大棚温湿度控制

大棚温湿度控制
大棚温湿度控制

毕业论文(设计)

大棚温湿度自动调控

朱康允

指导老师:王国强

班级:机电设备09

系(部):机电工程系

专业:机电设备维护与管理

答辩时间:

1

摘要

随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。如果仅靠人工控制既耗人力,又容易发生差错。现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局性。为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。

本论文主要阐述了基于AT89C51单片机的西红柿大棚温湿度控制系统设计原理,主要电路设计及软件设计等。该系统采用AT89C51单片机作为控制器,SHT10作为温湿度数据采集系统,可对执行机构发出指令实现大棚温湿度参数调节,具有上下位机直接设置温湿度范围,温湿度实时显示等功能。上位机采用Delphi软件进行编写,用户界面友好,操作简单,可以根据大棚西红柿生长情况绘制成简明直观的作物生长走势图,从而容易得出最适合作物生长的温湿度值。

关键词:AT89C51;SHT10;蔬菜大棚;温湿度;控制系统;传感器

2

Abstract

With the popularization of trellis technology, greenhouse trellis an ever-growing number, for vegetable shed speaking, one of the most important management factor is the temperature and humidity control. Temperature is too low, the vegetables will freeze to death or stop growing, so will always control temperature and humidity in a suitable vegetable growth range. Traditional temperature control is in greenhouse trellis internal hanging a thermometer, workers according to regulate the temperature reading the temperature inside the shelter. If only by artificial control both consumption manpower, and easy to place regular orders. Now, with the improvement of agricultural industry scale, for larger quantity of trellis, traditional temperature control measures will show great bureau sex. Therefore, in modern vegetable shed management zhongtong often temperature and humidity automatic control system, in order to control the temperature, adapt to the trellis vegetable production needs.

This thesis mainly elaborated based on AT89C51 tomatoes canopy temperature and humidity control system design principle, main circuit design and software design, etc. This system USES AT89C51 single chip microcomputer as controller, SHT10 as temperature and humidity data acquisition system, may to the actuator directives realize trellis temperature and humidity parameters adjustment, has the upper and lower level computer directly set temperature range, temperature and humidity real-time display, and other functions. PC using Delphi software to compile, user friendly interface, easy operation, can according to shed tomato growth situation blazoned with simple, direct simulations of crop growth, thus easy to draw the most suitable for crop growth of temperature and humidity value.

Key words:AT89C51; SHT10;vegetable shed; Temperature and humidity; Control System; sensor

3

目录

第1章绪论 (1)

1.1系统设计背景 (1)

1.2系统功能、优势及特点 (1)

第2章设计内容 (3)

2.1总体方案的设计 (3)

2.1.1设计思想 (3)

2.1.2系统组成及框图............................ 错误!未定义书签。

2.2系统主要电路的设计 (4)

2.2.1主要芯片89C51的功能及引脚图 (4)

2.2.2温湿度检测电路的设计 (5)

2.2.3复位电路的设计 (10)

2.2.4温湿度调节系统的设计 (10)

2.2.5 SHT10数据采集程序 (11)

第3章系统软件的设计 (12)

3.1上位机软件设计 (12)

3.2通信模块软硬件设计 (13)

3.2.1 通信硬件设计 (13)

3.2.2通信软件设计 (14)

3.3系统主程序 (14)

结束语 (16)

参考文献......................................... 错误!未定义书签。4

第1章绪论

1.1系统设计背景

植物的生长都是在一定的环境中进行的,其在生长过程中受到环境中各种因素的影响,其中对植物生长影响最大的是环境中的温度和湿度。环境中昼夜的温度和湿度变化大,其对植物生长极为不利。因此必须对环境的温度和湿度进行监测和控制,使其适合植物的生长,提高其产量和质量。本系统就是利用价格便宜的一般电子器件来设计一个参数精度高,控制操作方便,性价比高的应用于农业种植生产的西红柿大棚温湿度测控系统。

西红柿属于喜温作物,但不喜高温。据实验:白天27℃,夜晚17℃,温差保持在10℃情况下,番茄生长最快。进入开花期,应加大通风量。上午棚内温度升到20℃,要逐渐打开通风口,降温排湿。从开花至浇催果水之前,棚温不要超过28℃。下午当棚温降至20℃时将通风口关闭。本系统主要完成对西红柿大棚内温度和湿度等参数的采集、存储,并具有向监控中心传送数据以及执行监控中心的指令等功能。

本系统温湿度的监控包括以下步骤:感应环境温湿度;判断感应到的温湿度是否异常;若感应到的温湿度异常,判断异常是否超过预设时间;若异常超过预设时间,则输出异常信号至主控机;异常报警;判断异常是否处理完毕;以及若异常处理完毕,解除报警。并可以利用控制器和主控机来达到机房温湿度的远程控制,从而实现环境温湿度管理的实时性和有效性。

为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。它以先进的技术和现代化设施,人为控制作物生长的环境条件,使作物生长不受自然气候的影响,做到常年工厂化,进行高效率,高产值和高效益的生产。

1.2系统功能、优势及特点

该检测系统充分利用AT89C51单片机的软、硬件资源,辅以相应的测量电路和SHT10数字式集成温湿度传感器等智能仪器,能实现多任务、多通道的检测和输出。并且通过RS232接口实现与上位PC机的连接,进行数据的分析、处理和存储及打印输出等。它具有测量范围广、测量精度高等特点,前端测量用的传感器类型可在该基础上修改为其他非电量参数的测量系统。温湿度检测系统采用SHT10为温湿度测量元件。系统在硬件设计上充分考虑了可扩展性,经过一定的添加或改造,很容易增加功能。根据温室大棚内的温湿度、土壤水分、土壤温度等传感器采集到的信息,利用RS485 总线将传感器信息送给485 转232 的转换器,接到上

位计算机上进行显示,报警,查询。监控中心将收到的采样数据以表格形式显示和存储,然后将其与设定的报警值相比较,若实测值超出设定范围,则通过屏幕显示报警或语音报警,并打印记录。与此同时,监控中心可向现场控制器发出控制指令,监测仪根据指令控制风机、水泵、等设备进行降温除湿,以保证大棚内作物的生长环境。监控中心也可以通过报警指令来启动现场监测仪上的声光报警装置,通知大棚管理人员采取相应措施来确保大棚内的环境正常。

1.2.1系统功能及优势

1.系统优越性:系统结构清晰,高度集成化,安装、操作简单,适用于各类使用环境,操作界面充分考虑客户个性化需求,系统运行稳定性好。

2.自动记录: 实时更新并自动记录温湿值,所有温湿度历史记录及相关数据真实可靠,存储方式专用

3.易于查询: 查询任何该蔬菜温室内的固定测点及移动测点的温湿度历史数据记录、温湿度历史曲线、温湿度预警信息、温湿度超限信息、超限处理措施及整改提示、监测点环境情况评估、监测点故障、监测点地理位置等信息。

4.完整精确且灵活记录打印 :将预订的时间点自动记录所有测点的温湿度值及报警信息,形成可查询、打印的历史记录、历史曲线、报表。

5.灵活的报警功能: 报警方式有电脑声光报警、就地测点声光报警、预设地点(值班室)声光报警、手机短信报警、电子邮件报警等。

6.传感器在线标定: 需要标定系统测试精度时无须拆卸传感器,只需通过软件设定即可。

1.2.2系统特点

1.远距离 : 识别的最远距离是 80m

2.防冲突性 : 先进的防碰撞技术,可同时识别 200 个 / 秒以上标识。

3.高速度 : 最高识别速度可达 200 公里 / 小时。

4.安全性 : 加密算法与认证,确保数据安全,防止链路窃听与数据破解。

5.方向性 : 可实现有方向性和无方向性的识别。

6.高可靠 : -40 ℃ -85 ℃,防冲击。

7.成本性 : 全部采用 0.18uM 的芯片,成本更低。

8.功耗性 : 超低功耗,更健康、更安全。

9.传输性 : 全球开放的 ISM 微波频段,无须申请和付费。

10.高抗干扰性 : 对现场各种干扰源无特殊要求高抗干擾性。

11.温度特性:±0.1℃(如果要求的温度范围更宽,则要特殊定)。

12.湿度特性:±2%H(如果要求的湿度范围更宽,则要特殊定制)。

13.测量时间间隔:至少需要1.5S(如果需要更快,则要特殊定制开发)。2

第2章设计内容

2.1总体方案的设计

2.1.1设计思想

系统的一大特点是用户可以通过下位机中的键盘输入温湿度的上下限值和

预置值,也可以通过上位机对温湿度的上下限值和预置值进行输入,从而实现上位机对大棚内作物生长的远程控制。系统下位机设在种植植物的大棚内,下位机中的温湿度传感器可以将环境中的温湿度非电量参数转化成电量信号,再将这些信号进行处理后送至下位机中的单片机,单片机读取数据后将数据送到缓冲区内,通过LED数码管进行实时显示。同时与原先内部设定的参数值进行比较处理;单片机可以根据比较的结果对执行机构发出相应的信号,并通过继电器的控制对相应的设备如喷水器、吹风机、加热器、降温泵等进行操作,调节大棚内温湿度状态。用户直接通过键盘对温湿度的上下限值和预置值进行设置后,如果环境的实时参数超越上下限值,系统自动启动执行机构调节大棚内湿度和温度状态,直到温湿度状态处于上下限值以内为止。如果有预置初值,且与当前状态不相等时,系统也会启动执行机构动态调节温湿度状态,直到所处的平衡状态与预置值相等为止。上位机是用DELPHI软件编写的一个数据库系统管理系统,有着友好直观的用户界面,可直接设置温湿度的上下限值和读取下位机的数据,也可以直接对温室大棚内下位机的喷水器、吹风机、加热器、降温泵等进行操作,调节大棚内温湿度状态。由于上位机DELPHI软件有强大的数据库存储和处理功能,我们可以对下位机传送上来的各种环境中的数据参数进行处理,形成作物生长的走势图,从而通过生长走势图得出适合各种作物生长的最佳环境参数条件,为今后的温室种植提供参考。上下位机之间通过符合串行总线RS一232标准的通信通道以事先约定的协议进行通信。

单片机作为控制器,可以接收温度和温度传感器从大棚中获取的温湿度信息,将这些信息与预置的温湿度范围值进行比较,然后通过继电器控制执行机构,对大棚进行相关的操作以保证大棚的温湿度范围能够在预置的范围内。下位机键盘显示部分可以直接对温湿度值进行预设,并可实现温湿度值的实时显示。上位机可通过通信接口模块接收下位机传送过来的温湿度值,形成作物生长的图表,也可以直接设置温湿度值和控制执行机构对大棚进行相关操作。

4、控制部分(即温湿度调节系统):执行远程控制指令。控制部分连接增湿装置、干燥装置、温度的控制装置等。

3

2.2系统主要电路的设计

2.2.1主要芯片89C51的功能及引脚图

芯片89C51共有40个引脚,其中电源引脚有4个,控制引脚有4个,并行的I/O 接口有32个,其引脚图如图2-2所示:

图2-2 89C51引脚

(1)电源及时钟引脚(4个)

Vcc:电源接入引脚;

Vss:接地引脚;

XTAL1:晶体振荡器接入的一个引脚(采用外部振荡器时,此引脚接地);

XTAL2:晶体振荡器接入的另一个引脚(采用外部振荡器时,此引脚作为外部振荡信号的输入端)。

(2)控制线引脚(4个)

RST/VpD:复位信号输入引脚/备用电源输入引脚;

ALE/PROG:地址锁存允许信号输出引脚/编程脉冲输入引脚(低电平有效);4

5

图2-4 SHT10传感器电路图

(1)数字集成温湿度传感器SHT10的主要特点

a.相对湿度和温度的测量兼有露点输出;

b.全部校准,数字输出;

c.接口简单(2-wire),响应速度快;

d.超低功耗,自动休眠;

e.出色的长期稳定性;

f.超小体积(表面贴装);

g.测湿精度±45%RH,测温精度±0.5℃(25℃)。

(2)引脚说明

a.电源引脚(VDD、GND)

SHT10的供电电压为2.4V~5.5V。传感器上电后,要等待11ms,从“休眠”状态恢复。在此期间不发送任何指令。电源引脚(VDD和GND)之间可增加1个100nF 的电容器,用于去耦滤波。

b.串行接口

6

SHT10的两线串行接口(bidirectional 2-wire)在传感器信号读取和电源功耗方面都做了优化处理,其总线类似I2C总线但并不兼容I2C总线。

①串行时钟输入(SCK)。SCK引脚是MCU与SHTIO之问通信的同步时钟,由于接口包含了全静态逻辑,因此没有最小时钟频率。即微控制器可以以任意慢的速度与SHT10通信。

②串行数据(DATA)。DATA三态引脚是内部的数据的输出和外部数据的输入引脚。DATA在SCK时钟的下降沿之后改变状态,并在SCK时钟的上升沿有效。即微控制器可以在SCK的高电平段读取有效数据。在微控制器向SHT10传输数据的过程中,必须保证数据线在时钟线的高电平段内稳定。为了避免信号冲突,微控制器仅将数据线拉低,在需要输出高电平的时候,微控制器将引脚置为高阻态,由外部的上拉电阻(例如:lOk~)将信号拉至高电平。

为避免数据发生冲突,MCU应该驱动DATA使其处于低电平状态,而外部接1个上拉电阻将信号拉至高电平。

(3)命令与时序

SHT10命令如表2-1所列。

表2-1 SHT10的命令

7

8

图2-7 传感器接口电路图

9

10

2.2.5 SHT10数据采集程序

如图2-10所示,SHT10数据采集过程。

图2-10 SHT10数据采集流程图

温湿度传感器SHTl0完成一次测量的工作顺序一般为:设置传感器分辨率→发送“启动传输”命令→发送测量命令→读输出的测量值→将输出测量值转换为物理量。。微控制器首先发布一个启动传输时序,接着调用写时序发布温度或湿度(取决于人口参数)的测量命令,之后等待测量的完成,在测量完成后,调用读时序读回测量结果。需要注意的一点是,仅当通信错误标志error为0时,才说明通信正确,读回的结果有效。在主程序中若检测到通信错误标志error非零,需要使用复位时序,来复位串行端口,然后重新进行测量SHTlO数据采集程序流程图如图2.10所示:

SHT10读写数据的规则是:DATA在SCK时钟的下降沿之后改变状态,并在SCK

11

时钟的上升沿有效。从微控制器向SHT10写数据的角度来看,可以理解为上升沿将触发SHT10锁存数据,即微控制器在下降沿输出数据,再给出上升沿触发SHT10锁存数据。下降沿和上升沿之间的时间间隔需要满足SHT10的数据建立时间1 (最小值为lOOns),上升沿之后数据也需要保持一段时间,这段时间用于满足SHT1 0的数据保持时间TH(典型值为lOns)。

当SHT10完成测量后,微控制器需要发布读时序将测量结果读回。实现读时序首先需要实现8个数据位的读取。SHT10读写数据的规则是:DA—TA在SCK时钟的下降沿之后改变状态,并在SCK时钟的上升沿有效。从微控制器读数据的角度理解,时钟线的下降沿将触发SHT10接口内的锁存器输出数据,输出数据在时钟线上升沿之后达到稳定,下降沿和上升沿之间的时间间隔要大于SHT10的输出数据有效时间Tv(典型值为250ns),即微控制器需要先给出下降沿,延时一段时间待数据稳定后再读取数据。此外,微处理器需要在第9个时钟给出应答位,这属于写时序,写时序可参考前文的论述。读时序的C语言程序代码如下,程序的人口参数为0或1,0代表给出应答位,继续接收后续数据;1表示终止通信。第3章系统软件的设计

3.1上位机软件设计

上位机软件采用Borland Delphi编写。Delphi是强大,灵活的基于Windows 的可视化应用程序开发工具。它将可视化技术与ObjectPascal语言完美结合,具有良好的数据库访问能力,是一个非常强大的应用程序开发组件的集合。

上位机软件主窗口如图2所示,它是系统启窗口等待用户操作。主窗口包括四大部分,即温动后显示在用户面前的第一个窗口,系统将在此度实时监测图形,湿度实时监测图形,当日环境参数表以及其他窗口的弹出按钮。系统的实时监测数据是上位机每隔15分钟向下位机发出命令采集的,时间间隔合理,能达到实时监测的目地。系统软件本着方便用户使用的原则,采用人机交互方式、弹出式窗口、错误屏蔽、友情提示等技术,最大限度地方便用户操作。系统窗口简洁明了,数据显示采用表格或图形的形式,使得用户更方便地查看、查询数据。温湿度数据接收软件界面图如图3-1所示:

如图3-2所示,上位机软件主要由实时监测模块、大棚信息模块、智能控制模块、环境参数设置模块、作物长势记录模块和直接控制模块6大模块组成,用户可以通过具体界面来了解下位机所在的大棚内作物的生长情况,通过界面内作物生长的走势图可以得出最适合作物生长的环境条件。上位机软件控制界面友好,操作简单明了,十分适合用户操作。

12

13

1vrL一IA双向电平转换。MAX232芯片的转换口,包含两路驱动器和接收器的RS 一232转换芯片。芯片内部有一个电压转换器,可以把输入的+5V电压转换为RS一232接口所需的±10V电压,最大的好处是工作电压为+5V,不需要额外电源。

3.2.2通信软件设计

系统的设计中,考虑到下位机位于温室大棚内,离上位机即计算机的控制有一定距离,而且系统对于传送速度的要求也不是很高,且考虑到传输的信息量不会非常大,并从降低成本的角度出发,所以采用异步串行通信的方式。

(1)异步通讯方式

异步通讯方式既不需要同步字符SYNC,也不要求保持数据流的连续性,它规定传输格式,每个数据均以相同的帧格式发送。每帧信息由起始位、数据位、奇偶校验位和停止位组成,帧与帧之间用高电平隔开。

(2)通信程序的编写

由于汇编语言程序结构紧凑、灵活,汇编成目标程序效率高、占用存储器空间少、运行速度快和实时性强等特点,适合实时测控等领域,所以本系统通信程序采用了汇编语言进行编写。在异步串行通信中,要保证通信成功,通信双方必需对数据传送方式有一系列的约定,比如:作为发送方,必须知道什么时候发送信息、发什么、对方是否收到、收到的内容有没有错、要不要重发、怎样通知对方结束等;作为接收方,必须知道对方是否发送了信息、发的是什么、收到的信息是否有错、如果错了怎样通知对方重发、怎样判断结束等。这种约定称为通信协议,它必须在编程之前就确定下来,只有双方都正确地识别并遵守这些规定才能顺利地进行通信。本设计的通信协议格式设置为:

我们选定常用的波特率2400位,串行通信工作于方式1,SMOD = 1,晶体震荡频率为12MHz。由于定时/计数器1的溢出率= For,c/[12* (2 一N)]次,而串行通信方式1的波特率为: (定时/计数器1溢出率)*2SMOD/32,因此可以得出下式:

2400= (2SMOD/32)*Fosc/[12* (2 一N)]

可求得N =F3H,因此TH =F3H,TL=F3H。

*波特率设置:选用定时/计数器1定时模式,工作方式1,计数常数F3H,SMOD=1,波特率2400bps,

*串行通讯设置:异步通讯方式1,允许接收;

*1位起始位,8个数据位,1个停止位。

3.3系统主程序

本系统的智能核心是AT89C51,其监控程序和应用软件全部固化在EPROM 14

15

结束语

本设计从温度检测电路、输出控制电路、键盘及LED显示电路的设计等几个方面出发,详细研究和设计了基于单片机的温室大棚测控系统的各个部分内容,设计了单片机及其外围电路,并结合一套完整的程序算法。给出了一套温室大棚测控系统软硬件解决方案。系统通过温度检测电路感知西红柿大棚温度变化,通过模数转换送给单片机处理,通过键盘设定上限温度和下限温度,当温室大棚温度低于设定的温度下限值时,启动点暖风机给温室加温,当温室大棚温度高于设定的温度上限值时,停止加热,实现了温室大棚测控的自动化。采用的SHT10测量元件大大简化了软硬件的设计,系统结构简单调试方便,性价比高。而且由于SHT10的极好性能特点,提高了系统的稳定性和测量精密度。

通过这次设计,加强了我的动手、思考和解决问题的能力。使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。最后在老师的辛勤指导下,终于游逆而解。同时,在老师的身上我们学也到很多实用的知识,在次我们表示感谢!同时,我也学到了很多课内学不到的东西,比如独立思考解决问题,出现差错的随机应变,都受益非浅,今后的制作应该更轻松,自己也都能扛的起并高质量的完成项目。

最后,感谢指导老师的指导,无论在哪方面,我都学到了许多东西。

16

【开题报告】大棚温湿度控制系统开题报告

【关键字】开题报告 大棚温湿度控制系统开题报告 篇一:蔬菜大棚温度控制系统开题报告 中北大学信息商务学院 毕业设计开题报告 学生姓名: 系别: 专业: 设计题目: 指导教师: XX 年 3 月20日XXX 学号:信息商务学院自动控制系自动化蔬菜大棚温度控制系统设计赵耀霞 开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资 格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用按信息商务学院教学管理部统一设计 的电子文档标准格式(可从教务处或信息商务学院网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.学生写文献综述的参照文献应不少于15篇(不包括辞典、 手册)。文中应用参照文献处应标出文献序号,文后“参照文献”的书写,应按照国标GB 7714—87《文后参照文献著录规则》的要求书写,不能有随意性; 4.学生的“学号”要写全号(如0XX401X02),不能只写最 后2位或1位数字; 5. 有关年月日等日期的填写,应当按照国标GB/T 7408—94 《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“XX年3月15日”或“XX-03-15”; 6. 指导教师意见和所在专业意见用黑墨水笔工整书写,不得 随便涂改或潦草书写。 毕业设计开题报告 篇二:温室温湿度控制系统设计开题报告 辽宁(本文来自:小草范文网:大棚温湿度控制系统开题报告)石油化工大学 信息与控制工程学院 毕业设计(论文)开题报告 论文题目:温室温湿度控制系统设计 学生姓名:刘晓薇

温室大棚温湿度监控要点

天津科技大学本科生 外文资料翻译 学院电子信息与自动化学院 专业 2011自动化(实验班) 题目基于触摸屏、PLC的蔬菜大棚温湿度监控系统设计姓名张会来 指导教师(签名) 2015年3月20日

利用无线传感器网络对辣椒温室系统的控制 摘要:本文的研究表明:“辣椒温室系统(PGHS)”收集温室辣椒生长的最适条件的信息。国内辣椒栽培设施的温度变化范围相对比较大并且设备内部必须保 浓度不均匀,对辣椒生长产生不好的影响。为了应对这持相对干燥。此外,CO 2 些问题,“辣椒温室系统”(PGHS)是基于无线技术,为帮助农民种植辣椒设计的。该系统提供了对生长环境的监测,它是利用传感器测量温度、湿度、光照、叶片湿度、果实等信息来监测辣椒生长环境数据,“人工光源控制服务”是安装在温室内通过分析收集到的数据来提高能源效率和控制生长环境,从而处理控制温室。 关键词:美国海军;辣椒;温室 1.引言 最近国内园艺产业的数量和它的技术质量在资本密集型的行业取得了实质性的增长,现在它除了现有的国内需求成了一个在海外出口需求潜力巨大的优势产业。[1]。 辣椒是一种创造高附加值的园艺产品。辣椒的产量取决于日照量,日照强度和日照时数的不同[2]。辣椒的种植成本由供热成本,农资成本和劳动力成本组成。其中,对于困难农民供热成本和农资成本比重都很高[3]。 本研究的提出是为了培养红辣椒而建立一个“辣椒温室系统”(PGHS),这需要精确的成长管理。 “辣椒温室系统”(PGHS)利用IT技术在实时采集农作物生长信息来控制栽培设施从而控制农作物成长环境的系统。“辣椒温室系统”(PGHS)减少农作物的生长、发育、产量和品质的偏差。它还利用生物特征数据来控制栽培设施从而优化最佳成长环境和创造在辣椒根区的最佳条件。这个系统优化管理生产要素,减少了能量损失、肥料和水,这样就降低了生产成本。用人工光源提供人工照明使农作物有良好的成长环境,这样持续供应高质量的,新鲜的蔬菜将变得有可能。农民将通过栽培设施给客户持续供应高质量的新鲜蔬菜从而提高生产力和收入。“辣椒温室系统”(PGHS)的设计和实现都是基于无线传感器网络。 本文由以下内容组成。第2章介绍了监控系统应用在韩国和海外农业环境的相关技术。第3章阐述了为“辣椒温室系统”(PGHS)的研究提供的配置元素和服务。第4章阐述了“辣椒温室系统”(PGHS)的实施内容。第5章是结论。

智能温湿度监控系统概要

智能温湿度管理系统 设 计 方 案

目录 1. 系统概述 (2) 1.1系统建设目标 (2) 1.2系统设计原则 (2) 1.3智能温湿度监控系统的概述 (2) 2. 多功能厅各子系统的功能描述: (5) 2.1、silverlight版网络实时监控系统 (5) 2.2、C/S版设备数据采集系统 (5) 2.3、远程控制模块系统 (5) 3. 各子系统的功能以及设计方案 (6) 3.1、silverlight版网络实时监控系统 (6) 3.1.1功能描述: (6) 3.1.2系统特点 (6) 3.1.3主要功能简介 (8) 3.1.3.1实时显示数据和状态 (8) 3.1.3.2 TCP远程访问控制 (9) 3.1.3.3 TCP查看历史温湿度记录 (10) 3.2、C/S版设备数据采集系统 (11) 3.2.1 功能描述 (11) 3.2.2 系统特点 (11) 3.3、远程控制模块系统 (12) 3.3.1功能描述: (12) 3.3.2主要设备简介: (13)

1.系统概述 1.1系统建设目标 此次工程项目是承担智能温湿度系统的设计、施工。包括网络实时监控系统、数据采集系统、远程控制模块系统。其他子系统在本系统的设计中要达到提供的以上功能实现的活动环境。 1.2系统设计原则 1.先进型性原则 采用的系统结构应该是先进的、开放的体系结构,和系统使用当中的科学性。整个系统能体现当今会议技术的发展水平。 2.实用性原则 能够最大限度的满足实际工作的要求,把满足用户的业务管理作为第一要素进行考虑,采用集中管理控制的模式,在满足功能需求的基础上操作方便、维护简单、管理简便。 3.可扩充性、可维护性原则 要为系统以后的升级预留空间,系统维护是整个系统生命周期中所占比例最大的,要充分考虑结构设计的合理、规范对系统的维护可以在很短时间内完成。 4.经济性原则 在保证系统先进、可靠和高性能价格比的前提下,通过优化设计达到最经济性的目标。 5.系统设备选型原则 1.用国际知名的器材,以及有雄厚实力和绝对优秀技术支持能力的厂家、 代理商,以保证设计指标的实现和系统工作的可靠性。 2.基本上选用同类产品中技术最成熟、性能先进、使用可靠的产品型号, 以保证器材和系统的先进性、成熟性。 3.选用高度智能化、高技术含量的产品,建立系统开放式的架构,以标准 化和模块化为设计要求,既便于系统的管理和维护使用,又可保持系统较长时间的先进性。 1.3智能温湿度监控系统的概述 本系统针对多个库房内温度、湿度的集中监测和管理,是一套可无人值守24小时不间断实时监控记录的自动化监测系统。系统能对所有库房的温湿度进

基于单片机温室大棚温湿度采集系统设计

河北农业大学 毕业设计(论文) 题目:基于单片机温室大棚温湿度采集系统设计 农业电气化1501班:李闫 指导教师:郭艳霞

基于单片机温室大棚温湿度采集系统设计 设计概述: 温度和湿度是在农业生产中常见的和基本的参数之一,它们会大幅度影响作物产量和品质,现代科学和技术在提高农业生产力方面发挥着重要作用,以确定温度和湿度,实时显示、储存和监测。国内生产,产品质量与节能。本次设计欲将单片机、传感器、计算机技术相结合设计出一套符合现代温室大棚的温湿度采集系统。 该系统以单片机为第一基本点,并使用多个温度传感器和湿度传感器作为元件。该单芯片微型计算机与数字传感器连接到收集并存储该传感器的测量数据。该MCU(微控制单元)通过RS-232发送所收集的数据到计算机。计算机存储、记录由MCU为员工发送的数据进行浏览,记录和进行相关处理。在另一个地方,MCU 需要实现监控系统的扩展,数据的实时显示和数据存储的功能。 本文主要完成了以下几个方面:首先是设计概括出本系统大致方向,选择与本次系统相符合的传感器。,根据选择的传感器设计硬件与软件。其次是数据的采集:包括温度和湿度的数字控制、监测原则、监测计划和监测系统软件开发。本系统可以全面且及时的对温室环境中的温湿度进行采集与监测,并且还可以将以前的数据进行保存与记录,方便人们及时查看与数据对比,此外设计了显示模块,通过使用图形的方式更加直观显示参数,实现了智能化远程监测温湿度的思想。 关键词:温室大棚单片机温湿度传感器

Design of temperature and humidity acquisition system in greenhouse based on single Chip Microcomputer Design overview: temperature and humidity are one of the common and basic parameters in agricultural production. Modern science and technology play an important role in improving agricultural productivity to determine temperature and humidity, real-time display, storage and monitoring. Domestic production, product quality and energy saving. In this paper, a new modern temperature and humidity acquisition system for hardware and software greenhouse is designed by SCM, transducer, computer technique . The system takes single chip microcomputer as the first basic point, and uses multiple temperature sensors and humidity sensors as acquisition components. The single chip microcomputer is connected to the digital sensor to collect and store the measurement data of the sensor. The MCU (Microcontrol Unit) sends the collected data to the computer via RS-232. Computer stores, records the data sent by MCU for employees for browsing, recording and related processing. In another place, MCU needs to realize the expansion of monitoring system, the real-time display of data and the function of data storage. This paper mainly completes the following aspects: first of all, the general direction of the system is summarized, the sensors consistent with the system are selected, and the hardware and software are designed according to the selected sensors. Secondly, data collection: including temperature and humidity digital control, monitoring principles, monitoring planning and monitoring system software development. The system can collect and monitor the temperature and humidity in greenhouse environment in a comprehensive and timely manner, and can also save and record the previous data, which is convenient for people to view and compare the data in time. In addition, a display module is designed. By using graphics to display parameters more intuitively, the intelligence is realized. The idea of remote monitoring temperature and humidity. Key words: greenhouse, single chip microcomputer, temperature and humidity sensor,

大棚温度控制系统设计报告DOC

课程设计主要任务 基于AT89S52单片机的温度测量控制系统,数字温度传感器DS18B20通过单总线与单片机连接,实现温度测量控制,主要性能为: (1 )通过该系统实现对大棚温度的采集和显示; (2)对大棚所需适宜温度进行设定; (3)当大棚内温度参数超过设定值时控制通风机进行降温,当温度低于设定值时利用热风 机进行升温控制; (4)通过显示装置实时监测大棚内温度变化,便于记录和研究; 系统的设计指标 (1 )温度控制范围:0 C ~+50 C; (2)温度测量精度:土2 C; (3)显示分辨率:0.1 C; (4)工作电压:220V/50HZ ± 10%

目录 第一章序言 1 第二章总体设计及个人分工 2 第三章传感器设计及应用 4 第四章总结8

第一章序言 随着人口的增长,农业生产不得不采取新的方法和途径满足人们生活的需要,大棚技术的出现改善了农业生产的窘迫现状。塑料大棚技术就是模拟生物生长的条件,创造人工的气象环境,消除温度对农作物生长的限制,使农作物在不适宜的季节也能满足市场的需求。随着大棚技术的普及,对大棚温度的控制成为了一个重要课题。早期的温度控制是简单的通过温度计测量,然后进行升温或降温的处理,进行的是人工测量,耗费大量的人力物力,温度控制成为一项复杂的程序。 大多数的蔬菜大棚以单个家庭作业为主,种植户为蔬菜大棚配备多参数的智能设备,经济成本很高,因此将温度控制由复杂的人为控制转化为自动化的机械控制成为必然。目前现代化的温度控制已经发展的很完备了,通过传感器检测基本上可以实现对各个执行机构的自动控制,应用自动控制和电子计算机实现农业生产和管理的自动化,是农业现代化的重要标志之一。近年来电子技术和信息技术的飞速发展,温度计算机控制与管理系统正在不断吸收自动控制和信息管理领域的理论和方法,结合温室作物种植的特点,不断创新,逐步完善,从而使温室种植业实现真正意义上的现代化,产业化。温度计算机控制及管理技术便函先在发达国家得到广泛应用,后来各发展中国家也都纷纷引进,开发出适合自己的系统。这在给各国带来了巨大的经济效益的同时,也极大地推动了各国农业的现代化进程。本系统以AT89S52单片机为控制核心,主要是为了对蔬菜大棚内的温度进行 检测与控制而设计的。该测控仪具有检测精度高、使用简单、成本较 低和工作稳定可靠等特点,所以具有一定的应用前景。

温湿度自动监控系统设计方案

天成药业有限公司 药品储存温湿度自动监测系统 建设服务方案 北京龙鼎金陆测控技术有限公司

一、北京龙鼎金陆简介 北京龙鼎金陆测控技术有限公司简介 北京龙鼎金陆测控技术有限公司坐落于国家级经济技术开发区-北京经济技术开发区,也称亦庄开发区,是国家计量院高级工程师及地方传感器协会副会长联合成立的一家集科、工、贸为一体的现代化高科技企业。 公司从成立伊始一直脚踏实地的努力为国人创造“质好而不贵”的国货精品,打造以自主创新为龙鼎企业特色的产业价值链,塑造龙鼎金陆LD的这一民族品牌,并一定坚信会成为振兴民族传感器事业及工业自动化控制系统的一面旗帜来迎接国际化的 挑战。 近年来,公司又荟萃了环材料学、力学等多种学科的精良人材,不但吸取了日本株式会社共和电业、美国KULITE公司的箔式传感器、扩散硅传感器的制造技术,而且凭借雄厚的技术、科技开发力量及精湛的生产工艺水平,研制、开发、制造上百种称重测力传感器、压力变送器、智能仪表及计算机控制系统。广泛应用于船舶、汽车制造、内燃机、电机、冶金、化工、食品、医疗、航空航天、各大科研所、院校、交通、能源、机械制造、建材等领域。 公司全体员工以热情周到的售前和售后服务,深得用户的好评和信赖。北京龙鼎金陆测控技术有限公司全体员工热忱欢迎各界人士的光临与指导,同时也希望各界人士对我司做深入的监督,以便我们随时的纠正我们的不足,力争向您提供更优质的产品和服务。 以良好的信誉、周到的服务、可靠的质量铸造国货精品是我们一贯的宗旨 以创新技术、优化管理和齐心协力提升品质来嬴取客户信赖是我们的根本 二、我们的优势 北京龙鼎金陆作为一家药品储运温湿度监测系统研发、建设的高新技术企业,为各类涉药企业提供稳定、高效的温湿度监测设备及系统解决方案。 服务专业专注 公司深入研究药品产业政策及行业管理特点,专注服务于药品监管部门与药品相关企业。 公司建立了具备行业资格准入要求的人员队伍,温湿度监管平台及温湿度监

大棚温湿度控制

毕业论文(设计) 大棚温湿度自动调控 朱康允 指导老师:王国强 班级:机电设备09 系(部):机电工程系 专业:机电设备维护与管理 答辩时间: 1

摘要 随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。如果仅靠人工控制既耗人力,又容易发生差错。现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局性。为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。 本论文主要阐述了基于AT89C51单片机的西红柿大棚温湿度控制系统设计原理,主要电路设计及软件设计等。该系统采用AT89C51单片机作为控制器,SHT10作为温湿度数据采集系统,可对执行机构发出指令实现大棚温湿度参数调节,具有上下位机直接设置温湿度范围,温湿度实时显示等功能。上位机采用Delphi软件进行编写,用户界面友好,操作简单,可以根据大棚西红柿生长情况绘制成简明直观的作物生长走势图,从而容易得出最适合作物生长的温湿度值。 关键词:AT89C51;SHT10;蔬菜大棚;温湿度;控制系统;传感器 2

Abstract With the popularization of trellis technology, greenhouse trellis an ever-growing number, for vegetable shed speaking, one of the most important management factor is the temperature and humidity control. Temperature is too low, the vegetables will freeze to death or stop growing, so will always control temperature and humidity in a suitable vegetable growth range. Traditional temperature control is in greenhouse trellis internal hanging a thermometer, workers according to regulate the temperature reading the temperature inside the shelter. If only by artificial control both consumption manpower, and easy to place regular orders. Now, with the improvement of agricultural industry scale, for larger quantity of trellis, traditional temperature control measures will show great bureau sex. Therefore, in modern vegetable shed management zhongtong often temperature and humidity automatic control system, in order to control the temperature, adapt to the trellis vegetable production needs. This thesis mainly elaborated based on AT89C51 tomatoes canopy temperature and humidity control system design principle, main circuit design and software design, etc. This system USES AT89C51 single chip microcomputer as controller, SHT10 as temperature and humidity data acquisition system, may to the actuator directives realize trellis temperature and humidity parameters adjustment, has the upper and lower level computer directly set temperature range, temperature and humidity real-time display, and other functions. PC using Delphi software to compile, user friendly interface, easy operation, can according to shed tomato growth situation blazoned with simple, direct simulations of crop growth, thus easy to draw the most suitable for crop growth of temperature and humidity value. Key words:AT89C51; SHT10;vegetable shed; Temperature and humidity; Control System; sensor 3

温室大棚温湿度控制系统

毕业论文(设计)

题目名称温室大棚温湿度控制系统院(系)电子信息学院 专业班级电气10803 学生姓名陶想林 指导教师唐桃波 辅导教师唐桃波 时间2012年3月至2012年6月

目录 长江大学毕业设计(论文)任务书 (3) 毕业设计开题报告.................................................................................................................... X 长江大学毕业论文(设计)指导教师评审意见.................................................................... XV 长江大学毕业论文(设计)评阅教师评语........................................................................... X VII 长江大学毕业论文(设计)答辩记录及成绩评定............................................................... XIX 中外文摘要................................................................................................ 错误!未定义书签。前言...................................................................................................................................... XXIV 绪论. (26) 1.1课题来源 (26) 1.2国内外发展现状、趋势以及面临的挑战 (26) 1.3研究的目的、意义及主要内容 (27) 2硬件设计 (27) 2.1系统总体结构设计 (27) 2.2控制模块的设计 (28) 2.2.1 STC89C51的主要特性 (28) 2.2.2 AT89C51的管脚说明 (29) 2.2.3震荡电路 (33) 2.2.4 复位电路 (33) 2.2.5 单片机的CPU (34) 2.2.6 单片机的中断系统 (36)

基于单片机AT89C51的温室大棚温湿度控制系统设计

毕业论文(设计) 题目名称温室大棚温湿度控制系统 院(系)电子信息学院 专业班级电气10803 学生姓名 指导教师 辅导教师 时间2012年3月至2012年6月

目录 长江大学毕业设计(论文)任务书 (3) 毕业设计开题报告 ..................................................... VII 长江大学毕业论文(设计)指导教师评审意见 ................................ XI 长江大学毕业论文(设计)评阅教师评语 ................................... XII 长江大学毕业论文(设计)答辩记录及成绩评定 ............................ XIII 中外文摘要 ............................................ 错误!未定义书签。前言 ................................................................. XVI 绪论 (18) 1.1课题来源 (18) 1.2国内外发展现状、趋势以及面临的挑战 (18) 1.3研究的目的、意义及主要内容 (19) 2硬件设计 (19) 2.1系统总体结构设计 (19) 2.2控制模块的设计 (20) 2.2.1 STC89C51的主要特性 (20) 2.2.2 AT89C51的管脚说明 (21) 2.2.3震荡电路 (23) 2.2.4 复位电路 (23) 2.2.5 单片机的CPU (24) 2.2.6 单片机的中断系统 (26) 2.2.7 单片机最小系统 (29) 2.3 传感器设计 (31) 2.3.1 DHT11的简介 (32) 2.3.2 引脚说明 (32) 2.3.3 电源引脚 (33) 2.3.4 串行接口(单线双向) (33) 2.4 无线模块的设计 (35) 2.4.1 APC220的性能 (35) 2.4.2 无线传输模块APC220的接口说明 (36) 2.4.3 APC220无线模块的工作参数的设置 (37) 2.4.4 APC220无线模块的技术指示 (39) 2.5键盘和显示模块的设计 (39) 2.5.1显示模块设计 (39) 2.5.2键盘模块设计 (40) 2.6执行模块的设计 (42) 2.6.1调节模块 (42) 2.6.2 报警模块 (43) 3.软件设计 (45) 3.1 初始化子程序 (45)

温度控制系统

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

大棚温湿度控制

摘要 随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。如果仅靠人工控制既耗人力,又容易发生差错。现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局性。为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。 本论文主要阐述了基于AT89C51单片机的西红柿大棚温湿度控制系统设计原理,主要电路设计及软件设计等。该系统采用AT89C51单片机作为控制器,SHT10作为温湿度数据采集系统,可对执行机构发出指令实现大棚温湿度参数调节,具有上下位机直接设置温湿度范围,温湿度实时显示等功能。上位机采用Delphi软件进行编写,用户界面友好,操作简单,可以根据大棚西红柿生长情况绘制成简明直观的作物生长走势图,从而容易得出最适合作物生长的温湿度值。 关键词:AT89C51;SHT10;蔬菜大棚;温湿度;控制系统;传感器 1

Abstract With the popularization of trellis technology, greenhouse trellis an ever-growing number, for vegetable shed speaking, one of the most important management factor is the temperature and humidity control. Temperature is too low, the vegetables will freeze to death or stop growing, so will always control temperature and humidity in a suitable vegetable growth range. Traditional temperature control is in greenhouse trellis internal hanging a thermometer, workers according to regulate the temperature reading the temperature inside the shelter. If only by artificial control both consumption manpower, and easy to place regular orders. Now, with the improvement of agricultural industry scale, for larger quantity of trellis, traditional temperature control measures will show great bureau sex. Therefore, in modern vegetable shed management zhongtong often temperature and humidity automatic control system, in order to control the temperature, adapt to the trellis vegetable production needs. This thesis mainly elaborated based on AT89C51 tomatoes canopy temperature and humidity control system design principle, main circuit design and software design, etc. This system USES AT89C51 single chip microcomputer as controller, SHT10 as temperature and humidity data acquisition system, may to the actuator directives realize trellis temperature and humidity parameters adjustment, has the upper and lower level computer directly set temperature range, temperature and humidity real-time display, and other functions. PC using Delphi software to compile, user friendly interface, easy operation, can according to shed tomato growth situation blazoned with simple, direct simulations of crop growth, thus easy to draw the most suitable for crop growth of temperature and humidity value. Key words:AT89C51; SHT10;vegetable shed; Temperature and humidity; Control System; sensor 2

基于PLC的大棚温度自动控制系统设计

清华大学 毕业设计(论文) 题目基于PLC的大棚温度自动控制 系统设计 系(院)自动化系 专业电气工程与自动化班级2009级3班 学生姓名雷大锋 学号2009022321 指导教师王晓峰 职称副教授 二〇一三年六月二十日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 年月日

基于PLC的大棚温度自动控制系统设计 摘要 大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。 关键词:大棚,温度控制,PLC

温室大棚温湿度测控系统设计毕业设计论文

温室大棚温湿度测控系统设计 [摘要]随着计算机应用技术的发展,用计算机控制的方面也涉及到各个领域,其中在塑料大棚内用单片机控制温度、湿度是应用于实践的主要方面之一。这对于农作物的生长发育有非常大的促进作用,它可以避免因为外面气候的剧烈变化对农作物造成的伤害,而使农作物能够在一个最适合它的温度、湿度的环境中生长发育,从而可以促进作物健康生长,抑制微生物的危害,提高产量,增加经济效益。本设计由AT89S52单片机,温度检测电路,湿度检测电路,控制系统,报警电路,采用LCD12864作为显示电路组成;温度检测和湿度检测采用DHT90温湿度传感器采集信息,将其采集到的数字信号传入AT89S52单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作,实现了对大棚里植物生长温度及土壤和空气湿度的检测、监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。 该设计还具有对温度和湿度的显示功能,对大棚内环境温度和湿度的预设功能。 [关键词]温度检测、湿度检测、控制系统、报警系统

Design in Greenhouse Temperature and Humidity Monitoring System XX Tutor: xxx Abstract: With the development of computer application technology, the computer-controlled areas are also involved, including the plastic canopy temperature using SCM and humidity is one of the main aspects used in practice. This crop growth and development of a very large role in promoting, it could avoid severe climate change outside the damage to crops, Er Shi crops it can be one of the most suitable temperature and humidity of the environment, growth and development, which can promote healthy crop growth, inhibition of microbial hazards, increase productivity, increase economic benefits. The design by the AT89S52 microcontroller, temperature detection circuit, humidity detection circuit, control system, alarm circuit, as shown by LCD12864 circuit; temperature measurement and humidity detected by DHT90 temperature and humidity sensors to collect information, its collection to the digital signal incoming A T89S52 SCM, SCM by comparing the input temperature and set temperature to control fan or electric drive circuit, when the studio, the set temperature range, the microcontroller does not send fan or electric action, realized in the canopy and the plant growth and soil and air temperature humidity detection, monitoring, and can exceed the normal temperature and humidity range of state of real-time processing, so a good greenhouse environment control. The design also features display of temperature and humidity, ambient temperature and humidity of the shed by default. Key words: temperature testing, humidity testing, control system, alarm system.

相关文档
最新文档