方法和运行、维护时的注意事项。 [关键词]浓缩风能型风力发电机安装使用维护 引言 浓缩风能型风力发电机组由内蒙古农业大学新能源技术研究所研制,已获得中国实用新型专利(专利号:ZL94244155.9)。现已研制出可用于独立运行、风光互补运行的200W、300W、600W、1kW、2kW等系列产品,图1是1kW浓缩风能型风力发电机组照片,在2005年8月苏尼特左旗马吉利家安装、使用。该型风电机组是将稀薄的、呈湍流运动的自然风浓缩后利用,有效地对自然风进行了加速、整流、改善了风能密度低和不稳定性等弱点,提高了风力发电机工质的品位。通过风洞实验和安装、运行实践,证明了浓缩风能型风力发电机组具有切入风速低、年发电量大、噪音低、安全性高、寿命长、度电成本低等特点,提高了风电商品竞争力,具有明显的经济效益和环保效益[1]。 1浓缩风能型风力发电机组的组成与特点1.1叶轮叶轮是浓缩风能型风力发电机组从风中吸收能量的部件,其作用是把空气流动的动能转化为叶轮旋转的机械能。浓缩风能型风力发电机组的叶轮是由六个叶片组成,实度比大,启动风速低。叶片的翼型是根据叶片各种设计理论,通过大量的风洞试验,自主研发的外表美观、结构形式多样的独特流线形翼型。叶片材料用木心外蒙玻璃纤维布,用环氧树脂粘贴,不但强度高,而且韧性好[2]。 1.2发电机发电机将叶轮的机械能转变为电能。浓缩风能型风力发电机组采用自主研发的三相交流稀土永磁同步发电机,其定子结构与电磁式同步发电机基本相同,而转子的结构形式则有所不同。永磁同步发电机以永久磁铁取代了电磁式同步发电机的励磁绕组,简化了发电机的结构,减小轴承等部件的机械磨损。稀土永磁同步发电机在永磁材料中添加了稀土成分,使得永磁磁性增强。在相同体积下,发电量增大,转速降低[3]。 1.3浓缩风能装置浓缩风能装置由收缩管、中央圆筒和扩散管组成。该装置能使流经的稀薄空气加速、整流和均匀化,从而提高了风能的能流密度,降低了自然风的湍流度,改善了风能的不稳定等弱点,提高了风能品位,降低了风电度电成本[4]。 1.4尾舵自然界的风向在不断地变化,浓缩风能型风力发电机组为了得到最高的风能利用效率,应使风轮的旋转面经常对准风向,我们选用尾舵这种对风装置,以跟踪风向的变化。 尾舵主要由尾杆和尾翼两部分组成。尾翼处在风轮的尾流区里,为了避开尾流的影响,尾翼安装在高于浓缩装置的位置。 1.5回转体回转体实际上就是浓缩装置与塔 使用与维修

双馈式-直驱式风力发电机的对比

双馈式\直驱式风力发电机的对比 【摘要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。 【关键词】齿轮箱;永磁电机;变速箱 前言 本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。 1、双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。这种形式的性价比和效率均较高,逆变器功率较小。调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC 变频器向发电机的转子供电,提供交流励磁。但存在滑环和变速箱的问题,对电网的冲击较大。 由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。在变速恒频风力发电机中,跨越同步速是变速恒频双馈风力发电机励磁控制关键技术之一。这要求转子交流励磁电源不仅要有良好的变频输入、输出特性,而且要有能量双向流动的能力。现有的技术是采用IGBT器件(绝缘栅双极晶体管)构成的PWM(脉宽调制)整流—PWM逆变型式的AC-DC-AC变频器作为其励磁电源,向发电机的转子绕组提供励磁电流,对定子实现定向矢量控制。控制电流由滑环导入,实现亚同步、同步和超同步运行方式之间的转换,采用这种技术的双馈式异步发电机其

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳1.5s/se机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 MY1.5s/se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw

直驱式风力发电机原理及发电机组概述

直驱式风力发电机原理及发电机组概述 二极三相交流发电机转速约每分钟3000转,四极三相交流发电机转速约每分钟1500转,而风力机转速较低,小型风力机转速约每分钟最多几百转,大中型风力机转速约每分钟几十转甚至十几转,必须通过齿轮箱增速才能带动发电机以额定转速旋转。下图是一台采用齿轮箱增速的水平轴风力发电机组的结构示意图。 使用齿轮箱会降低风力机效率,齿轮箱是易损件,特别大功率高速齿轮箱磨损厉害、在风力机塔顶环境下维护保养都较困难。不用齿轮箱用风力机浆叶直接带动发电机旋转发电是可行的,这必须采用专用的低转速发电机,称之为直驱式风力发电机。近些年直驱式风力发电机已从小型风力发电机向大型风力发电机应用发展,国内具有自主知识产权的2MW永磁直驱风力发电机已研制成功,据报道目前国外最大的风力发电机组已达7MW,是直驱式发电机组。 低转速发电机都是多极结构,水轮发电机就是低速多极发电机,风力机用的直驱式发电机也有类似原理构造,一种多极内转子结构,只是要求在结构上更轻巧一些。

近些年高磁能永磁体技术发展很快,特别是稀土永磁材料钕铁硼在直驱式发电机中得到广泛应用。采用永磁体技术的直驱式发电机结构简单、效率高。永磁直驱式发电机在结构上主要有轴向与盘式结构两种,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;还有开始流行的双凸极发电机与开关磁阻发电机。 下图是一个内转子直驱式风力发电机组的结构示意图。其定子与普通三相交流发电机类似,转子由多个永久磁铁构成。 外转子永磁直驱式风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁軛构成,外转子与风轮轮毂安装成一体,一同旋转。本栏有对外转子直驱式风力发电机的专门介绍,下图是一个外转子直驱式风力发电机组的结构示意图。

风力发电机叶片气动外形设计方法概述

0 引 言 风力发电是风能利用的主要方式,叶片是用来转换风能的关键部件。风力发电机叶片的外形决定了风能转换的效率,因而风力发电机叶片气动外形设计关系到风力发电机的性能,是风力发电机设计着重考虑的部件之一。 Glauert理论、Schmitz理论和动量—叶素理论是叶片设计的基础理论,现代叶片设计方法都是在这些理论上进一步发展起来的。到目前为止,Glauert理论和动量—叶素理论仍在广泛的使用。分别介绍了三种理论如何求解叶片的弦长和来流角并运用C#语言对以上三种方法进行编程,实现对叶片弦长和来流角的求解,并对这三种方法求解出来的结果进行比较和分析。 1 理论方法介绍 1.1 Glauert理论 G1auert设计方法是考虑风轮后涡流流动的叶素理论(即考虑轴向诱导因子a 和切向诱导因子b );但在另一方面,该方法忽略了叶片翼型阻力和叶梢损失的作用,这两者对叶片外形设计的影响较小,仅对风轮的效率 影响较大。[4] 由一系列的推导知道[1],对于在给定半径r 处的尖速比 ,当 时,即 时,P C 有最大值。令 (1)式中: —中间变量 在等式两边同除以 ,得 (2) 风力发电机叶片气动外形设计方法概述 贾娇1 田 德※1,2 王海宽1 李文慧1 谢园奇2 (1.内蒙古农业大学机电工程学院 2.华北电力大学可再生能源学院) 摘 要:该文介绍了目前风力发电机叶片的主要设计理论——Glauert理论、Schmitz理论和动量—叶素理 论。运用以上三种理论,使用c#语言编程分别计算了1000W叶片的弦长和来流角,并对计算出的结 果进行了比较和分析。从设计的结果可以得到,用动量—叶素理论设计出来的弦长和来流角较Glauert 理论和Schmitz理论设计出来的弦长和来流角更小。但是用以上三种理论设计出来的弦长和来流角在 叶根处都偏大。 关键词:风力发电机;叶片;气动外形设计 而 ,则 即 ,由此可得: (3)将上式代入(1),便可求得a 值。 根据 便可求得b ,进而可求出如图1所示给定半径处的来流角 (a)速度 (b)作用力 (4) 便可求出 (5) 1.2 Schmitz理论 很多基本理论是在风力发电机假设叶片无限长的情况下建立的,对于有限长度的叶片当风轮旋转时,升力翼的下表面压力大于大气压力,上表面压力小于大气压 图1 翼型在气流中的运动分析及受力分析 p C

风力发电机基础施工方法

一、施工方法: 1、风机基础的施工顺序: 材料进场→各机位定位放线→机械挖土→人工清理修正→基槽验收→垫层混凝土浇筑→预埋基础环支撑钢板→放线→安装基础环地脚螺栓支撑件→安装基础环→钢筋绑扎→预埋电力电缆管→支模→基础混凝土浇筑→拆模→验收→土方回填。 2、基础开挖 a.根据施工现场坐标控制点,包括基线和水平基准点,定出基础轴线,再根据轴线定出基坑开挖线。利用白灰进行放线。灰线、轴线经复核检查无误后进行挖土施工。 b.土方开挖采取以机械施工开挖为主,人工配合为辅的方法。考虑到风机塔架基础混凝土浇筑在冬季进行,根据现场开挖情况,基坑开挖中局部部位可能会采用小剂量爆破松动后机械挖除的方式进行。基坑开挖(考虑结合接地网施工)按照沿基础结构尺寸每边各加宽一米进行,结合云南省红河州蒙自老寨风电场的地质条件,基坑开挖边坡系数采用3:1,施工过程中控制好了基底标高,无超挖现象发生。 c.开挖完工后,应人工进行基坑清理,清理干净后进行基槽验收,根据不同地质情况分别采取措施进行处理,验收合格后进行下道工序施工。 d.风机基础接地应随同基坑开挖进行,并在基坑回填前依据规范进行隐蔽验收工作。 e.根据工程地质勘察资料,场区位置地下水埋深较深,所以在基础施工中没考虑地下水的影响,只考虑地表水及雨水排放问题。 f、基础开挖完毕,如基坑遇降雨积水浸泡,垫层混凝土浇筑前应对基坑进行人工晾晒清挖,清挖深度不小于30cm。 土方开挖后,利用机械将开挖出的土石方铺设吊装平台,吊装平台绕基坑四边进行修整,保证了吊车和罐车以及安装使用。

3、基础回填 a、基础施工完毕,在混凝土强度达到规范要求、隐蔽工程验收合格后,进行土方回填。 b、土方回填采用汽车运输、人工分层回填、机械夯实的方式,根据设计要求,回填时要求压实干容重大于18kN/m3(密实度不小于0.93)。土石方分层回填厚度、土质要求按照《建筑地基基础工程施工质量验收规范》GB50202-2002执行。 c、在碾压(或夯实)前应进行回填料含水率及干容重的试验,以得出符合设计密实度要求条件下的最佳含水量和最少碾压遍数。 d、基坑回填前必须先清除基坑底的杂物。土方回填时,要对每层回填土进行质量检验,用环刀法等取样方法测定土的干密度,符合设计要求后才能填筑上层。 e、回填应由坑内最低部位开始自下而上分层铺筑,每层虚铺土厚度应≤30mm,用小型柴油振动碾压机压实,一般来回碾压3~4遍(需根据现场试验确定)。振动碾压机移动时,做到一碾压半碾。如必须分段填筑,交接处应留出阶型接头,上、下层错缝间距应≥1m,以后继续回填时应分层搭接夯实,使新老回填层接合严密。 4、基础环施工工艺 (1)基础环安装工序: 千斤顶就位—吊车抬吊—立直—安装调平螺栓—起钩转杆就位 (2)基础环预埋安装: 1)本工程风机塔筒为预埋地脚螺栓支撑架连接方式,基础环直埋于基础主体混凝土中。施工时采用地脚螺栓支撑架固定的方法。 2)基础环安装前进行埋件检查,首先在垫层混凝土上放出基础中心线,在基础四周建立加密控制网,放出基础中心线、边线及基础环的位置,按图纸要求采用罗盘放出中心线,以确定塔架门方向,核对无误后方可进行基础环安装。 3)由于基础环上法兰的安装水平度要求较高(控制在2㎜以内),基础环安装按以下步骤进行:在混凝土垫层中预埋三块钢板件,其尺寸为300×300×20mm,基础环支撑架下端与预埋基础板连接,基础环与支撑架之间用调整螺栓

一种1.5MW半直驱风力发电机组

一种1.5MW半直驱风力发电机组 作者:丁长文 来源:《科技创新导报》2011年第33期 摘要:本文对1.5MW半直驱风力发电机组技术进行说明。 关键词:半直驱风力发电机组 中图分类号:TM315 文献标识码:A 文章编号:1674-098X(2011)11(c)-0062-01 1.5MW半直驱式变速恒频风力发电机组,是我公司自主研制的产品,机组设计基于半直驱技术,采用水平轴、三叶片、上风向、变桨变速调节、中低速永磁同步发电机及全功率变频并网的总体设计方案。半直驱式变速恒频风电机组是近年来发展起来的机型,它结合了直驱式风电机组和双馈式风电机组的优点,技术先进,可靠性高,性能优越。 1 机组各部分组成和功能 1.1 叶轮系统 该系统主要由轮毂、变桨轴承、叶片、变桨驱动、控制系统及整流罩等组成。 轮毂是叶轮的主要承载零件,采用耐低温球墨铸铁铸造,轮毂总体形状为截球形;叶轮包括3片叶片,叶片由树脂增强玻璃钢制造。 轮毂外面有复合材料整流罩进行防护,整流罩上设计制作了踏板,维修人员通过整流罩和机舱罩通道借助踏板,将很方便的进入轮毂内部,对叶轮系统进行维护和保养。 1.2 齿轮箱 增速箱为一级行星齿轮箱,采用前后法兰连接形式;结构简单、传动效率高;增速箱上设置了温度传感器、加热器和压力传感器等,由主控实时监控其运行状况。主要技术参数如下: 增速比:1:7.5;额定输出转速:150rpm;额定功率:1650kW;效率:≥0.98。 1.3 发电机 发电机采用低速永磁同步发电机,内转子结构,后轴伸出端安装刹车盘,低速发电机输出的电能全部功率通过变频器。主要技术参数如下:

额定输出功率:1650Kw;额定频率:40 Hz;转速范围:40~160r/min 额定转速:150r/min;防护等级:IP54;绝缘等级:H;冷却方式:水冷;轴承润滑方式:自动加注润滑脂;额定功率时效率:≥0.97。 1.4 偏航系统 系统主要由偏航轴承、偏航驱动器、制动器主动式刹车装置、制动盘、风向仪自动除冰装置和扭转传感器组成。偏航系统是风力发电机主动对风执行者,在机舱顶部的风向仪不断测量风向,当风向改变需要对风时,偏航液压刹车制动器松开,4台四级减速的偏航驱动器启动,旋转风机对正风向。 1.5 主控系统 主控系统的主要功能有:机组的正常运行控制、起停控制、最大功率跟踪控制、发电机转速控制、自动调整叶片角度、自动偏航及解缆、安全保护、集中及远程监控等控制功能。系统采用国际上成熟的MITA WP4000控制系统,WP4000是为风力发电专门设计的嵌入式控制器,属于MITA第六代风机控制系统。 WP4000属于风力发电专用控制系统,具有以下特点:高度模块化设计;基于硬件的冗余设计;开放式结构、便于扩展;方便快捷的安装、配置方式(即插即用);可利用率高;模块之间内部采用1M CAN BUS,骨干网采用100M以太网光纤,有第三方总线兼容功能;具有较高的可靠性,性价比,市场接受度高,服务方便。 1.6 变频系统 变流器的核心是具有国际领先水平的高性能的液冷四象限工业变频器系统,电力变流器前后端均装有优化设计的滤波器,发电机侧的整流器优化转距及负载输出需求从而控制发电机,网侧的逆变器将生产出的能源转变为稳定、高质量的50HZ交流电,输入电网。整流器和逆变器的功率因数可以根据发电机负载需求和网侧无功补偿需求而优化调整。该变流器是模块化的高性能产品,专为满足联网用变速发电机而设计,内有功率部件、控制单元、保护及通讯设备等。 主要技术参数如下: 额定输出功率:1500Kw;额定频率:50±0.1Hz;最大频率波动:±0.5Hz(少于1小时); 功率因数:0.9-1(可调,容性或感性)。 1.7 机舱罩 使用玻璃纤维增强聚酯复合材料制造,机舱罩由上、下三件组合而成,便于生产制造、运输和安装,外面是防腐表面,设计充分考虑密封和换气、防沙尘和寒冷以及气动力学因素和工业造型美学因素。

相关文档
最新文档